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Decoherence and gate performance of coupled solid-state qubits

Markus J. Storcz* and Frank K. Wilhelm
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Solid-state quantum bits are promising candidates for the realization of ascalable quantum computer.
However, they are usually strongly limited by decoherence due to the many extra degrees of freedom of a
solid-state system. We investigate a system of two solid-state qubits that are coupled viasz

( i )
^ sz

( j ) type of
coupling. This kind of setup is typical forpseudospinsolid-state quantum bits such as charge or flux systems.
We evaluate decoherence properties and gate quality factors in the presence of a common and two uncorrelated
baths coupling tosz , respectively. We show that at low temperatures, uncorrelated baths do degrade the gate
quality more severely. In particular, we show that in the case of a common bath, optimum gate performance of
a controlled-PHASEgate can be reached at very low temperatures, because our type of coupling commutes with
the coupling to the decoherence, which makes this type of coupling interesting as compared to previously
studied proposals withsy

( i )
^ sy

( j ) coupling. Although less pronounced, this advantage also applies to the
controlled-NOT gate.

DOI: 10.1103/PhysRevA.67.042319 PACS number~s!: 03.67.Lx, 03.65.Yz, 05.40.2a, 85.25.2j
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I. INTRODUCTION

Quantum computation has been shown to perform cer
tasks much faster than classical computers@1–3#. Presently,
very mature physical realizations of this idea originate
atomic physics, optics, and nuclear magnetic resona
These systems are phase coherent in abundance, how
scaling up the existing few-qubit systems is not straightf
ward. Solid-state quantum computers have the potential
vantage of being arbitrarily scalable to large systems
many qubits@4–6#. Their most important drawback is th
coupling to the many degrees of freedom of a solid-st
system. Even though recently, there has been fast progre
improving the decoherence properties of experimentally
alized solid-state quantum bits@7–11#, this remains a formi-
dable task.

Quite a lot is known about decoherence properties
single solid-state qubits, see, e.g., Refs.@12–14#, but much
less is known about systems of two or more coupled qu
@15–17#. However, only for systems of at least two qubi
the central issue of entanglement can be studied. The ph
cally available types of qubit coupling can be classified
Heisenberg-type exchange that is typical for real spin-
systems, and Ising-type coupling, which is characteristic
pseudospinsetups, where the computational degrees of fr
dom are not real spins. In the latter, the different spin co
ponents typically correspond to distinct variables, such
charge and flux@10,18# whose couplings can and have to
engineered on completely different footing. Previous wo
@16,17# presented the properties of a system of two coup
solid-state qubits that are coupled viasy

( i )
^ sy

( j ) type cou-
pling as proposed in Ref.@14# as the current-current couplin
of superconducting charge quantum bits.

On the other hand, many systems such as inductiv
coupled flux qubits@6#, capacitively coupled charge qubi
@7,8#, and other pseudospin systems@19# are described by a
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( i )

^ sz
( j ) Ising-type coupling. This indicates that the com

putational basis states are coupled, which, i.e., in the cas
flux qubits are magnetic fluxes, whereassx/y are electric
charges. Thesz observable is a natural way of coupling
because it is typically easy to couple to. We will study a tw
qubit-system coupled this way that is exposed to Gaus
noise coupling tosz , the ‘‘natural’’ observable. This ex-
ample accounts for the crucial effect of electromagne
noise in superconducting qubits. We will compare both
cases of noise that affects both qubits in a correlated way
the case of uncorrelated single-qubit errors. We determ
the decoherence properties of the system by application
the well-known Bloch-Redfield formalism and determin
quality factors of a controlled-NOT ~CNOT! gate for both
types of errors and feasible parameters of the system.

II. MODEL HAMILTONIAN

We model the Hamiltonian of a system of two qubit
coupled via Ising-type coupling. Each of the two qubits is
two-state system that is described in pseudospin notation
the single-qubit Hamiltonian@13#

Hsq52
1

2
eŝz2

1

2
Dŝx , ~1!

wheree is the energy bias andD the tunnel matrix element
The coupling between the qubits is determined by an e
term in the HamiltonianHqq52(K/2)ŝz

(1)
^ ŝz

(2) that repre-
sents e.g., inductive interaction~directly or via flux trans-
former! in the case of flux qubits@6,20#. Thus, the complete
two-qubit Hamiltonian in the absence of a dissipative en
ronment reads

H2qb5 (
i 51,2

S 2
1

2
e i ŝz

( i )2
1

2
D i ŝx

( i )D2
1

2
Kŝz

(1)ŝz
(2) . ~2!

The dissipative~bosonic! environment is conveniently mod
eled as either a common bath or two distinct baths of h
©2003 The American Physical Society19-1
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monic oscillators, coupling to thesz components of the two
qubits. This approach universally models baths which p
duce Gaussianfluctuations, such as the noise from line
electrical circuits. An example for a situation described b
common bath is long correlation length electromagne
noise from the experimental environment or noise genera
or picked up by coupling elements such as flux transform
@6#. Short correlation length radiation or local readout a
control electronics coupling to individual qubits@13# might
be described as coupling to two uncorrelated baths of
monic oscillators.

One should note that if the number of qubits is increa
to more than two, there might also occur dissipative effe
that neither affect all qubits nor only a single qubit, but rath
a cluster of qubits, thus, enhancing the complexity of o
considerations@21#.

In the case of two uncorrelated baths, the full Hamilton
reads

H2qb
2b 5 (

i 51,2
S 2

1

2
e i ŝz

( i )2
1

2
D i ŝx

( i )1
1

2
ŝz

( i )X̂( i )D
2

1

2
Kŝz

(1)ŝz
(2)1HB1

1HB2
, ~3!

where each qubit couples to its own, distinct harmonic os
lator bath HBi

, i 51,2, via the coupling termŝz
( i )X̂( i ), i

51,2, that bilinearly couples a qubit to the collective ba
coordinateX̂( i )5z(nlnxn . We again sum over the two qu
bits. In the case of two qubits coupled to one common b
we model our two-qubit system with the Hamiltonian

H2qb
1b 52

1

2 (
i 51,2

~e i ŝz
( i )1D i ŝx

( i )!2
1

2
Kŝz

(1)ŝz
(2)

1
1

2
~ ŝz

(1)1ŝz
(2)!X̂1HB , ~4!

whereHB denotes one common bath of harmonic oscillato
The appropriate starting point for our further analysis

the singlet/triplet basis, consisting ofu↑↑&ª(1,0,0,0)T,
(1/A2)(u↑↓&1u↓↑&)ª(0,1,0,0)T, u↓↓&ª(0,0,1,0)T, and the
singlet state (1/A2)(u↑↓&2u↓↑&)ª(0,0,0,1)T. In the case of
flux qubits, the↑ and↓ states correspond to clockwise an
counterclockwise currents respectively.

In this basis, the undamped HamiltonianH2qb , Eq.~2!, of
the two-qubit system assumes the matrix form

H2qb52
1

2 S e1K h 0 2Dh

h 2K h De

0 h K2e Dh

2Dh De Dh 2K

D , ~5!

with e5e11e2 , h5(D11D2)/A2, Dh5(D12D2)/A2,
and De5e12e2. From now on, for simplicity, we concen
trate on the case of equal parameter settings,D15D2 and
e15e2.
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If we now also express the coupling to the dissipat
environment in this basis, we find in the case of coupling
two uncorrelated distinct baths that

H2qb
2b 52

1

2 S e2s1K h 0 0

h 2K h 2Ds

0 h K2e1s 0

0 2Ds 0 2K

D , ~6!

with s5X11X2 and Ds5X12X2. Here, the bath mediate
transitions between the singlet and triplet states, the singl
not a protected subspace.

In the case of two qubits with equal parameters that
coupled to one common bath, we obtain the matrix

H2qb
1b 52

1

2 S e2s1K h 0 0

h 2K h 0

0 h K2e1s 0

0 0 0 2K

D , ~7!

wheres52X andDs50. One directly recognizes that com
pared to Eq.~6! in this case, thermalization to the singl
state is impeded, because Eq.~7! is block diagonal in the
singlet and triplet subspaces. The singlet and triplet are c
pletely decoupled from each other, and in the case of
common bath the singlet is also completely decoupled fr
the bath and thus, protected from dissipative effects. Th
fore, a system in contact with one common bath that is p
pared in the singlet state will never experience any deco
ence effects. The singlet state is a decoherence free subs
~DFS! @22#, although a trivial, one-dimensional one.

III. EIGENENERGIES AND EIGENSTATES
OF THE TWO-QUBIT HAMILTONIAN

We calculate exact analytical eigenvalues and eigenv
tors of the unperturbed two-qubit system Hamiltonian in t
aforementioned symmetric case of Eq.~5!, which reads

H2qb52
1

2 S e1K h 0 0

h 2K h 0

0 h K2e 0

0 0 0 2K

D . ~8!

This Hamiltonian is block diagonal and the largest block, t
triplet, is three dimensional, i.e., it can be diagonalized us
Cardano’s formula. Details of that calculation are given
Ref. @23#. The case of nonidentical qubits is more eas
handled numerically.

In the following, uE1&, uE2&, uE3&, anduE4& denote the
eigenstates of the two-qubit system. The eigenenergies o
unperturbed Hamiltonian~8! depend on the three paramete
K, e, andh. Fig. 1 displays the eigenenergies in more de
for typical experimentally accessible values. The values t
are chosen for the parameterse, h, andK in Fig. 1 corre-
spond to what can be reached in flux qubits. They typica
assume values of a few GHz resembling the parame
9-2
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FIG. 1. Plot of the eigenenergies of the eigenstatesuE1&, uE2&, uE3&, anduE4&. From upper left to lower right:~1! K5h5Es ande is
varied,~2! K510Es , h5Es , ande is varied; the inset resolves the avoided level crossing due to the finite transmission amplitudeh; ~3!
h5e5Es andK is varied;~4! K5e5Es andh is varied.
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of known single- and two-qubit experiments in Delft@13#
and at MIT@24#. Therefore, we will use a characteristic e
ergy scaleEs , which is typically Es51 GHz. The corre-
sponding scales arets51 ns, vs52p31 GHz, and Ts
5ns(h/kB)54.831022 K. Panel ~1! shows that for large
values ofe, two of the eigenenergies are degenerate~namely,
for e@h,K the statesuE1& and uE4& equal the states
(1/A2)(u↑↓&2u↓↑&) and (1/A2)(u↑↓&1u↓↑&), hence the
eigenenergies are degenerate! while near zero energy bia
~magnetic frustationf 51/2) all four eigenenergies might b
distinguished. Note also that, therefore, at zero energy b
the transition frequencyv1452v41 has a localmaximum,
which, as will be shown below, can only be accessed
nonsymmetric driving.

If K is set to a big positive value corresponding to lar
ferromagnetic coupling@Fig. 1, panel~2!, K510Es], the
Hamiltonian ~8! is nearly diagonal and, hence, the eige
states in good approximation are equal to the singlet/tri
basis states. In this case,uE3& equals the triplet state
(1/A2)(u↑↓&1u↓↑&), uE2& and uE4& equal u↑↑& and u↓↓&,
respectively, for positive values ofe. For large negative val-
ues ofe, the two statesuE2& and uE4& become equalu↓↓&
and u↑↑& with a pseudo-spin-flip between clockwise a
counterclockwise rotating currents ate50 when going from
positive to negativee. In the case of large ferromagnet
coupling, the ground state tends towards the superpos
(1/A2)(u↑↑&1u↓↓&). Panel~2! shows that only fore equal
to zero, bothuE2&5u↑↑& (uE2&5u↓↓&, for negativee) and
uE4&5u↓↓& (uE4&5u↑↑&, for negativee) have the same en
ergies~which one would expect if the2(1/2)Ksz

(1)sz
(2) term

in the Hamiltonian dominates!, because ife is increased, the
e i ŝz

( i ) ( i 51,2) terms in the Hamiltonian change the energ
04231
s,

a

-
t
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.

For large antiferromagnetic coupling,u2Ku@e,D the
statesu↑↓& and u↓↑& are favorable. In this limit, the ground
state tends towards (1/A2)(u↑↓&1u↓↑&) and the energy
splitting between (1/A2)(u↑↓&1u↓↑&) and (1/A2)(u↑↓&
2u↓↑&) vanishes asymptotically, leaving the ground sta
nearly degenerate.

From Fig. 1, panel~3!, one directly recognizes that th
singlet eigenenergy crosses the triplet spectrum, which
consequence of the fact that the singlet does not interact
any triplet states. At zero energy bias~magnetic frustration
f 51/2, for a flux qubit!, none of the eigenstates equal one
the triplet basis states~e.g., as observed for a large ener
biase), they are rather nontrivial superpositions. This is e
cidated further in the following paragraph. The inset of pa
~2! depicts the level anticrossing between the eigenener
of the two statesuE2& and uE4& due to quantum tunneling.

In general, the eigenstates are a superposition of sing
triplet states. Figure 2 shows how singlet/triplet states co
bine into eigenstates for different qubit parameters. The fi
eigenstateuE1& equals (1/A2)(u↑↓&2u↓↑&) for all times
while the other eigenstatesuE2&, uE3&, anduE4& are in gen-
eral superpositions of the singlet/triplet basis states. For la
values ofueu, the eigenstates approach the singlet/triplet! ba-
sis states. In particular, at typical working points, wheree
'5D @13#, the eigenstates already nearly equal the sing
triplet basis states. Hence, although the anticrossing
scribed above corresponds to the anticrossing used in R
@9,25# to demonstrate Schro¨dinger’s cat states,entanglement
is prevalent away from the degeneracy point. For an exp
mental proof, one still would have to show that one h
successfully prepared coherent couplings by spectrosc
cally tracing the energy spectrum. Note that, for clarity,
9-3
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FIG. 2. Plot of the amplitude of the different singlet~triplet! states of which the eigenstates denoted byuE1&, uE2&, uE3&, anduE4& are
composed for the four eigenstates. In all plotse is varied, andK andh are fixed toEs .
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Fig. 2, the interqubit coupling strengthK is fixed to a rather
large value ofEs that also sets the width of the anticrossin
which potentially can be very narrow.

Spectroscopy

As a first technological step towards demonstrating coh
ent manipulation of qubits, usually the transition frequenc
between certain energy levels are probed@9,25#, i.e., the en-
ergy differencesbetween the levels. Figures 3 and 4 dep
the transition frequencies between the four eigenstates.
transition frequencies are defined asvnm5(En2Em)/\ and

FIG. 3. Plot of the absolute value of the transition frequenc
v32, v42, andv31. In the left columnK5h50.2Es ande is var-
ied. In the right column,K50.2Es , e5Es , andh is varied.
04231
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vnm52vmn . The transitions between the singlet stateuE1&
and the triplet states are forbidden in the case of one c
mon bath, due to the special symmetries of the Hamilton
~4!, if the system is driven collectively through a time
dependent energy biase1(t)5e2(t). However, in the case o
two distinct baths, the environment can mediate transiti
between the singlet and the triplet states.

Not all transition frequencies have local minima ate
50. The frequenciesv41 andv34 have local maxima at zero
energy biase. This can already be inferred from Fig. 1, pan
~1!, the energy of the eigenstateuE4& has a local minimum at
e50. Similarily, the substructure ofv34 can be understood
from Fig. 1: the frequencyv34 has a local maximum ate

s FIG. 4. Plot of the transition frequenciesv21, v41, andv34. In
the left column,K5h50.2Es ande is varied. In the right column,
K50.2Es , e5Es , andh is varied.
9-4
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DECOHERENCE AND GATE PERFORMANCE OF COUPLED . . . PHYSICAL REVIEW A 67, 042319 ~2003!
50, because of the local minimum of the eigenenergy of
stateuE4&. First, if e is increased, the level spacing ofuE4&
and uE3& decreases. Then, for larger values ofe, the level
spacing ofuE4& anduE3& increases again. Thus, the structu
observed forv34 arounde50 emerges in Fig. 4.

IV. BLOCH-REDFIELD FORMALISM

In order to describe decoherence in the weak damp
limit, we use the Bloch-Redfield Formalism@26#. It provides
a systematic way of finding a set of coupled master equat
which describes the dynamics of the reduced~i.e., the reser-
voir coordinates are traced out! density matrix for a given
system in contact with a dissipative environment and
recently been shown to be numerically equivalent to
more elaborate path-integral scheme@27#. The Hamiltonian
of our two-qubit system in contact with a dissipative en
ronment, Eqs.~3! and ~4!, has the generic ‘‘system1bath’’
form

Hop~ t !5H2qb1HB1H int , ~9!

whereHB is a bath of harmonic oscillators andH int inherits
the coupling to a dissipative environment. In our case,
effects of driving are not investigated. In Born approxim
tion and when the system is only weakly coupled to
environment, Bloch-Redfield theory provides the followin
set of equations for the reduced density matrixr describing
the dynamics of the system@28,29#:

ṙnm~ t !52 ivnmrnm~ t !2(
kl

Rnmk,rk,~ t !, ~10!

where vnm5(En2Em)/\, and maxn,m,k,,uRe(Rnmk,)u
,minnÞmuvnmu must hold. The Redfield relaxation tens
Rnmk, comprises the dissipative effects of the coupling of
system to the environment. The elements of the Redfi
relaxation tensor are given through golden rule rates@28#

Rnmk,5d,m(
r

Gnrrk
(1) 1dnk(

r
G,rrm

(2)

2G,mnk
(1) 2G,mnk

(2) . ~11!

A. Two qubits coupled to two distinct baths

We now evaluate the Golden rule expressions in Eq.~11!
in the case of two qubits, each coupled to a distinct harmo
oscillator bath. Here,H̃I(t)5exp(iHBt/\)HIexp(2iHBt/\) de-
notes the coupling between system and bath in the inte
tion picture, and the bracket denotes thermal average of
bath degrees of freedom. Writing down all contributio
gives

G,mnk
(1) 5\22E

0

`

dte2 ivnkt^e[ i (HB1
1HB2

)t/\]

3~sz,,m
(1)

^ X̂(1)1sz,,m
(2)

^ X̂(2)!e[ 2 i (HB1
1HB2

)t/\]

3~sz,nk
(1)

^ X̂(1)1sz,nk
(2)

^ X̂(2)!&, ~12!
04231
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where sz,nm
( i ) ( i 51,2) are the matrix elements ofŝz

( i ) with
respect to the eigenbasis of the unperturbed Hamiltonian~8!
and likewise forG,mnk

(2) .
We assume Ohmic spectral densities with a Drude cut

This is a realistic assumption, i.e., for electromagnetic no
@13# and leads to integrals in the rates which are tractable
the residue theorem. The cutoff frequencyvc for the spectral
functions of the two qubits is typically assumed to be t
largest frequency in the problem, this is discussed furthe
Sec. IV E,

J1~v!5
a1\v

11
v2

vc
2

and J2~v!5
a2\v

11
v2

vc
2

. ~13!

The dimensionless parametera describes the strength of th
dissipative effects that enter the Hamiltonian via the coupl
to the environment, described bys andDs. In order for the
Bloch-Redfield formalism, which involves a Born approx
mation in the system-bath coupling, to be valid, we have
assumea1/2!1. After tracing out over the bath degrees
freedom, the rates read

G,mnk
(1) 5

1

8\
@L1J1~vnk!1L2J2~vnk!#@coth~b\vnk/2!21#

1
i

4p\
@L2M 2~vnk,2!1L1M 2~vnk,1!# ~14!

with L15L,mnk
1 5sz,,m

(1) sz,nk
(1) , L25L,mnk

2 5sz,,m
(2) sz,nk

(2) , and

M 6~V,i !5PE
0

`

dv
Ji~v!

v22V2
@coth~b\v/2!V6v#,

~15!

hereP denotes the principal value. Likewise,

G,mnk
(2) 5

1

8\
@L1J1~v,m!1L2J2~v,m!#@coth~b\v,m/2!11#

1
i

4p\
@L2M 1~v,m,2!1L1M 1~v,m,1!#. ~16!

The ratesG,mnk
(1) andG,mnk

(2) might be inserted into Eq.~11! to
build the Redfield tensor. Note, here, that forvnk→0, and
v,m→0 respectively, the real part of the rates~which is re-
sponsible for relaxation and dephasing! is of value G,mnk

(1)

5G,mnk
(2) 5(1/4b\)@sz,,m

(1) sz,nk
(1) a11sz,lm

(2) sz,nk
(2) a2#.

To solve the set of differential equations~10!, it is conve-
nient to collapser into a vector. In general, the Redfiel
equations~10! without driving are solved by an ansatz of th

type r(t)5Bexp(R̃t)B21r(0), whereR̃ is a diagonal matrix.
The entries of this diagonal matrix are the eigenvalues of
Redfield tensor~11!, written in matrix form, including the
dominating termivnm @cf. Eq. ~10!#. Here, the reduced den
sity matrix r5(r11, . . . ,r44)

T is written as a vector. The
9-5
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FIG. 5. Plot of the occupation
probability of the four eigenstate
uE1&, uE2&, uE3&, and uE4& for
initially starting in one of the
eigenstatesuE1& ~first row!, uE2&
~second row!, or uE3& ~third row!
at T50. The left column illus-
trates the case of two qubits cou
pling to one common bath and th
right column the case of two qu
bits coupling to two distinct baths
The energiesK, e, and h are all
fixed to Es . The characteristic
time scalets is ts51/ns .
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matrix B describes the basis change to the eigenbasis ofR̃, in

which R̃ has diagonal form.

B. Two qubits coupled to one common bath

For the case of two qubits coupled to one common ba
we perform the same calculation as in the preceding sec
which leads to expressions for the rates analogous to
~16!

G,mnk
(1) 5

1

8\
LJ~vnk!@coth~b\vnk/2!21#1

iL

4p\

3PE
0

`

dv
J~v!

v22vnk
2 @coth~b\v/2!vnk2v#,

~17!

with L5L,mnk5sz,,m
(1) sz,nk

(1) 1sz,,m
(1) sz,nk

(2) 1sz,,m
(2) sz,nk

(1)

1sz,,m
(2) sz,nk

(2) and

G,mnk
(2) 5

1

8\
LJ~v,m!@coth~b\v,m/2!11#1

iL

4p\

3PE
0

`

dv
J~v!

v22v,m
2 @coth~b\v/2!v,m1v#.

~18!

The difference between the rates for the case of two dist
baths~14! and ~16! are the two extra termssz,,m

(1) sz,nk
(2) and
04231
h,
n,
s.

ct

sz,,m
(2) sz,nk

(1) . They originate when tracing out the bath degre
of freedom. In the case of one common bath, there is o
one spectral function, which we also assume to be Oh
J(v)5(a\v)/(11v2/vc

2). For vnk→0, andv,m→0, re-
spectively, the real part of the rates is of the valueG,mnk

(1)

5G,mnk
(2) 5(a/4b\)L, for v,m ,vnk→0.

C. Dynamics of coupled flux qubits with dissipation

The dissipative effects affecting the two-qubit system le
to decoherence, which manifests itself in two ways. The s
tem experiences energy relaxation on a time scaletR5GR

21

(GR is the sum of the relaxation rates of the four diagon
elements of the reduced density matrix;GR52(nQn and
Qn are the eigenvalues of the matrix that consists of
tensor elementsRn,m,n,m , n,m51, . . . ,4!, called relaxation
time, into a thermal mixture of the system’s energy eige
states. Therefore, the diagonal elements of the reduced
sity matrix decay to the value given by th
Boltzmann factors. The quantum coherent dynamics of
system are superimposed on the relaxation and decay
usually shorter time scaletw i j

5Gw i j

21 ( i , j 51, . . . ,4;iÞ j and

Gwnm
52ReRn,m,n,m

1b,2b ) termed dephasing time. Thus, depha
ing causes the off-diagonal terms~coherences! of the reduced
density matrix to tend towards zero.

First, we investigate the incoherent relaxation of the tw
qubit system out of an eigenstate. At long times, the sys
is expected to reach thermal equilibrium,req5(1/Z)e2bH.
Special cases areT50, wherereq equals the projector on
9-6
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FIG. 6. Plot of the occupation
probability of the four eigenstate
uE1&, uE2&, uE3&, and uE4& for
initially starting in one of the
eigenstatesuE1& ~upper row! or
uE2& ~lower row! at T521Ts .
The left column illustrates the
case of two qubits coupling to on
common bath and the right col
umn the case of two qubits cou
pling to two distinct baths. The
energiesK, e, andh are all fixed
to Es . The characteristic time
scalets is ts51/ns .
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the ground state andT→`, where all eigenstates are occ

pied with the same probability, i.e.,req5(1/4)1̂. Figures 5
and 6 illustrate the relaxation of the system prepared in
of the four eigenstates for temperaturesT50 and T
521Ts respectively. The qubit energiesK, e, andh are all
set toEs anda is set toa51023. From Fig. 1, one recog
nizes relaxation into the eigenstateuE2&, the ground state for
this set of parameters.

At low temperatures (T50), we observe that for the cas
of two distinct uncorrelated baths, a system prepared in
of the four eigenstates always relaxes into the ground s
In the case of two qubits coupling to one common bath, t
is not always the case, as can be seen in the upper left pa
of Figs. 5 and 6. This can be explained through our previ
observation, that the singlet is a protected subspace: Ne
the free nor, unlike in the case of distinct baths, the ba
mediated dynamics couple the singlet to the triplet spa
Moreover, we can observe that relaxation to the ground s
happens by populating intermediate eigenstates with a lo
energy than the initial state the system was prepared int
50 ~cf. Fig. 1!.

For high temperatures (T.21Ts), the system thermalize
into thermal equilibrium, where all eigenstates have eq
occupation probabilities. Again, in the case of one comm
bath, thermalization of the singlet state is impeded and
three eigenstatesuE2&, uE3& anduE4& have equal occupation
probabilites of 1/3 after the relaxation time.

If the system is prepared in a superposition of eigensta
e.g.,uE3& anduE4& as in Fig. 7, which are not in a protecte
subspace, we observe coherent oscillations between
eigenstates that are damped due to dephasing and afte
decoherence time, the occupation probability of the eig
states is given by the Boltzmann factors. This behavio
depicted in Fig. 7. Here, fora51023, the cases ofT50 and
T52.1Ts are compared. When the temperature is l
enough, the system will relax into the ground stateuE2&, as
illustrated by the right column of Fig. 7. Thus, the occup
tion probability of the state (1/A2)(uE3&1uE4&) goes to
zero. Here, in the case of zero temperature, the decoher
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times for the case of one common or two distinct baths are
the same order of magnitude. The left column illustrates
behavior when the temperature is increased. AtT52.1Ts ,
the system relaxes into an equally populated state on ti
much shorter than forT50. For low temperatures, the cha
acteristic time scale for dephasing and relaxation is so
what shorter for the case of one common bath (t1b/t2b

'0.9, fora51023). This can be explained by observing th
temperature dependence of the rates shown in Fig. 8. Tho
for the case of one common bath, two of the dephasing r
are zero atT50, the remaining rates are always slight
bigger for the case of one common bath compared to the
of two distinct baths. If the system is prepared in a gene
superposition, hereuE3& and uE4&, nearly all rates become
important thus compensating the effect of the two rates
are approximately zero at zero temperature and leadin
faster decoherence.

If a and, therefore, the strength of the dissipative effe
is increased froma51023 to a51022, the observed coher
ent motion is significantly damped. Variation ofa leads to a
phase shift of the coherent oscillations, due to renormal
tion of the frequencies@16#. However, in our case, the effect
of renormalization are very small, as discussed in Sec. IV
and cannot be observed in our plots.

D. Temperature dependence of the rates

Figure 8 displays the dependence of typical dephas
rates and the relaxation rateGR on temperature. These deco
herence rates are the inverse decoherence times. The
are of the same magnitude for the cases of one common
and two distinct baths. As a notable exception, in the cas
one common bath, the dephasing ratesGw21

5Gw12
go to zero

when the temperature is decreased, while all other rates s
rate forT→0. This phenomenon is explained later on. If t
temperature is increased fromTs5(h/kB)ns54.831022 K,
the increase of the dephasing and relaxation rates follow
power-law dependence. It is linear in temperatureT with a
slope given by the prefactors of the expression in the R
9-7
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FIG. 7. Plot of the occupation probabilityP(1/A2)(uE3&1uE4&)(t) when starting in the initial state (1/A2)(uE3&1uE4&), which is a super-
position of eigenstatesuE3& and uE4&. The first row shows the behavior for two qubits coupling to two uncorrelated baths. The lowe
shows the behavior for two qubits coupled to one common bath. The qubit parameterse, h, and K are set toEs and a is set toa
51023. The inset resolves the time scale of the coherent oscillations.

FIG. 8. Log-log plot of the
temperature dependence of th
sum of the four relaxation rate
and selected dephasing rates. Q
bit parametersK, e, andh are all
set toEs anda51023. The upper
panel shows the case of one com
mon bath and the lower panel th
case of two distinct baths. At the
characteristic temperature of ap
proximately 0.1Ts , the rates in-
crease very steeply.
042319-8
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FIG. 9. Plot of the temperature
dependence of the sum of the fou
relaxation rates and selecte
dephasing rates. Qubit paramete
e and h are set to 0,K is set to
Es , and a51023 corresponding
to the choice of parameters use
for the UXOR operation. The upper
panel shows the case of one com
mon bath and the lower panel th
case of two distinct baths. In the
case of one common bath the sy
tem will experience no dissipative
effects atT50.
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field rates that depends on temperature. At temperaturT
'0.1Ts , the rates show a sharp increase for both cases.
roll-off point is set by the characteristic energy scale of
problem, which in turn is set by the energy biase, the trans-
mission matrix elementh, and the coupling strengthK. For
the choice of parameters in Fig. 8, the characteristic ene
scale expressed in temperature isT'0.1Ts .

Note that there is also dephasing between the singlet
the triplet states. When the system is prepared~by applica-
tion of a suitable interaction! in a coherent superposition o
singlet and triplet states, the phase evolves coherently. T
two possible decoherence mechanisms can destroy phas
herence. First, ‘‘flipless’’ dephasing processes, where^E& re-
mains unchanged. These flipless dephasing processes a
scribed by the terms forv,m ,vnk→0 in the rates, Eqs.~16!
and ~18!. Obviously, these terms vanish forT→0, as the
low-frequency component of Ohmic Gaussian noise
strictly thermal. Second, relaxation due to emission of a
son to the bath is also accompanied by a loss of phase
herence. This process in general has afinite rate atT50.
This explains theT dependence of the rates in the single-b
case:uE1& alone is protected from the environment. As the
are incoherent transitions between the triplet eigenstates
at T50, the relative phase of a coherent oscillation betwe
uE1& and any of those is randomized, and the decohere
ratesGw3/4,1

are finite even atT50. As a notable exception

uE2&, the lowest-energy state in the triplet subspace,
only be flipped through absorption of energy, which impli
that the dephasing rateGw21

also vanishes at low temperatur
The described behavior can be observed in Fig. 8.

If the parameterse andh are tuned to zero, thusK being
the only nonvanishing parameter in the Hamiltonian,
dephasing and relaxation rates will vanish forT50 in the
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case of one common bath. This behavior is depicted in F
9. It originates from the special symmetries of the Ham
tonian in this case and the fact that for this particular tw
qubit operation, the system Hamiltonian and the coupling
the bath are diagonal in the same basis. This special ca
of crucial importance for the quantum gate operation as
scribed in Sec. V and affects the gate quality factors.

E. Renormalization effects

Next to causing decoherence, the interaction with the b
also renormalizes the qubit frequencies. This is mostly du
the fast bath modes, and can be understood analogous t
Franck-Condon effect, the Lamb shift, or the adiabatic ren
malization@30#. Renormalization of the oscillation frequen
ciesvnm is controlled by the imaginary part of the Redfie
tensor@16#

vnm→ṽnmªvnm2ImRnmnm. ~19!

Note that ImRnmnm52ImRmnmndue to the fact that the cor
relators in the Golden Rule expressions have the same pa
The imaginary part of the Redfield tensor is given by

ImG,mnk
(1) 5C,mnk

1b,2b 1

p\
PE

0

`

dv J~v!S 1

v22vnk
2 D

3@coth~b\v/2!vnk2v# ~20!

and
9-9
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FIG. 10. The left plot depicts the ratio of the renormalization effects and the corresponding transition frequencies. Parama
51023, T50, andvc /vs is varied between 102 and 105 for several frequencies (v12, v14, andv23) for the case of two baths and in th
case ofv23 also for the case of one common bath. The parameters for the right plot area51023, T52.1Ts , andvc /vs is varied between
103 and 105. The inset of the left plot shows a log-log plot of the temperature dependence of the renormalization effects. Herea51023 and
vc51013. Note that for small temperatures the renormalization effects donot depend on temperature.~This is elucidated further in Sec
IV E.! The plots are scaled logarithmically to emphasize the logarithmic divergence of the renormalization effects withvc .
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ImG,mnk
(2) 5C,mnk

1b,2b 1

p\
PE

0

`

dv J~v!S 1

v22v,m
2 D

3@coth~b\v/2!v,m1v#, ~21!

whereP denotes the principal value, andC,mnk
1b,2b are prefac-

tors defined, in the case of two distinct baths, according
C,mnk

2b 5 1
4 @sz,,m

(1) sz,nk
(1) 1sz,,m

(2) sz,nk
(2) # and in the case of one

common bathC,mnk
1b 5 1

4 L. Here, for simplicity, we assume
a15a25a and thus,J1(v)5J2(v)5J(v). Evaluation of
the integral leads to the following expression forG,mnk

(1) :

ImG,mnk
(1) 5C,mnk

1b,2b
avc

2vnk

2p~vc
21vnk

2 !
Fc~11c2!1c~c2!

22Re@c~ ic1!#2p
vc

vnk
G , ~22!

with c1ª(b\vnk)/(2p) and c2ª(b\vc)/(2p). In the
case ofG,mnk

(2) , the expression is

ImG,mnk
(2) 5C,mnk

1b,2b
avc

2v,m

2p~vc
21v,m

2 !
Fc~11c2!1c~c2!

22Re@c~ ic1!#1p
vc

v,m
G , ~23!

with c1ª(v,mb\)/(2p). The terms in Eqs.~22! and ~23!
which are linear invc give no net contribution to the imagi
nary part of the Redfield tensor@16#. To illustrate the size of
the renormalization effects, the ratio of the renormalizat
effects to the frequencies which are renormalized is depic
in Fig. 10.

If c1 andc2 are large, and the digamma functions can
approximated by a logarithm, the resulting expression for
renormalization effects will be independent of temperatu
04231
o

n
d

e
e
.

The temperature dependence of Eqs.~22! and~23! at higher
temperatures, wherec1 and c2 are small and the renorma
ization effects are very weak, is shown in Fig. 10. The ra
~22! and ~23! diverge logarithmically withvc in analogy to
the well-known ultraviolet-divergence of the spin bos
model @30#. When comparing the left (T50) and right (T
52.1Ts) panel, one recognizes that for the first case, o
common bath gives somewhat smaller renormalization
fects than two distinct baths, while in the second case foT
52.1Ts , the renormalization effects deviate only slight
~see the behavior forv23) and the renormalization effects ar
smaller for the case of two distinct baths. The effects
renormalization are always very small@ uIm(Rn,m,n,m)/vnmu
below 1% for our choice of parameters# and are therefore
neglected in our calculations. However, having calcula
Eqs. ~22! and ~23!, these are easily incorporated in our n
merical calculations. The case of large renormalization
fects is discussed in Ref.@31#.

We only plotted the size of the renormalization effects
v12, v14, andv34, because in general, all values ofvnk are
of the same magnitude and give similar plots. The size of
renormalization effects diverges linearly witha, the dimen-
sionless parameter that describes the strength of the dis
tive effects.

For flux qubits, the cutoff frequencyvc is given by the
circuit properties. For a typical first order low-pass LR filt
@32# in a qubit circuit@13#, one can insertR550 V ~typical
impedance of coaxial cables! andL'1 nH ~depends on the
length of the circuit lines! into vLR5R/L, and gets that
vLR'531010 Hz. vLR is the largest frequency in the prob
lem ~see again Ref.@13#, Chap. 4.5! and vc@vLR should
hold. Thenvc'1013 Hz (5104Es) as cutoff frequency is a
reasonable assumption.

V. GATE QUALITY FACTORS

In Sec. IV, we evaluated the dephasing and relaxat
rates of the two-qubit system that is affected by a dissipa
9-10
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DECOHERENCE AND GATE PERFORMANCE OF COUPLED . . . PHYSICAL REVIEW A 67, 042319 ~2003!
environment. Furthermore, we visualized the dynamics
the two-qubit system. This does not yet allow a full asse
ment of the performance as a quantum logic element. Th
should perform unitary gate operations and based on
rates alone, one can not judge how well quantum gate op
tions might be performed with the two-qubit system. The
fore, to get a quantitative measure of how our setup beha
when performing a quantum logic gate operation, one
evaluate gate quality factors@33#. The performance of a two
qubit gate is characterized by four quantities: the fidel
purity, quantum degree, and entanglement capability. Th
delity is defined as

F5
1

16 (
j 51

16

^C in
j uUG

1rG
j UGuC in

j &, ~24!

whereUG is the unitary matrix describing the desired ide
gate and the density matrix obtained from attempting a qu
tum gate operation in a hostile environment isrG

j 5r(tG),
which is evaluated for all initial conditionsr(0)
5uC in

j &^C in
j u . The fidelity is a measure of how well a qua

tum logic operation was performed. Without dissipation,
reduced density matrixrG

j after performing the quantum gat
operation, applyingUG and the inverseUG

1 would equal
r(0). Therefore, the fidelity for the ideal quantum gate o
eration should be 1.

The second quantifier is the purity

P5
1

16 (
j 51

16

tr„~rG
j !2

…, ~25!

which should be 1 without dissipation and 1/4 in a fu
mixed state. The purity characterizes the effects of deco
ence.

The third quantifier, the quantum degree, is defined as
maximum overlap of the resulting density matrix after t
quantum gate operation with the maximally entangled sta
the Bell states

Q5max
j ,k

^Cme
k urG

j uCme
k &, ~26!

where the Bell statesCme
k are defined according to

uCme
00 5

u↓↓&1u↑↑&

A2
, uCme

01 5
u↓↑&1u↑↓&

A2
, ~27!

uCme
10 5

u↓↓&2u↑↑&

A2
, uCme

11 5
u↓↑&2u↑↓&

A2
. ~28!

For an ideal entangling operation, e.g., the controlled-NOT

gate, the quantum degree should be one. The quantum de
characterizes nonlocality. It has been shown@34# that all den-
sity operators that have an overlap with a maximally e
tangled state that is larger than the value 0.78@17# violate the
Clauser-Horne-Shimony-Holt inequality and are thus non
cal.
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The fourth quantifier, the entanglement capabilityC, is the
smallest eigenvalue of the partially transposed density ma
for all possible unentangled input statesuC in

j & . ~see below!.
It has been shown@35# to be negative for an entangled stat
This quantifier should be20.5, e.g., for the ideal UXOR, thus
characterizing a maximally entangled final state. Two of
gate quality factors, namely, the fidelity and purity mig
also be calculated for single-qubit gates@12#. However, en-
tanglement can only be observed in a system of at least
qubits. Therefore, the quantum degree and entanglemen
pability cannot be evaluated for single-qubit gates.

To form all possible initial density matrices, needed
calculate the gate quality factors, we use the 16 unentan
product statesuC in

j & , j 51, . . . ,16defined@17# according to
uCa&1uCb&2 (a,b51, . . . ,4), with uC1&5u↓&, uC2&5u↑&,
uC3&5(1/A2)(u↓&1u↑&), and uC4&5(1/A2)(u↓&1 i u↑&).
They form one possible basis set for the superoperatornG
with r(tG)5nGr(0) @17,33#. The states are chosen to b
unentangled for being compatible with the definition ofC.

A. Implementation of two-qubit operations

1. Controlled phase-shift gate

To perform the controlled-NOT operation, it is necessar
to be able to apply the controlled phase-shift operation
gether with arbitrary single-qubit gates. In the computatio
basis (u00&,u01&,u10&,u11&), the controlled phase-shift opera
tion is given by

UCZ~w!5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiw

D , ~29!

and forw5p, up to a global phase factor,

UCZ5expS i
p

4
sz

(1)DexpS i
p

4
sz

(2)DexpS i
p

4
sz

(1)sz
(2)D .

~30!

Note that in Eq.~30! only sz operations, which commute
with the coupling to the bath, are needed. The control
phase-shift operation together with two Hadamard gates
a single-qubit phase-shift operation then gives the control
NOT gate.

2. Controlled-NOT gate

Due to the fact that the set consisting of the UXOR ~or
controlled-NOT! gate and the one-qubit rotations, is comple
for quantum computation@36#, the UXOR gate is a highly
important two-qubit gate operation. Therefore we further
vestigate the behavior of the four gate quality factors in t
case. The UXOR operation switches the second bit, depend
on the value of the first bit of a two bit system. In the com
putational basis, this operation has the following mat
form:
9-11
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M. J. STORCZ AND F. K. WILHELM PHYSICAL REVIEW A67, 042319 ~2003!
UXOR5S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D . ~31!

Up to a phase factor, the two-qubit UXOR ~or CNOT! operation
can be realized by a sequence of five single-qubit and
two-qubit quantum logic operations. Each of these six ope
tions corresponds to an appropriate Hamiltonian undergo
free unitary time evolution exp@2(i/\)Hopt#. The single-
qubit operations are handled with Bloch-Redfield formalis
like the two-qubit operations. We assume dc pulses~instan-
taneous on and off switching of the Hamiltonian with ze
rise time of the signal! or rectangular pulses

UXOR5expF2 i
p

2 S sx
(2)1sz

(2)

A2
D GUCZ~p!

3expS i
p

2
sz

(1)D expF2 i
p

2 S sx
(2)1sz

(2)

A2
D G ,

~32!

whereUCZ(p) is given by Eq.~30!. This generic implemen-
tation has been chosen in order to demonstrate the com
son to other coupling schemes@17# as well as for computa
tional convenience, it is not necessarily the optimum sche
for application under cryogenic conditions, where slow ris
time ac pulses are preferred. Table I shows the parameter
inserted into the one- and two-qubit Hamiltonian to rece
the UXOR operation. In our case, we assumedj5Es . How-
ever, there is no restriction in the use of other values forj.
For a typical energy scale of 1 GHz, the resulting times fr
Table I are in the nanosecond range.

To better visualize the pulse sequence needed to per
the quantum UXOR operation, which was already given i

TABLE I. Parameters of the Hamiltonians which are needed
perform the UXOR gate operation; only the nonzero parameters
listed: j5Es in our case.

No. Operation Parameters (Es) Time ~s!

1 expF2i
p

2 Ssx
21sz

2

A2
D G e252j, D252j t15

A2
2j

2 expSi p

2
sz

1D e15j t25
1
2j

3 expSi p

4
sz

1sz
2D K5j t35

1
4j

4 expSi p

4
sz

2D e25j t45
1
4j

5 expSi p

4
sz

1D e15j t55
1
4j

6 expF2i
p

2 Ssx
21sz

2

A2
D G e252j, D252j t65

A2
2j
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Table I, Fig. 11 depicts the values of the elements of
Hamiltonians. Interestingly enough, we find that for the on
two-qubit operation included in the UXOR operation,e andh
are zero. Thus,K is the only nonzero parameter andH2qb
assumes diagonal form. For flux qubits, implementing
pulse sequence Fig. 11 involves negative and positive va
tuning the magnetic frustration through the qubit loop bel
or abovef 51/2. Note that, e.g., for realistic models of in
ductively coupled flux qubits, it is very difficult to turn on
the interaction Hamiltonian between the two qubits witho
the individualsz terms in the Hamiltonian. However, for th
pulse sequence given in Eq.~32!, we might simply perform
the third, fourth, and fifth operations of Eq.~32! at once
using only the Hamiltonian with both the individualsz terms
and the interqubit coupling.

To obtain the final reduced density matrix after perfor
ing the six unitary operations~32!, we iteratively determine
the density matrix after each operation with Bloch-Redfie
theory and insert the attained resulting density matrix as
tial density matrix into the next operation. This procedure
repeated for all possible unentangled initial states given
the preceding section. We inserted no additional time in
vals between the operations. This is usually needed, if
applies Bloch-Redfield formalism, because it is known
violate complete positivity on short time scales. Howev
we circumvent this problem in our calculations by droppi
the memory after each operation, when we iteratively cal
late the reduced density matrix. This procedure may lead
small inaccuracies as compared to usingQUAPPI @17#, which,
however, should not affect our main conclusions.

B. Temperature dependence

1. Controlled phase-shift gate

We have analyzed the gate quality factors in the case
a common and of two distinct baths, respectively. In Fig.
the temperature dependence of the deviations of the four
quality factors from their ideal values are depicted as a l
log plot. At temperatures belowT52.531022 K'0.5Ts ,
the purity and fidelity are clearly higher for the case of o
common bath, but if temperature is increased above
characteristic threshold, fidelity and purity are slightly high
for the case of two baths.

In the case of one common bath the fidelity, purity, a
entanglement capability are approaching their ideal value

o
e

FIG. 11. Pulse sequence needed to perform the quantum UXOR

operation. Here, the elements of the unperturbed single- and
qubit Hamiltonian needed to perform a certain operation under
ing free unitary time evolution are shown. The dotted horizon
lines denotej50, and the horizontal lines are spaced byuju5Es .
The durations of each pulse are not equal in generalt jÞt i , i , j
51, . . . ,6~cf. Table I!.
9-12
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FIG. 12. Log-log plot of the
temperature dependence of the d
viations of the four gate quantifi-
ers from their ideal values afte
performing the controlled phase
shift ~CPHASE! gate operation. In
all cases,a5a15a251023. The
full curves are provided as guide
to the eye.
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when temperature goes to zero. This is related to the fact
in the case of one common bath all relaxation and depha
rates vanish during the two-qubit step of the control
phase-shift gate due to the special symmetries of the Ha
tonian, when temperature goes to zero as depicted in Fi

The controlled phase-shift operation creates entan
ment. The creation of entanglement is impeded by deco
ence effects that vanish when temperature approaches
Therefore, the entanglement capability exhibits the same
havior as the fidelity and purity. For zero dissipation (a
50), the quantum degree has the value 0.5 but the entan
ment capability is20.5 thus, characterizing a maximum e
tangled state. The reason is that the Bell-states, which
generated by the controlled phase-shift gate from the in
states, result in a basis that is different from the used ba
but can be transformed using only local transformations.

Furthermore, for finite dissipation, Fig. 9 shows that a
for the case of two distinct baths, there are only three n
vanishing rates forT→0. The system, being prepared in o
of the 16 initial states, might relax into one of the eigensta
that is an entangled state.

We observe the saturation of the deviation for the case
two baths and can directly recognize the effects of the s
metries of the controlled phase-shift operation. For givena,
the fidelity and purity cannot be increased anymore by lo
ering the temperature in the case of two distinct baths. In
estingly enough, we find that for two qubits coupling to o
common bath, the situation is different for temperatures
low 0.5Ts . Above a temperature ofTs54.831022 K, the
decrease of the gate quality factors shows a linear de
dence on temperature for both cases of one common or
distinct heat baths before it again saturates at about 102 K
'23103Ts . Finite decoherence effects in the fidelity, puri
and entanglement capability atT50 for the case of two dis-
tinct baths are resulting from the coupling of the system
the environment of harmonic oscillators, which~at T50) are
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all in their ground states and can be excited through spo
neous emission. But for the case of one common bath,
deviation from the ideal fidelity goes to zero, when tempe
ture goes to zero. This is due to the special symmetries (K is
the onlynonvanishing parameter in the two-qubit operatio!
of the Hamiltonian, which rules out spontaneous emissi
These symmetries are also reflected in the temperature
pendence of the rates, Fig. 9. There, for one common b
all rates vanish forT→0. Note that these rates only describ
the two-qubit part of the operation. However, the sing
qubit part behaves similarly, because the terms in the sin
qubit Hamiltonian are also}sz .

2. Controlled-NOT gate

Different to the preceding section, we now add tw
single-qubit operations~Hadamard gates! to the controlled
phase-shift operation that donot commute with the coupling
to the bath. In Fig. 13, the deviations of the gate qua
factors from their ideal values are depicted as a log-log p
Again, at temperatures belowT52.531022 K'0.5Ts , the
purity and fidelity are higher for the case of one comm
bath, but if temperature is increased above this character
threshold, fidelity and purity are higher for the case of tw
baths. Note that, we have chosen a rather largea, this value
can substantially be improved by means of engineering@13#.
The fidelity and purity are clearly higher for the case of o
common bath, when temperature is decreased below 0.5Ts .
This is related to the fact that in the case of one comm
bath, all relaxation and dephasing rates vanish during
two-qubit-step of the UXOR, due to the special symmetries o
the Hamiltonian, when temperature goes to zero as discu
in the preceding paragraph. However, the quantum deg
and the entanglement capability tend towards the same v
for both the case of one common and two distinct baths. T
is due to the fact that both quantum degree and entanglem
capability are, different than fidelity and purity, not define
9-13
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FIG. 13. Log-log plot of the
temperature dependence of the d
viations of the four gate quantifi-
ers from their ideal values afte
performing the UXOR gate opera-
tion. In all cases, a5a15a2

51023. The dotted line indicates
the upper bound set by th
Clauser-Horne-Shimony-Holt in-
equality. The full curves are pro
vided as guides to the eye.
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as mean values but rather characterize the ‘‘best’’ poss
case of all given input states. This results in the same va
for both cases.

In the recent work by Thorwart and Ha¨nggi @17#, the
UXOR gate was investigated for asy

( i )
^ sy

( j ) coupling scheme
and one common bath. They find a pronounced degrada
of the gate performance, in particular, the gate quality fac
only weakly depend on temperature. They set the strengt
the dissipative effects toa51024. Their choice of param-
eters wase'10Es , D'1Es , andK'0.5Es which is on the
same order of magnitude as the values given in Table I.
can be seen in Fig. 13, we also observe only a weak decr
of the gate quality factors for both the cases of one comm
bath and two distinct baths in the same temperature ra
discussed by Thorwart and Ha¨nggi, both fora51023 and
a51024 and overall substantially better values. This is d
to the fact that forsy

( i )
^ sy

( j ) coupling, the Hamiltonian doe
not commute with the coupling to the bath during the tw
qubit steps of the UXOR pulse sequence.

We observe the saturation of the deviation for both
cases of two baths and one common bath. For givena, the
fidelity and purity can not be increased anymore by lower
the temperature, different from the behavior for the co
trolled phase-shift gate that was discussed in the prece
section. This is due to the application of the Hadamard g
whose Hamiltonian does not commute with the coupling
the bath. Above a temperature ofTs, the decrease of the gat
quality factors shows a linear dependence on temperatur
both cases. Here, different from the controlled phase-s
gate, we observe finite decoherence effects in all four g
quantifiers also atT50, both for the case of one common
two distinct heat baths. These decoherence effects are re
ing from the coupling of the system to the environment
harmonic oscillators, which~at T50) are all in their ground
states and can be excited through spontaneous emissio
already described above.
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The dotted line in Fig. 13 shows that the temperature
to be less than aboutT521Ts51 K in order to obtain values
of the quantum degree being larger thanQ'0.78. Only then,
the Clauser-Horne-Shimony-Holt inequality is violated a
nonlocal correlations between the qubits occur as descr
in Ref. @17#.

C. Dependence on the dissipation strength

The deviations from the ideal values of the gate quan
ers possess a linear dependence ona as expected. Generall
~if no special symmetries of the Hamiltonian are presen!,
there are always finite decoherence effects also atT50.
Therefore, we can not improve the gate quality factors be
a certain saturation value, when lowering the temperat
@17#, as was also discussed in the preceding section. By
ter isolating the system from the environment and by ca
fully engineering the environment@13#, one can decrease th
strength of the dissipative effects characterized bya. In or-
der to obtain the desired value of 0.999 99 forF, P, andQ
@17#, a needs to be below 1026 at T50.21Ts510 mK.

D. Time resolved controlled-NOT operation

To investigate the anatomy of the UXOR quantum logic
operation, we calculated the occupation probabilities of
singlet/triplet states after each of the six operations, of wh
the UXOR consists. This time resolved picture of the dyna
ics of the two-qubit system, when performing a gate ope
tion, gives insight into details of our implementation of th
UXOR operation and the dissipative effects that occur dur
the operation. Thus, we are able to characterize the phys
process, which maps the input density matrixr0 to rout in an
open quantum system@33#. When the system is prepared
the stateu↓↓&5u00&, the UXOR operation~31! does not alter
the initial state and after performing the UXOR operation, the
final state should equal the initial stateu↓↓&5u00&. This can
9-14
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FIG. 14. Time resolved UXOR

operation. The system is initially
prepared in the stateu00&. Occu-
pation probabilities of the singlet
triplet states are shown afte
completion of a time stept i ( i
51, . . . ,6). For a5a15a2

51022 and T521Ts51 K clear
deviations from the ideal case ca
be observed. Qubit parameters a
set according to Table I. The line
are provided as guides to the ey
in
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clearly be observed in Fig. 14. During the UXOR operation,
occupation probabilities of the four states change accord
to the individual operations given in Eq.~32!. At T521Ts ,
the case of two baths differs significantly from the case
one common bath. After the third operation~the two-qubit
operation; only there the distinction between one common
two distinct baths makes sense!, occupation probabilities are
different for both environments resulting in a less ideal res
for the case of two baths.

In Fig. 14, the resulting state after performing the UXOR
operation always deviates more from the ideal value~for a
50, i.e., no dissipation! for the case of two distinct baths,
all other parameters are fixed and set to the same value
both cases. The statePu00& is less close to the ideal occup
tion probability one and the other singlet/triplet states
04231
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also less close to their ideal value for the case of two dist
baths. The case of two distinct baths also shows bigger
viations from the ideal case (a50) during the UXOR opera-
tion ~see Fig. 14!. But, if the system is initially prepared in
the stateu↑↑&5u11&, the case of two distinct baths show
bigger deviations from the ideal case during the UXOR opera-
tion, while the resulting state is closer to the ideal case
two distinct baths compared to one common bath.

In Figs. 14 and 15, it looks like there would be no dec
herence effects~or at least much weaker decoherence effec!
after performing the~first two! single-qubit operations. How
ever, not all input states are affected by the decohere
effects the same way. And when we regard all possible in
states, there are finite decoherence effects. This can be
plained with Fig. 16. Figure 16 depicts the time resolv
/
r

e
et
e

FIG. 15. Time resolved UXOR

operation. The system is initially
prepared in the stateu11&. Occu-
pation probabilities of the singlet
triplet states are shown afte
completion of a time stept i ( i
51, . . . ,6). For a5a15a2

51022 and T521Ts51 K, de-
viations from the ideal case can b
observed. Qubit parameters are s
according to Table I. The lines ar
provided as guides to the eye.
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purity when performing the UXOR operation. We clearly ob-
serve that there are finite decoherence effects for the
single-qubit operations in Eq.~32! as well. The difference
between the single-qubit and two-qubit operations is
steeper decrease of the purity due to stronger decoheren
the case of the two-qubit operation. The upper panel in F
16 depicts the behavior of the purity forT→0. Decoherence
due to thesz terms in the Hamiltonian will vanish forT
→0 in the case of one common bath.

VI. CONCLUSION

We presented a full analysis of the dynamics and deco
ence properties of two solid-state qubits coupled to e
other via a generic type of Ising coupling and coupled, mo
over, either to a common bath, or two independent baths

We calculated the dynamics of the system and evalua
decoherence times. From the temperature dependence o
decoherence rates~Fig. 8!, we conclude that both types o
environments show a similar behavior; however, in the c
of one common bath, two of the decoherence rates are z
and the remaining ones are slightly larger than in the cas
two distinct baths. This temperature dependence is also
flected in the characteristics of the gate quality factors fr
quantum information theory, which are introduced as rob

FIG. 16. Time resolved purity for the UXOR operation. The value
of the purity after each time stept i ( i 51, . . . ,6) isshown. Here
a5a15a251022, and T52.1Ts5100 mK ~lower panel! or T
50 ~upper panel!. Qubit parameters are set according to Table
The lines are provided as guides to the eye.
the
r
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measures of the quality of a quantum logic operation.
illustrate that the gate quality factors depend linearly ona,
as expected. The time resolved UXOR operation~Figs. 14 and
15! again illustrates the difference between one common
two distinct baths, and moreover, we observe that sing
qubit decoherence effects}sz during the UXOR operation are
weak. The time scales of the dynamics of the coupled t
qubit system are comparable to the time scales, which w
already observed in experiments and discussed in the lit
ture @13#.

The question, whether one common bath or two disti
baths are less destructive regarding quantum coherence
not be clearly answered. For low enough temperatures, c
pling to one common bath yields better results. Howev
when the temperature is increased, two distinct baths do
ter; in both temperature regimes, though, the gate quanti
are only slightly different for both cases.

Compared to the work of Thorwart@17#, the interaction
part of our model Hamiltonian possesses symmetries~the
Hamiltonian of the two-qubit operation and the errors co
mute! that lead to better gate quality factors. Furthermo
analysis of the symmetries and error sources of our mo
system can lead to improved coupling schemes for so
state qubits. Milburn and co-workers on the other hand
cused on comparison of classical and quantum mechan
dynamics@15# and estimated the decoherence properties
two coupled two-state systems.

Governale@16# determined the decoherence properties
two coupled charge qubits whose Hamiltonian differs fro
Eq. ~2! by the type of interqubit coupling, namely,sy

(1)

^ sy
(2) coupling. However, introducing the quality facto

gives a measure to judge how certain qubit designs perf
quantum gate operations.

As a next step, one should consider driving, to be able
observe and discuss Rabi oscillations in systems of
coupled qubits. It should be investigated, how the decoh
ence properties are modified, if one adds more qubits to
system.
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