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Orbital Kondo behavior from dynamical structural defects
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The interaction between an atom moving in a model double-well potential and the conduction electrons is
treated using renormalization-group methods in next-to-leading logarithmic order. A large number of excited
states is taken into account and the Kondo temperatureTK is computed as a function of barrier parameters. We
find that for special parametersTK can be close to 1 K and it can be of the same order of magnitude as the
renormalized splittingD. However, in the perturbative regime we always find thatTK&D with TK&1 K @I. L.
Aleiner et al., Phys. Rev. Lett.86, 2629~2001!#. We also find thatD remains unrenormalized at energies above
the Debye frequency,vDebye.
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I. INTRODUCTION

There is a great number of experimental anomalies
served by point contact,1–3 dephasing,4,5 and transport6,7

measurements in metals at low temperature which have
been theoretically explained in a satisfactory way. Sensitiv
on annealing,1,5 sample preparation,5 and electromigration2

support that these anomalies may originate from some k
of dynamical defect.

The concept of two-level systems~TLS’s!, i.e., atoms or
groups of atoms moving between two positions resulting
two almost degenerate levels, has been introduced to exp
the low-temperature specific-heat anomalies in meta
glasses.8 In order to keep the level splitting very low, tunne
ing between the two positions has been assumed. The
model has later been generalized by incorporating dissipa
effects9 and noncommutative couplings between the TLS a
conduction electrons such as screening and assisted tr
tion due to the metallic electrons,10,11 and a two-channe
Kondo-like behavior has been conjectured.11 The estimated
Kondo temperatureTK , however, turned out to be too sma
Taking a few of the higher levels of the atom into accou
increasedTK considerably,12 however, this approximation
has been shown recently to be incorrect:13,14 Most of the
terms cancel out at energies above that of the few low
levels if all excited states are included in the computati
and thus electron-assisted tunneling results only in a ne
gible TK for TLS’s.13,14 Similar results were obtained usin
the adiabatic approximation for an atom moving in a meta
host.15

The physical reason for the above cancellation is that
tunneling takes place on a typical time scalet;1/vD .
Therefore electrons that are farther from the Fermi surf
thanvD follow the motion of the defect instantaneously, a
can be ignored when considering complicated correlati
between the TLS and the conduction electrons. In ot
words, the effective bandwidth of the conduction electron
reduced from the Fermi energyEF down to a value;vD .
0163-1829/2003/68~4!/045114~8!/$20.00 68 0451
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In the present paper we study a similar model but w
smaller or negligible barriers, far from the tunneling regim
and keeping all excited states through our computations.
construct the perturbative scaling equations up to next
leading logarithmic order and show that the cancellat
found in Ref. 13 also extends to the splitting of the TL
which remains unrenormalized down to the scalevDebye,
too. This supports again the picture of an ‘‘adiabatic cond
tion band,’’ proposed in Ref. 15.

In the most interesting cases the second level is just ab
or around the top of the barrier: In this regime we find
Kondo temperature in the range ofTK;0.121 K using re-
alistic parameters. For a special class of parameters
renormalized energy splitting between the lowest two lev
is aroundTK implying that such dynamical defects may giv
rise to some of the Kondo-like anomalies observed.1,3,6 Our
calculations also indicate that to obtain a measurableTK one
needsresonant scatteringon the defect.

In the present work we only study the perturbative regio
and there we do not find convincing evidence of an obse
able two-channel Kondo behavior. However, one can sh
by performing analytical and numerical calculations using
more detailed model that there exists a regimeoutsidethe
range of perturbative calculations where the two-chan
Kondo behavior appears.16

II. MODEL

Our model consists of a particle~or collective coordinate
z of the defect! with massM (M;50mp ; mp is the proton
mass! moving in some bare potential well,Vbare(z). The po-
tential Vbare(z) can be thought of as the potential resultin
from the interaction with the neighboring ionic charge
However, as we shall see later,Vbareis strongly renormalized
due to the strong electron-defect interaction: In general, b
Vbare(z) and the electron-defect interaction are of the order
the Fermi energy (;10 eV), but theirsum, the effective po-
©2003 The American Physical Society14-1
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tential, is only of the order of the Debye frequency. The
fore Vbare(z) has very little physical meaning.

The noninteracting part of the Hamiltonian is given by

H05(
n

«nbn
†bn1(

p,s
«pap,s

† ap,s . ~1!

The first term describes the motion of the particle in t
potentialVbare, andbn

† (n51,2, . . . ;(nbn
†bn[1) denotes the

creation operator corresponding to a state of the particle w
energy«n and wave functionwn(z). The second term de
scribes the conduction electrons, withap,s

† being the creation
operator of an electron with momentump, spin s, and en-
ergy «p . In the following we use a simple free-electron a
proximation to describe the conduction band, and assu
that the wave function corresponding toap,s

† is a simple
plane wave;eik•r. The density of states for the electrons
%(«)'%0(11a«/D0), where%0 is the value at the Ferm
energy «50, D0 is a symmetric bandwidth cutoff of th
order of the Fermi energy, anduau,1 accounts for possible
electron-hole symmetry breaking due to band-struct
effects.

We use a simple local interaction between the particle
the electrons as follows:

H int5(
s

E dzdzp„cs
†~z!cs~z!C†~zp!C~zp!

3$U0d~z!1U@d~z2zp!2d~z!#%…, ~2!

wherecs(z) is the electron field operator along the axisz of
the defect motion (x5y50), and C(zp)5(nbnwn(zp) is
the particle field operator at the position of the heavy p
ticle, zp . U0 describes a static scattering at the center wh
U describes the change in the scattering potential when
particle is displaced from the center.

In the following we shall simply takeU050. This sim-
plification needs some explanation: In principle, the value
U should be preciselyU0 in Eq. ~2!. One can, however
argue that the electronic wave functions corresponding to
operatorsap

† in Eq. ~1! should be determined when the pa
ticle is at the origin, and should therefore already incorpor
the effect ofU0, which could therefore be ignored.

The previous argument is, however, not quite right. T
consequences of the presence ofU0 would be quite impor-
tant. The term;U0 can be treated exactly for a sing
impurity:17 Since U0 describes a static potential it can b
incorporated in the electronic wave functions, which can
be approximated by plane waves any more. Its most imp
tant effect is torenormalizethe local density of states%0 in
thes channel as%0→cos2(d0)%0, whered0 denotes the scat
tering phase shift induced by the scattering potentialU0
5U. As we see below, experiments indicate that the value
U is rather large, and corresponds to almost resonant sca
ing. In other words, in this simple model withU5U0 at
resonant scatteringd0'p/2, and the local density of states
strongly suppressed. As a result, the dimensionless coup
estimated below are reduced. This is a serious problem:
can show that for a potential scattering model withU5U0
04511
-

th

e

e

d

r-
e
he

f

e

te

e

t
r-

f
er-

gs
ne

this suppression is so strong that one is always in the we
coupling regime, and therefore one can never observe
two-channel Kondo behavior, while without the termU0 one
can go beyond the Emery-Kivelson line and prove even a
lytically the existence of a regime where a two-chann
Kondo behavior appears.16

To resolve this problem, one has to go beyond appro
mating the particle by a simple potential scatterer and t
into account the dynamics of the internal electronic degr
of freedom of the particle.16 This analysis turns out to justify
our approximation of settingU050 in Eq. ~2!.

To handle the interaction part of the Hamiltonian we fo
low Ref. 11 and introduce spherical coordinates. Assum
that the motion of the defect is restricted in space (kFzp
,1, with kF the Fermi momentum!, the dominant electron
scattering occurs in the (l 50,m50) and (l 51,m50) angu-
lar momentum channels, and we can neglect scattering c
nels with l .1.11 H int then becomes

H int5
1

2p (
n8,n

l 8,l ,s

E dkE dk8Vl 8 l
n8nbn8

† bnak8 l 8s
† akls , ~3!

where akls
† creates an electron with angular momentu

l (m50), radial momentumk, and spins, and satisfies
the anticommutation relation $akls

† ,ak8 l 8s8%52pd(k
2k8)dss8d l l 8 . We evaluated the dimensionless interacti

matrix elementsVl 8 l
n8n using spherical wave functions wit

momentumk'kF for the electrons and the exact wave fun
tionswn for the defect. The dynamics of the heavy particle
described in terms of the pseudofermionsbn

† satisfying the
constraint(nbn

†bn51.

III. RENORMALIZATION-GROUP ANALYSIS

To determineTK we constructed the leading and next-t
leading logarithmic renormalization-group~RG! equations.12

To this end one has to compute vertex and self-energy
rections to the pseudofermion propagatorGnn8(t)
[2^Ttbn(t)bn8(0)& and the impurity-electron vertex func

tion G l l 8
nn8 , and then apply the relatively standard machine

of the multiplicative RG. The corresponding skeleton d
grams are shown in Fig. 2 below.@Note that the first-order
self-energy diagram~not shown in Fig. 2 below! only gener-
ates a local nonlogarithmic and time-independent renorm
ization of the defect potential and can therefore be entir
ignored.# In the RG procedure the bandwidth cutoff is r
duced,D→D1dD, and the couplings are simultaneous
changed to keep physical quantities invariant. In the pres
case a matrix version of the multiplicative RG must
employed.18

In this work we take also into account the energy dep
dence of the local density of states. This may also depend
the angular momentum channell, % l(«)/% l(0)51
1a l«/D0, where the slopea l and value% l(0) of the density
of states is usually different for different values ofl. The
energye is measured from the Fermi energy and only t
linear term has been kept in% l .
4-2
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Let us first focus on the case of% l 505% l 515%0 and
a05a15a. Then the second-order self-energy correction
the pseudofermion propagator, e.g., contains both loga
mic and nonlogarithmic corrections, and is given by the f
lowing expression:

Snm~v!522 (
e ñ,D0

tr$VnñVñm%H D0f ~a!1~v2e ñ!

3F ln
D0

uv2e ñu
1g~a!G J , ~4!

where we introduced a matrix notation,Vll 8
nn8→Vnn8, tr$ . . . %

denotes the trace in the electronic angular momentum i
ces, and the constantsf (a) andg(a) are given by

f ~a!5
2

3
a2~ ln 221!12 ln 2, ~5!

g~a!512 ln 21a2S 1

2
2 ln 2D . ~6!

The factor 2 in Eq.~4! is due to the spin degeneracy of th
electrons. The effect of the nonlogarithmic terms prop
tional tof andg is to strongly renormalize the eigenstates a
eigenfunctions of the double-well potential by replacing t
heavy particle Hamiltonian by

(
n

«nbn
†bn→(

n,m
Dnmbn

†bm , ~7!

where the matrixDnm is given by

Dnm5«ndnm22(
ñ

tr$VnñVñm%@D0f ~a!2e ñg~a!#. ~8!

The effect of the static (v-independent! nonlogarithmic
terms in Eq.~4! can be taken into account by diagonalizin
Dnm through aunitary transformation

~UDU†!nm5 ẽmdnm , ~9!

Vnm→~UVU†!nm, ~10!

where theẽn’s denote the renormalized values of the hea
particle energies. The effective Hamiltonian corresponding
Dnm generally contains nonlocal terms, too, but the larg
terms actually turn out to be simple local corrections
Vbare. Therefore, in the rest of the paper we drop these n
logarithmic self-energy corrections, and assume instead
we can model the entire effective Hamiltonian by a sim
local quasi-one-dimensional symmetrical square poten
with a barrier in the middle and infinite walls~see Fig. 1!.
We determine the corresponding wave functions by solv
simple transcendental equations and then use these
functions to compute the interaction matrix elementsVnm.

Note that it is only the renormalized Hamiltonian that c
be measured and has therefore physical meaning. Note
04511
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that bothVbareand the corrections are usually of the order
the Fermi energy, however, theirsumis usually of the order
of the Debye energy only.

The interaction vertex also contains a nonlogarithmic p
Up to second order inV the dimensionless vertex functio
can be calculated as

gnm~v!5Vnm2a (
ek,D0

$VnkVkm1VkmVnk%

2 (
ek,D0

ln
D0

uv2eku
@Vnk,Vkm#. ~11!

The effect of the nonlogarithmic terms in Eq.~11! can be
taken into account by renormalizing the bare vertex as

Vnm→Ṽnm[Vnm2a(
k

$VnkVkm1VkmVnk%. ~12!

This transformation must be constructed order by order,
it sums up systematically all higher-order nonlogarithm
vertex contributions.

After performing the transformations above, the expr
sions ofG 21 andg simplify considerably, and contain onl
logarithmic terms inD0:

@G 21#nm~v!

5v2dnmẽn12 (
ẽk,D0

tr$ṼnkṼkm%~v2 ẽk!ln
D0

uv2 ẽku
,

~13!

gnm~v!5Ṽnm2 (
e ñ,D0

ln
D0

uv2enu@
Ṽnñ,Ṽñm#. ~14!

The remaining logarithmic terms in Eqs.~13! and~14! can
be summed up using a generalized version of the multipl
tive RG,18 leading to the following RG equations:

FIG. 1. The simple square-shaped double-well potential us
VB is the height of the barrier,a;0.1 Å is the width of the wells,
and 2aba;0.420.5 Å is the barrier width. Inset: Effective scatte
ing potential for the electrons. The shaded potential correspond
the defect sitting at the center. The white potential is due to
displacement of the defect.
4-3
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dṼi j

dx
52 (

ẽk,D

@Ṽik,Ṽk j#1 (
ẽk ,ẽ l,D

2S Ṽkltr@ṼikṼl j #

2
1

2
Ṽiktr@ṼklṼl j #2

1

2
tr@ṼikṼkl#Ṽl j D . ~15!

Here x5 ln(D0 /D) is the scaling variable, andD0 denotes
the initial value of the cutoff. Since the Hamiltonian is dia
onal in the spin, each closed electron loop results in a m
tiplicative factor of 2 corresponding toNf52 conduction-
electron channels.

The renormalization-group equations for the energiesẽn
are somewhat more complicated. In particular, the RG g
erates off-diagonal terms to the heavy particle Hamiltoni

dnmẽn→dnmẽn1dx (
ẽk,D

$2ẽktr@ṼnkṼkm# 2 ẽntr@ṼnkṼkm#

2tr@ṼnkṼkm#ẽm%, ~16!

whereẽn ,ẽm,D, and dx5 ln@D/D8#. Therefore, in each RG
step we diagonalize the self-energy by constructing a new
of defect states with renormalized energy eigenvalues,
express all couplings in this new basis:w̃n5(mUmnwm .
Note that Eq.~15! is invariant under this unitary transforma
tion.

When the reduced cutoff reaches the renormalized en
eigenvalue of some defect level, the dynamics of that leve
frozen out, and we therefore drop it in the following R
steps. Usually only a few levels remain active in the reg
where the relatively weak initial couplings become comp
rable to the stronger ones. In many cases only one le
remains by this time, meaning that no Kondo effect occur
all.

In the original tunneling model11 only the statesn51,2
were kept, giving rise to two initial dimensionless couplin
constants,vx andvz, corresponding to the diagonal and o
diagonal terms in indicesn andn8:

vz5
1

4
~V01

211V10
211V01

121V10
12!, ~17!

vx5
1

4
~V00

112V11
112V00

221V11
22!. ~18!

We identify Kondo temperatureTK with the energy scale a
which the initially small dimensionless couplingvx reaches
about half of its fixed-point value,vx;0.1,19 and we keep
the last two levels active even if their separation is lar
than the running cutoffD. Below the Kondo temperature th
perturbative RG breaks down and more efficient methods
needed. If only two levels are kept then Bethe-ansatz20 re-
sults for the two-channel Kondo problem could be applie

The bare values ofvz can be estimated from ultrasoun
data11 and for alloys with stronger couplings they correspo
to vz;0.2 and thusU%0;3 for typical parameters. This
rather large value ofU%0 implies resonant scatteringon the
atom.21 Nonetheless, evenU%0;3 turns out to be smal
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enough so that the couplingsVnn8 corresponding to it are stil
in the perturbative regime: Restricting our discussion ton
51,2, the largest matrix elements are those where both
electron and defect parities are changed and are abouvz

;0.2. The reduction fromU%0;3 is due to a factorvz

;kFdU%0, with d52a(11ab);0.4 Å the width of the po-
tential well, andkF

21;1 Å the Fermi momentum. Coupling
with conserved parities such asvx are even smaller, and ar
further reduced by the Gamow factor in the case of a la
barrier in the tunneling regime.11

IV. RESULTS

In this work we used the following procedure: We fir
diagonalized the effective heavy particle Hamiltonian to o
tain the renormalized defect energiesẽn and the renormal-
ized couplingsṼ numerically. Then we summed up logarith
mic terms by performing the RG steps described in
previous section.

First, to determine the fixed-point structure of the flo
equations and to determine the Kondo temperature we c
tinued the RG even after reaching the first excited st
~where the dynamics of the defect must be entirely froz
due to the energy splitting! and verified that then the cou
plings indeed flow to the two-channel Kondo fixed point
expected.

The leading logarithmic scaling equations for many lev
were investigated by Aleineret al. in the tunneling regime.13

They correspond to the first two diagrams in Fig. 2 and to
second-order terms in Eq.~15!. Aleiner et al. have shown
that in leading logarithmic order the logarithmic contributio
of the excited states cancels out due to a sum rule, relate
the approximate completeness of the defect wave functio
This reduces the effective cutoff to the order of the Deb
temperature and thus the essential renormalization of
couplings occurs in the region where only few excited sta
remain active.

We find that this is also true for the renormalization of t
tunneling rate. Figure 3 shows the renormalization of
couplings,vx , and the tunneling rate,D12[ẽ22 ẽ1, com-
puted by solving leading and next-to-leading logarithm
scaling equations numerically. Though we could not find
simple sum rule similar to that of Ref. 13, we found that bo

FIG. 2. Diagrams used to construct the renormalization-gro
equations. Dashed lines correspond to the defect atom, solid lin
the electrons.
4-4
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vx andD12 remain unrenormalized throughout a large ene
region, down to an energy scale of the order of the De
temperature;vD . This is in agreement with the ‘‘adiabati
conduction band’’ picture of Kagan and Prokof’ev,15 who
argued that, since the tunneling takes place during a t
scale;1/vD , electrons with energies larger thanvD follow
the defect instantaneously and therefore do not contribut
the logarithmic singularities summed up by the renormali
tion group. Therefore the drastic changes in the effec
couplings appear only when a few levels remain.

For typical bare values of the splittingD[D21[E22E1
>1 K, the renormalization ofD turned out to be less tha
about 25%. This must be opposed to the case where only
levels are kept from the beginning, and therefore a str
power-law renormalization occurs even at high energie11

Our results agree with those obtained by means of an a
batic approximation where the renormalization occurs o
when the cutoff is already in the range of the few lowe
energy levels.15

It is very instructive to see howTK depends on the num
ber of defect states~see Fig. 4!. Such a calculation was pe
formed by Aleineret al.13 The first few states result in
strong increase inTK , but thenTK suddenly drops, and th
statesn>6 practically do not produce any further change
In the following only the ‘‘saturation values’’ ofTK that we
obtained by eventually continuing the RG flows below t
first excited state ifD21.TK are reported.

It is very important to determine the range of validity
the perturbative scaling analysis we use. Fortunately, the
a few non-perturbative results available for the TLS mo
that can be used to achieve this goal. In the limit of smallD12
andvx the scaling equations take a simple form:22

dt

dx
5ytt, ~19!

dvx

dx
5yxvx , ~20!

FIG. 3. ~Color online! The RG flow ofD12̄ and vx in next-to-
leading logarithmic order fora50.4, d50.5 Å, andVB5100 K.
Only curves corresponding to%0U<2.0 are shown, since for large
%0U the weak-coupling approximation is not valid.
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where the scaling exponentsyt andyx of the dimensionless
tunneling ~splitting! t[D12/D, and assisted tunnelingvx
only depend on the couplingvz in Eq. ~17!:

yt5128S d

p D 2

, ~21!

yx54S d

p D28S d

p D 2

, ~22!

d5artan~pvz!. ~23!

In the multiplicative RG scheme these nonperturbative ex
nents are replaced by the following approximate expone

yt
RG5128vz

2 , ~24!

yx
RG54vz28vz

2 . ~25!

These approximate exponents are compared to the exact
in Fig. 5. The exponentyx of the assisted tunneling is su
prisingly well approximated byyx

RG in the rangevz,0.25,
and therefore we expect that the estimate of the Kondo t
perature is reliable in the rangevz<0.2520.3. However,

FIG. 4. ~Color online! The RG flow of the couplings in leading
logarithmic order and in next-to-leading logarithmic order. Ins
Kondo temperature as a function of the number of defect states
U%052.1, d50.5 Å, andVB5100 K.

FIG. 5. ~Color online! Comparison of the exact scaling expo
nentsyt andyx with their approximate valuesyt

RG andyx
RG .
4-5
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yt
RG underestimates the value ofyt

RG and therefore overesti
mates the renormalization ofD12, for which the RG results
should be trusted only in the rangevz<0.22. Considering
that essentially no renormalization of the splitting takes pl
above the energy scale of the third level, one comes to
conclusion that the renormalized splittingD* is underesti-
mated by a factor of

S D

E3
D 1/yt21/yt

RG

, ~26!

which is a factor of 3–10 for the most extreme cases~of
course, in the tunneling regime this overestimate can
much larger for smallyt’s!.

Figure 6 shows the barrier height dependence of
Kondo temperature.TK increases with increasing barrie
height up to a certain value ofVB and then it drops suddenly
while the splittingD21 decreases continuously. Initially, in
creasing the barrier height concentrates the wave function
the first two states more and more around the poten
minima and this results in an increase of the couplingvz ,
and thus a gradual increase inTK . This tendency is, how-
ever, suddenly reversed once the barrier reaches the
level, and one enters the tunneling regime (VB>150 K for
the parameters of Fig. 6!. There the assisted tunnelingvx ,
responsible for the generation of the Kondo effect, decrea
exponentially, and bothD12 andTK decrease dramatically.

TK is also very sensitive to the width of the entire pote
tial well d. In Fig. 7 we show thed dependence ofTK for a
defect that has a relatively low barrier height and is not in
tunneling regime. Asd is decreased fromd50.5 Å, the en-
ergy levels are shifted to higher values and also the in
values of the couplingvz decrease whilevx does not change
dramatically. Thus the width of the well is a fundamen
parameter and the Kondo effect can only occur if the ro
for the particle considered is anomalously large in one dir
tion. For defects in the tunneling rangeTK decreases with

FIG. 6. ~Color online! The Kondo temperature as a function
the height of the central barrier, fora50.4 andM550mp . The
renormalized level splittings are plotted as well. The shaded pa
the figure indicates the region in which the estimate of the ren
malizedD12 is unreliable.
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increasingd since the bare value ofvz only slightly increases
while the assisted tunnelingvx is exponentially suppressed i
the tunneling regime.

In Fig. 8 we show the dependence on the strength of
defect-electron interactionU. Again, TK increases continu-
ously with increasingU, since all couplings generating th
Kondo effect increase. On the other hand, the renormali
D decreases continuously since the scaling exponentyt

RG

also decreases with increasingU.
Finally, let us discuss the electron-hole asymmetry dep

dence ofTK . For U050, % l 505% l 51, anda5a05a1 we
find no significanta dependence of the renormalized spl
ting andTK . In general, however, the local density of stat
is different for thel 50 andl 51 channels and thus both%0
and a depend onl. A nonzero potential scattering termU0
Þ0 in Eq.~2!, e.g., would have a twofold effect:~i! It would

of
r-

FIG. 7. ~Color online! The Kondo temperature and the reno
malized level splittings as a function of the total widthd of the
potential well fora50.4 andM550mp . The shaded part of the
figure indicates the region in which the estimate of the renormali
D12 is unreliable.

FIG. 8. ~Color online! The Kondo temperature and renormalize
level splittings as a function of the scattering strengthU. The
shaded part of the figure indicates the region in which the
estimate of the renormalizedD12 is unreliable.
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change the local density of states in thel 50 scattering chan-
nel, and~ii ! would generate a different electron-hole symm
try breaking for thel 50 andl 51 channels.17 ~Note that in
Ref. 23 U0 has not been set to zero and has been tre
inappropriately. Instead of incorporating it in the paramet
%0 anda0 we included it in the RG equations as a coupli
constant. Though the results obtained are qualitatively s
lar to the ones we obtained below, this procedure is wro
since mass terms such asU0 have to be treated always di
ferently from the coupling constants in the multiplicativ
RG.17.!

It is easy to generalize our previous calculations to
casesa0Þa1 and% l 50Þ% l 51. The l-dependent densities o
state can be treated by defining the fermion fields sligh
differently. However, fora0Þa1 the electron-hole symmetr
breaking generates strong nonlogarithmic corrections to
bare coupling constants. In Fig. 9 we plotted the depende
of TK ona0 while keepinga1 zero and% l 505% l 51. We find
that for typical parameters we used earlierTK can change by
about an order of magnitude. This renormalization can h
even more dramatic effects for very smallTK’s whereTK can
change by several orders of magnitude due to changes in
value of the electron-hole asymmetry~see inset of Fig. 9!.

Let us conclude this section with a general observati
Increasing the mass~the M /mp ratio!, the energies of the
levels are scaled down. If the central barrier is similarly
duced thenTK becomes smaller by the same ratio and th
D/TK is not affected, since the dependence on the hi
energy cutoffD is weak.

V. CONCLUSIONS

In this paper we performed a thorough scaling analysis
a dynamical defect coupled to the conduction electrons,
taking into account all the excited states of the defect,
constructing the next-to-leading logarithmic scaling eq
tions. We also discussed how to take into account large n
logarithmic terms that renormalize the bare parameters of
theory. In the perturbative regime our calculations confirm

FIG. 9. ~Color online! Electron-hole asymmetry dependence
TK and the splittingD12. Inset: The effect is more dramatic for ver
small TK’s.
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the results of Ref. 13. The electron-defect couplings rem
unrenormalized down to an energy scale of the order of
Debye temperatureD;vDebye due to a cancellation pointe
out in Ref. 13.

In the leading logarithmic approach of Ref. 13 the ene
levels of the impurity are unrenormalized, and the abo
next-to-leading logarithmic analysis is needed to comp
the renormalization of the defect states. We found that, si
lar to the defect-electron coupling, the splitting of the fir
two defect states remains unrenormalized down tovDebye. In
contrast to the expectations of Ref. 24, where the genera
of a large splitting has been predicted, we found that
renormalization of the defect states remains small if o
takes into account all defect states.

Our results perfectly agree with the adiabatic picture
Kagan and Prokof’ev.15 Electrons with excitation energie
ueu.vDebye follow the defect instantaneously, and therefo
the role of the excited states is only to reduce the effec
electronic cutoff from the order of the Fermi energy down
the energy scalevDebye.

We also analyzed the range of validity of our approach
using some analytical results in the strong-coupling regim
We found that the perturbative RG predicts the Kondo te
perature correctly for surprisingly large couplings, howev
it tends to overestimate the renormalization of the splitt
D.

We solved the RG equations for initial couplings obtain
by changing various parameters of the double-well poten
We always found a region whereTK and the renormalized
D12 were comparable and therefore one should be able
observe the Kondo anomaly in various measurements.
calculations show that to haveTK;D12 in the measurable
range one needs a defect that~i! has anomalously large room
to move in one direction,~ii ! is close to but not yet in the
tunneling regime, and~iii ! has a large scattering strengt
U%0>2.5, implying resonant scattering on the particle. T
best candidates are therefore atoms with resonantd or f scat-
tering at the Fermi energy or possibly small groups
atoms.25 Thus dynamical local defects with special realis
model parameters can explain the Kondo-like anomalies
served in some experiments forT.TK .1,3,6 Note that in
amorphous materials the positions of the defectf or d orbitals
usually have a distribution, and therefore many of the defe
may have resonant scattering at the Fermi energy.

However, to explain the two-channel Kondo scaling r
ported in Ref. 26, one would need a renormalizedD12 that is
less thanTK at the energy scaleD;TK . Unfortunately, our
calculations are only of logarithmic accuracy, and theref
we cannot decide if the ratioD12/TK is small enough to
display a clear two-channel Kondo scaling. In the pertur
tive regime ~i.e., the regime where our perturbative R
works!, our results seem to indicate thatTK can be compa-
rable to, but somewhat smaller than,D12, and is thus too
small to result in an observable two-channel Kondo behav
However, one can prove both analytically and with nume
cal RG calculations the existence of a regimeoutside the
range of the perturbative RG,16 whereTK can be larger than
D12. This is also indicated by our perturbative results.

We have to emphasize that for a defect with reson
4-7
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scattering in a disordered environment many of our appro
mations~free-electron model, simple delta scattering on
defect, usage of a local effective potential, etc.! are question-
able, and the estimates of the various couplings are there
inadequate. Also, in reality, the dynamical defect is n
formed by a single atom, but it is probably rather a group
atoms ~e.g., dislocation! that is responsible for the defec
dynamics. Though our general conclusions probably do
depend on these approximations,TK , e.g., depends exponen
tially on the coupling constants and more sophistica
models/calculations would be needed to give a quantita
estimate ofTK and the ratioD12/TK . It remains an open
question as to whether for larger couplings~i.e., defects with
resonant scattering at the Fermi energy! a larger TK;5
V.
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210 K can be reached, as required to explain the exp
ments for Refs. 1–3.
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