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Decoherence and gate performance of coupled solid-state qubits
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Solid-state quantum bits are promising candidates for the realization safalable quantum computer.
However, they are usually strongly limited by decoherence due to the many extra degrees of freedom of a
solid-state system. We investigate a system of two solid-state qubits that are coupted wia type of
coupling. This kind of setup is typical fggseudospirsolid-state quantum bits such as charge or flux systems.
We evaluate decoherence properties and gate quality factors in the presence of a common and two uncorrelated
baths coupling tar,, respectively. We show that at low temperatures, uncorrelated baths do degrade the gate
quality more severely. In particular, we show that in the case of a common bath, optimum gate performance of
a controlledrPHASE gate can be reached at very low temperatures, because our type of coupling commutes with
the coupling to the decoherence, which makes this type of coupling interesting as compared to previously
studied proposals withr{’® o) coupling. Although less pronounced, this advantage also applies to the
controlledNoT gate.
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l. INTRODUCTION oVe o) Ising-type coupling. This indicates that the com-
putational basis states are coupled, which, i.e., in the case of

Quantum computation has been shown to perform certaiflux qubits are magnetic fluxes, whereas;, are electric
tasks much faster than classical compuférs3]. Presently, charges. Ther, observable is a natural way of coupling,
very mature physical realizations of this idea originate inbecause it is typically easy to couple to. We will study a two
atomic physics, optics, and nuclear magnetic resonanceubit-system coupled this way that is exposed to Gaussian
These systems are phase coherent in abundance, howeuesise coupling too,, the “natural” observable. This ex-
scaling up the existing few-qubit systems is not straightforample accounts for the crucial effect of electromagnetic
ward. Solid-state quantum computers have the potential achoise in superconducting qubits. We will compare both the
vantage of being arbitrarily scalable to large systems otases of noise that affects both qubits in a correlated way and
many qubits|4—6]. Their most important drawback is the the case of uncorrelated single-qubit errors. We determine
coupling to the many degrees of freedom of a solid-stateéhe decoherence properties of the system by application of
system. Even though recently, there has been fast progresstiie well-known Bloch-Redfield formalism and determine
improving the decoherence properties of experimentally requality factors of a controlledioT (cNOT) gate for both
alized solid-state quantum bifg—11], this remains a formi- types of errors and feasible parameters of the system.
dable task.

Quite a lot is known about decoherence properties of Il. MODEL HAMILTONIAN
single solid-state qubits, see, e.g., R¢i2—14, but much
less is known about systems of two or more coupled qubits We model the Hamiltonian of a system of two qubits,
[15-17. However, only for systems of at least two qubits, coupled via Ising-type coupling. Each of the two qubits is a
the central issue of entanglement can be studied. The phydwo-state system that is described in pseudospin notation by
cally available types of qubit coupling can be classified aghe single-qubit Hamiltoniafl3]
Heisenberg-type exchange that is typical for real spin-1/2
systems, and Ising-type coupling, which is characteristic for Ho—— EE(} _ EA& (1)
pseudospirsetups, where the computational degrees of free- sq 277 270
dom are not real spins. In the latter, the different spin com-
ponents typically correspond to distinct variables, such a¥heree is the energy bias andl the tunnel matrix element.
charge and flux10,18 whose couplings can and have to be The coupling between the qubits is determined by an extra
engineered on completely different footing. Previous workterm in the HamiltoniarH,= — (K/2)o{M® o{ that repre-
[16,17 presented the properties of a system of two coupledents e.g., inductive interactigilirectly or via flux trans-
)®0§,') type cou- formen in the case of flux qubitfs,20]. Thus, the complete

solid-state qubits that are coupled \mé'
pling as proposed in Reff14] as the current-current coupling two-qubit Hamiltonian in the absence of a dissipative envi-

of superconducting charge quantum bits. ronment reads

On the other hand, many systems such as inductively
coupled flux qubitg6], capacitively coupled charge qubits B N IR I R e
[7,8], and other pseudospin systefid$] are described by a qub_i;m 2602 ZAioy | mgKez o (2)

The dissipativgbosonig environment is conveniently mod-
*Electronic address: storcz@theorie.physik.uni-muenchen.de eled as either a common bath or two distinct baths of har-
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monic oscillators, coupling to the, components of the two If we now also express the coupling to the dissipative
qubits. This approach universally models baths which proenvironment in this basis, we find in the case of coupling to
duce Gaussianfluctuations, such as the noise from linear two uncorrelated distinct baths that

electrical circuits. An example for a situation described by a

common bath is long correlation length electromagnetic e—s+K n 0 0
noise from the experimental environment or noise generated 1 7 —K 7 —As
. . 2b
or picked up by coupling elements such as flux transformers =~ Hq,=— > 0 K— et o |’ (6)
[6]. Short correlation length radiation or local readout and K €rs
control electronics coupling to individual qubif&3] might 0 —As 0 —-K
be described as coupling to two uncorrelated baths of har- )
monic oscillators. with s= Xl+ X2 and As= Xl_XZ- Here, the bath mediates

One should note that if the number of qubits is increasedransitions between the singlet and triplet states, the singlet is
to more than two, there might also occur dissipative effectdl0t a protected subspace.
that neither affect all qubits nor only a single qubit, but rather  In the case of two qubits with equal parameters that are
a cluster of qubits, thus, enhancing the complexity of ourcoupled to one common bath, we obtain the matrix
consideration$21].

In the case of two uncorrelated baths, the full Hamiltonian e-stK 7 0 0
reads 1 7 —-K 7 0
2 0 n K-ets O

2b _E 1 ~ (i) 1 ~ (i) 1A(i)'\(i)
Haa= 2, | =562 — 3 Ai0x F502 X 0 0 0 -K

1 wheres=2X andAs=0. One directly recognizes that com-

- EKag%gm Hg, +Ha,, (3)  pared to Eq.6) in this case, thermalization to the singlet
state is impeded, because H@) is block diagonal in the

. : . . . singlet and triplet subspaces. The singlet and triplet are com-

where each QUb_'t couples_ to its own, O_“Stht h?[ir)rp(glc OSCIIpletely decoupled from each other, and in the case of one

lator bathHg,, i=1,2, via the coupling termi;’X"”, i common bath the singlet is also completely decoupled from

=1,2, that bilinearly couples a qubit to the collective baththe bath and thus, protected from dissipative effects. There-

coordinatef((‘)ngv)\va. We again sum over the two qu- fore, a system in contact with one common bath that is pre-

bits. In the case of two qubits coupled to one common bathpared in the singlet state will never experience any decoher-
we model our two-qubit system with the Hamiltonian ence effects. The singlet state is a decoherence free subspace

(DF9) [22], although a trivial, one-dimensional one.

Ill. EIGENENERGIES AND EIGENSTATES
OF THE TWO-QUBIT HAMILTONIAN

1 o o 1 .-
M= 5 3 (et + a5~ Ka5

1. n oy~
+ E(a§1)+ o)X +Hg, (4) We calculate exact analytical eigenvalues and eigenvec-
tors of the unperturbed two-qubit system Hamiltonian in the

. . aforementioned symmetric case of , Which reads
whereHg denotes one common bath of harmonic oscillators. Y i

The appropriate starting point for our further analysis is e+K 7 0 0
the singlet/triplet basis, consisting dff 1):=(1,0,0,0Y, _K 0
(1A2)(|T1)+]11))=(0,1,0,0), |11):=(0,0,1,0), and the Hyooe — =| 7 7 . ®
singlet state (2)(|11)—|11)):=(0,0,0,1). In the case of a 21 0 n K-e O
flux qubits, the and | states correspond to clockwise and 0 0 0 -K

counterclockwise currents respectively.
In this basis, the undamped Hamiltonidlg,,, EQ.(2), of  This Hamiltonian is block diagonal and the largest block, the

the two-qubit system assumes the matrix form triplet, is three dimensional, i.e., it can be diagonalized using
Cardano’s formula. Details of that calculation are given in
etk 7 0 —Apy Ref. [23]. The case of nonidentical qubits is more easily
1 7 —K n Ae handled numerically.
Hagp=~ 75 0 K A : (5) In the following, |E1), |E2), |E3), and|E4) denote the
7 € 7 eigenstates of the two-qubit system. The eigenenergies of the
—An Ae Ay —-K unperturbed HamiltoniafB) depend on the three parameters

K, €, and 5. Fig. 1 displays the eigenenergies in more detail
with e=e;+te,, 7=(A1+A,)/\2, Ap=(A,—A,)/\2, for typical experimentally accessible values. The values that
and Ae=€;—€,. From now on, for simplicity, we concen- are chosen for the parameters », andK in Fig. 1 corre-
trate on the case of equal parameter settidgss A, and  spond to what can be reached in flux qubits. They typically
€1= €. assume values of a few GHz resembling the parameters
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FIG. 1. Plot of the eigenenergies of the eigenstfds, |E2), |E3), and|E4). From upper left to lower rightl) K= »=E ande is
varied, (2) K=10Egs, n=E, ande is varied; the inset resolves the avoided level crossing due to the finite transmission amgli{Gge
n=e€=E, andK is varied;(4) K=e=E, and 5 is varied.

of known single- and two-qubit experiments in De]ft3] For large antiferromagnetic coupling—K|>¢€,A the
and at MIT[24]. Therefore, we will use a characteristic en- states|]|) and|| 1) are favorable. In this limit, the ground
ergy scaleEs, which is typically E;<=1 GHz. The corre- state tends towards (M2)(|11)+|/1)) and the energy
sponding scales aré;=1 ns, ws=2m7X1 GHz, and Ty splitting between (H2)(|T1)+[11)) and (1A2)(|1])

= vg(h/kg) =4.8x10"? K. Panel (1) shows that for large _|| 1)) vanishes asymptotically, leaving the ground state
values ofe, two of the eigenenergies are degene(atenely, nearly degenerate.

for e>7K the states|E1l) and [E4) equal the states  rrom Fig 1, panel3), one directly recognizes that the
(AN2)(IT1)=111)) and (142)(|T1)+]11)), hence the singlet eigenenergy crosses the triplet spectrum, which is a

eigenen(_argies are degenejateile near zero energy bias consequence of the fact that the singlet does not interact with
(ma.gne'F'C frustatiorf = 1/2) all four eigenenergies might be_ any triplet states. At zero energy biamagnetic frustration
distinguished. Note also that, therefore, at zero energy b|a§,: 1/2, for a flux qubil, none of the eigenstates equal one of

the. transition frequency, 4= — wy; has a localmaximum . the triplet basis state.g., as observed for a large energy
which, as W.'" be; §hown below, can only be accessed V'abiaSe), they are rather nontrivial superpositions. This is elu-
honsymmetric d“V”?g- " . cidated further in the following paragraph. The inset of panel
It Kis seF toa b|g po§|t|ve value corresp_ondmg to Iarge(z) depicts the level anticrossing between the eigenenergies
f:rro_rlnag_netlc8 cpupllng[IFl%._ L palnel(g), hK_loESr]]’ the 5f the two state$E2) and|E4) due to quantum tunneling.
amiltonian (8) is nearly diagonal and, hence, the eigen- In general, the eigenstates are a superposition of singlet/

states in good approximation are equal to the Singlet/triplefriplet states. Figure 2 shows how singlet/triplet states com-

bas\}g states. In this cas¢E3) equals the triplet state |05, eigenstates for different qubit parameters. The first
(IN2)(IT1)+1T)), |E2) and|E4) equal|TT) and|| 1), eigenstate|E1) equals (1{2)(|7/)—|/1)) for all times

respectively, for positive values &f For large negative val- while the other ei .
genstat¢g2), |[E3), and|E4) are in gen-
ues ofe, the two state$E2) and|E4) become equall |) o4 superpositions of the singlet/triplet basis states. For large

and |TT>I w::h'a pseudo-spin-flip bet(\;veehn clockW|?e and,aues of| €], the eigenstates approach the singlet/trigiet
counterclockwise rotating currents @t 0 when going fom s gtates. In particular, at typical working points, where

positive to negativee. In the case of large ferromagnet!q ~5A [13], the eigenstates already nearly equal the singlet/
coupling, the ground state tends towards the SUPerpositioiyet hasis states. Hence, although the anticrossing de-

(1W2)([11)+]11)). Panel(2) shows that only fore equal  geriped above corresponds to the anticrossing used in Refs.
to zero, both E2)=[17) (|E2)=[| |), for negativee) and g 5] to demonstrate Schdinger’s cat stateentanglement

|E4)=[11) (IE4)=]11), for negativee) have t(q;a tame en- is prevalent away from the degeneracy point. For an experi-
ergies(which one would expect if the (1/2)Ko; o™ term  mental proof, one still would have to show that one has

in the Hamiltonian dominat¢sbecause ik is increased, the - successfully prepared coherent couplings by spectroscopi-
eia§'> (i=1,2) terms in the Hamiltonian change the energy.cally tracing the energy spectrum. Note that, for clarity, in
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FIG. 2. Plot of the amplitude of the different singlétiplet) states of which the eigenstates denotediy)), |E2), |E3), and|E4) are
composed for the four eigenstates. In all plets varied, andK and » are fixed toE.

Fig. 2, the interqubit coupling strengthis fixed to a rather w,n,=— wn,. The transitions between the singlet stdié)
large value ofEg that also sets the width of the anticrossing, and the triplet states are forbidden in the case of one com-

which potentially can be very narrow. mon bath, due to the special symmetries of the Hamiltonian
(4), if the system is driven collectively through a time-
Spectroscopy dependent energy biag(t) = €,(t). However, in the case of

As a first technoloaical step towards demonstratin coherEWO distinct baths, the environment can mediate transitions
! 9! p tow Ing between the singlet and the triplet states.

Egtvvmeaew%gﬁg?nn:r:;rUbltlz,v:ISsuglrlg tr;glg;lgg]'t'iog frticgu;?_cles Not all transition frequencies have local minima at
) gy pro L . ,=0. The frequencies,; andwz, have local maxima at zero
ergy differencesbetween the levels. Figures 3 and 4 depict . . . .
energy bias. This can already be inferred from Fig. 1, panel

the transition frequencies between the four eigenstates. Thﬁ) the energy of the eigenstdf4) has a local minimum at
transition frequencies are defined agy=(En~Em)/# and €=0. Similarily, the substructure abz, can be understood

from Fig. 1: the frequencyws, has a local maximum a¢
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FIG. 3. Plot of the absolute value of the transition frequencies FIG. 4. Plot of the transition frequencies,, w,;, ahdwa,. In
W3, W, andwsz;. In the left columnK=7»=0.2E; and € is var- the left column K= 7n=0.2E; ande is varied. In the right column,
ied. In the right columnK=0.2E, e=Eg, and 7 is varied. K=0.2E;, e=Eg, and 5 is varied.
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=0, because of the local minimum of the eigenenergy of thgyhere "), = (i=1,2) are the matrix elements of.) with

state|E4). First, if € is increased, the level spacing [@4)  respect to the eigenbasis of the unperturbed Hamiltof8an
and |[E3) decreases. Then, for larger valueseofthe level  5n( likewise forr{ ) .

spacing of E4) and|E3) increases again. Thus, the structure  \ve assume Ohmic spectral densities with a Drude cutoff.

observed folwg, arounde=0 emerges in Fig. 4. This is a realistic assumption, i.e., for electromagnetic noise
[13] and leads to integrals in the rates which are tractable by
IV. BLOCH-REDFIELD FORMALISM the residue theorem. The cutoff frequengyfor the spectral

nctions of the two qubits is typically assumed to be the
rgest frequency in the problem, this is discussed further in
§ec. IV E,

In order to describe decoherence in the weak damping
limit, we use the Bloch-Redfield Formalisi6]. It provides
a systematic way of finding a set of coupled master equation
which describes the dynamics of the reduceel, the reser-

voir coordinates are traced guensity matrix for a given ajho axhw

. . SO . = n = . 1
system in contact with a dissipative environment and has Ji(w) w2 and  Jy(w) w2 (13
recently been shown to be numerically equivalent to the 1+ — 1+—

more elaborate path-integral schef2¥]. The Hamiltonian We @We

of our two-qubit system in contact with a dissipative envi- . . )
ronment, Egs(3) and (4), has the generic “systesrbath”  The dimensionless parameterdescribes the strength of the
form dissipative effects that enter the Hamiltonian via the coupling

to the environment, described lsyand As. In order for the
Hop(t) =Hagp+Hg+ Hint, (9) Bloch-Redfield formalism, which involves a Born approxi-
mation in the system-bath coupling, to be valid, we have to

whereHg is a bath of harmonic oscillators amdj,, inherits  assumea,,,<1. After tracing out over the bath degrees of
the coupling to a dissipative environment. In our case, thgreedom, the rates read

effects of driving are not investigated. In Born approxima-

tion and when the system is only weakly coupled to the 1

environment, Bloch-Redfield theory provides the following F(Jn)nk=%[A1J1(wnk)+AZJz(wnk)][cotI"(/BﬁwnKIZ)—1]
set of equations for the reduced density magridescribing

the dynamics of the systef28,29: i
F A AM (02 +AM (0 D] (14)

bnm(t) =—iwymPnm(t) — % RumikePke(t), (10 ) L 1 W ) ) ) @ (@
with A :Aé’mnk: a'z,fma-z,nkv A :Afmnk: Uz,€maz,nkv and

where T’nn;J:(En_Em)/ﬁy and max,m,k,€|ReaQnmk{)| Ji(w)

<MiNyzml@,m Must hold. The Redfield relaxation tensor Ty iy — fw i +

Rnamke comprises the dissipative effects of the coupling of the M=(Q.DH=P 0 dwa_Qz[cotr(,Bhw/Z)Q_ @),
system to the environment. The elements of the Redfield (15)
relaxation tensor are given through golden rule rags

hereP denotes the principal value. Likewise,
Rnmke = ‘Semzr I‘Eirrr)k"' 5nk2 I‘5,’r7r)m 1
N Tl g7 [A 1) + A235(0gm) [ COt B wgn/2) + 1]
_F%m)nk_rgm)nk' (11)
i
2\ + Iz +
A. Two qubits coupled to two distinct baths + 47h [AM(wm2) +ATM (0¢mD)]. (16)
We now evaluate the Golden rule expressions in (Ed). ) ) ) .
in the case of two qubits, each coupled to a distinct harmonid h€ rated yn andI'y yn might be inserted into Eq11) to
oscillator bath. HereH () = exp(Hgt/%)H exp(~iHgt/%) de-  Puild tge Redfield lte”io“ Nolte’ her}?'rfhat fgﬁ:ﬁt and
notes the coupling between system and bath in the interad2¢m respective y,_t e real part o _t_e ratgehic |(s+ge-
tion picture, and the bracket denotes thermal average of th%oo(n_s)lble for relaxa}tll)on g‘;‘d dep?gs)m(% of value I'y i
bath degrees of freedom. Writing down all contributions =L ¢mnk=(1/48%)[ 07, im0z nkaa+ 07 im0z nital-
gives To solve the set of differential equatiofis0), it is conve-
nient to collapsep into a vector. In general, the Redfield
equationg10) without driving are solved by an ansatz of the
type p(t)= Bexp(~Rt)B‘1p(0), whereR is a diagonal matrix.
The entries of this diagonal matrix are the eigenvalues of the

I‘(€:rn)nk: ﬁ72f:dt67iwnkt(e[i(HBﬁHBZ)t/ﬁ]

X(0§%§m®5((1)+ 0§?2m®)A((Z))e[*i(HBﬁHBz)“h] Redfield tensor(11), written in matrix form, including the
. . dominating term w,, [cf. Eq.(10)]. Here, the reduced den-

1 2 A i nm : . )
X (oim@ XD+ o) @X®)), (12 sity matrix p=(py1, . . . .pag)" is written as a vector. The
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matrix B describes the basis change to the eigenbasis af 0+ /mTwak- They originate when tracing out the bath degrees

which R has diagonal form.

B. Two qubits coupled to one common bath

For the case of two qubits coupled to one common bath,_
we perform the same calculation as in the preceding section,

of freedom. In the case of one common bath, there is only
one spectral function, which we also assume to be Ohmic
J(w)=(ahw)/(1+ wzlwc) For w,—0, andw,,—0, re-
spectively, the real part of the rates is of the valifg.)

T4 = (al4Bh)A, for wy,wm—0.

which leads to expressions for the rates analogous to Egs.

(16)

iA
1—‘fmnk_ 8h A‘](wnk)[COtr(ﬁﬁwnklz) 1]+

a7
with A=A k= 0 dm0 ot 0o Gt oo
+ oo and
iA
F{e g A @ [Coth Bl nf2) + 11+ 5

J(w)

a)

XPJ do———
w?

)

XPJ dw
0 w

—Z[COtf‘(,Bﬁw/Z) Wemt o]

@om

47h

>-[coth( Bl w/2) wp— @],
nk

(18

C. Dynamics of coupled flux qubits with dissipation

The dissipative effects affecting the two-qubit system lead
to decoherence, which manifests itself in two ways. The sys-
tem experiences energy relaxation on a time saalvel“gl
(I'g is the sum of the relaxation rates of the four diagonal
elements of the reduced density matrlxz=—2,0, and
0, are the eigenvalues of the matrix that consists of the
tensor element®, ,nm, N,M=1,...,4), called relaxation
time, into a thermal mixture of the system’s energy eigen-
states. Therefore, the diagonal elements of the reduced den-
sity matrix decay to the value given by the
Boltzmann factors. The quantum coherent dynamics of the
system are superimposed on the relaxation and decay on a
usually shorter time scale —F YG,j=1,... 4i#j and

T, = —ReR}® ) termed dephasmg time. Thus, dephas-

ing causes the off-diagonal terfherencesof the reduced
density matrix to tend towards zero.

First, we investigate the incoherent relaxation of the two-
qubit system out of an eigenstate. At long times, the system

The difference between the rates for the case of two distinds expected to reach thermal equilibriugy=(1/Z)e" PH,

baths(14) and (16) are the two extra terms

(1)
{,’mo'z nk

(2)

and

Special cases ar€=0, wherep,q equals the projector on
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S E e . e 3 7 energiesK, €, and » are all fixed
Soasf =T T 3 = to E;. The characteristic time
g SRR R T scaletg is te=1/v,.
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the ground state anfi—o, where all eigenstates are occu- times for the case of one common or two distinct baths are of
pied with the same probability, i-ep,eq=(1/4)1- Figures 5 the same order of magnitude. The left column illustrates the

and 6 illustrate the relaxation of the system prepared in onehavior when the temperature is increased TAt2.1T,
of the four eigenstates for temperaturds=0 and T  the system relaxes into an equally populated state on times
=21T, respectively. The qubit energié§ e, and 5 are all much shorter than fof =0. For low temperatures, the char-
set toEg and a is set toa=10 3. From Fig. 1, one recog- acteristic time scale for dephasing and relaxation is some-
nizes relaxation into the eigenstaf2), the ground state for what shorter for the case of one common batf®(7*°
this set of parameters. ~0.9, fora=10"3). This can be explained by observing the
At low temperaturesT=0), we observe that for the case temperature dependence of the rates shown in Fig. 8. Though
of two distinct uncorrelated baths, a system prepared in onfor the case of one common bath, two of the dephasing rates
of the four eigenstates always relaxes into the ground stateywe zero atT=0, the remaining rates are always slightly
In the case of two qubits coupling to one common bath, thisigger for the case of one common bath compared to the case
is not always the case, as can be seen in the upper left pangJgtwo distinct baths. If the system is prepared in a general
of Figs. 5 and 6. This can be explained through our previougnerposition, hertE3) and|E4), nearly all rates become
observation, that the singlet is a protected subspace: Ne'th%portant thus compensating the effect of the two rates that

the free nor, unlike in the case of distinct baths, the bathyre approximately zero at zero temperature and leading to
mediated dynamics couple the singlet to the triplet spac&gsier decoherence.

Moreover, we can observe that relaxation to the ground state |t , and. therefore. the strength of the dissipative effects

happens by populating intermediate eigenstates with a loWe increased fromr= 102 to a=10"2, the observed coher-

energy than the initial state the system was prepared in atgnt motion is significantly damped. Variation afleads to a

=0 (cf. Fig. 1). _ phase shift of the coherent oscillations, due to renormaliza-
For high temperaturesTe=21T), the system thermalizes jon of the frequenciefL6]. However, in our case, the effects

into thermal equilibrium, where all eigenstates have equalt renormalization are very small, as discussed in Sec. IV E,
occupation probabilities. Again, in the case of one common,nq cannot be observed in our plots.

bath, thermalization of the singlet state is impeded and the
three eigenstatd&?2), |E3) and|E4) have equal occupation
probabilites of 1/3 after the relaxation time.

If the system is prepared in a superposition of eigenstates, Figure 8 displays the dependence of typical dephasing
e.g.,|[E3) and|E4) as in Fig. 7, which are not in a protected rates and the relaxation rakg on temperature. These deco-
subspace, we observe coherent oscillations between therence rates are the inverse decoherence times. The rates
eigenstates that are damped due to dephasing and after t@ee of the same magnitude for the cases of one common bath
decoherence time, the occupation probability of the eigenand two distinct baths. As a notable exception, in the case of
states is given by the Boltzmann factors. This behavior i®ne common bath, the dephasing rdfgs =1, - go to zero
depicted in Fig. 7. Here, for=10"3, the cases 6f=0 and  when the temperature is decreased, while all other rates satu-
T=2.1Tg are compared. When the temperature is lowrate forT— 0. This phenomenon is explained later on. If the
enough, the system will relax into the ground st&&), as  temperature is increased from= (h/kg) vs=4.8x10 2 K,
illustrated by the right column of Fig. 7. Thus, the occupa-the increase of the dephasing and relaxation rates follows a
tion probability of the state (12)(|E3)+|E4)) goes to  power-law dependence. It is linear in temperatliraith a
zero. Here, in the case of zero temperature, the decoherenspe given by the prefactors of the expression in the Red-

D. Temperature dependence of the rates
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FIG. 7. Plot of the occupation probabilif§ ;7 es)+|eay(t) when starting in the initial state (;@)(|E3>+|E4>), which is a super-
position of eigenstateg€3) and|E4). The first row shows the behavior for two qubits coupling to two uncorrelated baths. The lower row
shows the behavior for two qubits coupled to one common bath. The qubit pararagtersand K are set toEg and « is set toa

=10"3. The inset resolves the time scale of the coherent oscillations.
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field rates that depends on temperature. At temperafure case of one common bath. This behavior is depicted in Fig.
~0.1T, the rates show a sharp increase for both cases. Th& It originates from the special symmetries of the Hamil-
roll-off point is set by the characteristic energy scale of thetonian in this case and the fact that for this particular two-
problem, which in turn is set by the energy biasthe trans-  qubit operation, the system Hamiltonian and the coupling to
mission matrix elemeny, and the coupling strengtk. For  the bath are diagonal in the same basis. This special case is
the choice of parameters in Fig. 8, the characteristic energyf crucial importance for the quantum gate operation as de-

scale expressed in temperaturelis 0.1Ts. . scribed in Sec. V and affects the gate quality factors.
Note that there is also dephasing between the singlet and

the triplet states. When the system is prepai®dapplica-
tion of a suitable interactionn a coherent superposition of
singlet and triplet states, the phase evolves coherently. Then Next to causing decoherence, the interaction with the bath
two possible decoherence mechanisms can destroy phase @so renormalizes the qubit frequencies. This is mostly due to
herence. First, “flipless” dephasing processes, wi{&gre-  the fast bath modes, and can be understood analogous to the
mains unchanged. These flipless dephasing processes are &eanck-Condon effect, the Lamb shift, or the adiabatic renor-
scribed by the terms fow,,,,w,— 0 in the rates, EqY16) malization[30]. Renormalization of the oscillation frequen-
and (18). Obviously, these terms vanish fr—0, as the ciesw,nis controlled by the imaginary part of the Redfield
low-frequency component of Ohmic Gaussian noise istensor[16]

strictly thermal. Second, relaxation due to emission of a bo- _

son to the bath is also accompanied by a loss of phase co- Opm— Onm=Onm= MRy mnm- (19
herence. This process in general hafngte rate atT=0.

This explains th@ dependence of the rates in the single-bath

case]E1) alone is protected from the environment. As thereNote that IR, mnm= — IMRmnmndue to the fact that the cor-

are incoherent transitions between the triplet eigenstates evealators in the Golden Rule expressions have the same parity.
atT=0, the relative phase of a coherent oscillation betweeeihe imaginary part of the Redfield tensor is given by

|E1) and any of those is randomized, and the decoherence

ratesI’  are finite even aT=0. As a notable exception,

E. Renormalization effects

314,
|E2), the lowest-energy state in the triplet subspace, can (+) 1bop 1 % 1
only be flipped through absorption of energy, which implies ImI = C(’rﬁnk%Pfo do J(w)| ——
that the dephasing rate, also vanishes at low temperature. @ T Onk
The described behavior can be observed in Fig. 8. X[ coth Bhw/2) w,— w] (20

If the parameterg and » are tuned to zero, thus being
the only nonvanishing parameter in the Hamiltonian, all
dephasing and relaxation rates will vanish fo+0 in the and
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FIG. 10. The left plot depicts the ratio of the renormalization effects and the corresponding transition frequencies. Pawameters:
=103, T=0, andw./ws is varied between f0and 1§ for several frequenciesu(,, w4, andw,g) for the case of two baths and in the
case ofw,3 also for the case of one common bath. The parameters for the right plat=at® 3, T=2.1T, andw,/w, is varied between
10% and 16. The inset of the left plot shows a log-log plot of the temperature dependence of the renormalization effeais= Heré and
=10, Note that for small temperatures the renormalization effectaatalepend on temperaturéThis is elucidated further in Sec.

IV E.) The plots are scaled logarithmically to emphasize the logarithmic divergence of the renormalization effeais.with

1 o 1 The temperature dependence of E@®) and(23) at higher
Imr{.) = C%&ﬁi—hpf do J(0)| 5— temperatures, where, andc, are small and the renormal-
& 0 W T Wy ization effects are very weak, is shown in Fig. 10. The rates

(22) and(23) diverge logarithmically withw in analogy to
the well-known ultraviolet-divergence of the spin boson

oo b,2b _ model[30]. When comparing the leftT(=0) and right [
where’P denotes the principal value, a@%m“k are prefac =2.1T,) panel, one recognizes that for the first case, one

tors defined, in the case of two distinct baths, according tQ,mmon hath gives somewhat smaller renormalization ef-
Comni= iLo Lo b+ ool and in the case of one focts than two distinct baths, while in the second caseTfor
common batfCyy, .= i A. Here, for simplicity, we assumed =2.1T,, the renormalization effects deviate only slightly
a1=a,=a and thus,J;(w)=J,(w) =J(w). Evaluation of (see the behavior fan,z) and the renormalization effects are
the integral leads to the following expression ;). : smaller for the case of two distinct baths. The effects of

renormalization are always very sm@lim(Rp mn m)/ @nn

X[coth B w/2) wom+ w], (21

2 .
wew below 1% for our choice of parametégrand are therefore
(+) _ ~1b2b_ “™c%nk p ,
IMI = C€mnk27_r(wz+wz ) P(1+Cy) +9(cy) neglected in our calculations. However, having calculated
¢ nk Egs. (22 and(23), these are easily incorporated in our nu-

(22 fects is discussed in Ref31].

We only plotted the size of the renormalization effects for
with ¢,:=(Bhw,)/(27) and c,:=(Bhw)/(27). In the w12, w14, andws,, because in general, all valueswfy are
case ofr%r—n)nk, the expression is of the same magnitude and give similar plots. The size of the
renormalization effects diverges linearly with the dimen-

. ¢ merical calculations. The case of large renormalization ef-
2R y(icy)]-m o=,

n

- 1626 wZwem sionless parameter that describes the strength of the dissipa-
ImL{ = tmni, 2~ 2 P(1+Co) +(cy) tive effects.
m(we T Ofm) For flux qubits, the cutoff frequency, is given by the
e circuit properties. For a typical first order low-pass LR filter
—2Rd y(icq)]+ WE} (23 [32] in a qubit circuit[13], one can inserR=50 () (typical
m

impedance of coaxial cableandL~1 nH (depends on the

with ¢;:=(wmBh)/(27). The terms in Eqs(22) and (23) length of the circuit I|.ne)3|nto o r=R/L, and_ gets that
which are linear ino,, give no net contribution to the imagi- “LR™~ 2% 10 Hz. wi is the largest frequency in the prob-
nary part of the Redfield tensgt6]. To illustrate the size of lem (see again R%ﬁm]’ Chap. 4.3 and o> w g Sho?'d
the renormalization effects, the ratio of the renormalizatior’0ld- Thenwe~10" Hz (=10°Ey) as cutoff frequency is a
effects to the frequencies which are renormalized is depicteff@sonable assumption.
in Fig. 10.

If ¢, andc, are large, and the digamma functions can be
approximated by a logarithm, the resulting expression for the In Sec. IV, we evaluated the dephasing and relaxation
renormalization effects will be independent of temperaturerates of the two-qubit system that is affected by a dissipative

V. GATE QUALITY FACTORS
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environment. Furthermore, we visualized the dynamics of The fourth quantifier, the entanglement capabiflityis the
the two-qubit system. This does not yet allow a full assesssmallest eigenvalue of the partially transposed density matrix
ment of the performance as a quantum logic element. Theder all possible unentangled input statds! ). (see below.
should perform unitary gate operations and based on the has been showf85] to be negative for an entangled state.
rates alone, one can not judge how well quantum gate operghis quantifier should be-0.5, e.g., for the ideal g, thus
tions might be performed with the two-qubit system. There-characterizing a maximally entangled final state. Two of the
fore, to get a quantitative measure of how our setup behavegate quality factors, namely, the fidelity and purity might
when performing a quantum logic gate operation, one camlso be calculated for single-qubit ga{d®]. However, en-
evaluate gate quality factof83]. The performance of a two- tanglement can only be observed in a system of at least two
qubit gate is characterized by four quantities: the fidelity,qubits. Therefore, the quantum degree and entanglement ca-
purity, quantum degree, and entanglement capability. The fipability cannot be evaluated for single-qubit gates.
delity is defined as To form all possible initial density matrices, needed to
LB calculate the S;}e quality factors, we use the 16 unentangled
1 I i product statesV]), j=1,...,16defined[17] according to
7= 16 2 (VhlUsreUcl Vo). @H )Wy, (ab=1,....4), with [W1)=|1), [¥,)=|1),
[Wa)=(LN2)(|1)+]1)), and [Wa)=(1N2)(1)+i1)).
whereUg is the unitary matrix describing the desired ideal They form one possible basis set for the superoperagor
gate and the density matrix obtained from attempting a quarwith p(tg)=vgp(0) [17,33. The states are chosen to be

tum gate operation in a hostile environmentpis= p(tg), unentangled for being compatible with the definitionCof
which is evaluated for all initial conditionsp(0)
=Wl }W¥! |. The fidelity is a measure of how well a quan- A. Implementation of two-qubit operations

tum logic operation was performed. Without dissipation, the

reduced density matri,x{; after performing the quantum gate 1. Controlled phase-shift gate

operation, applyingUg and the inverseJS would equal To perform the controlledtoT operation, it_is necessary
p(0). Therefore, the fidelity for the ideal quantum gate op-to be able to apply the controlled phase-shift operation to-
eration should be 1. gether with arbitrary single-qubit gates. In the computational
The second quantifier is the purity basis (00),/01),/10),|]11)), the controlled phase-shift opera-
tion is given by
18 .
P= 1_6121 tr((p&)?), (25 100 O
0 1 0 O
which should be 1 without dissipation and 1/4 in a fully Ucz(e)= : (29
. . ' 0 01 O
mixed state. The purity characterizes the effects of decoher- _
ence. 0 0 0 e¥
The third quantifier, the quantum degree, is defined as the
maximum overlap of the resulting density matrix after theand for o= 7, up to a global phase factor,
guantum gate operation with the maximally entangled states,
the Bell states - - -
_ Ucz= exr{ i Zogl) exp( [ Zagz)) exr< i Zagl)a'gz)) .
i,k
where the Bell state¥¥ . are defined according to Note that in Eq.(30) only o, operations, which commute
with the coupling to the bath, are needed. The controlled
LD+ LDY+[11) phase-shift operation together with two Hadamard gates and
[pl =" L Pl = , (27)  asingle-qubit phase-shift operation then gives the controlled-
V2 V2 NOT gate.
— — 2. ControllednoT gate
M&FM' |\1fr1nle=|”> T 29 .
V2 V2 Due to the fact that the set consisting of thgod (or

controlledNOT) gate and the one-qubit rotations, is complete
For an ideal entangling operation, e.g., the controiled- for quantum computatiof36], the Usor gate is a highly
gate, the quantum degree should be one. The quantum degrie&portant two-qubit gate operation. Therefore we further in-
characterizes nonlocality. It has been shq@4] that all den-  vestigate the behavior of the four gate quality factors in this
sity operators that have an overlap with a maximally en-case. The Yor Operation switches the second bit, depending
tangled state that is larger than the value QI8 violate the  on the value of the first bit of a two bit system. In the com-
Clauser-Horne-Shimony-Holt inequality and are thus nonloputational basis, this operation has the following matrix
cal. form:
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TABLE |. Parameters of the Hamiltonians which are needed to
perform the WYor gate operation; only the nonzero parameters are
listed: ¢&=E, in our case.

No. Operation ParameterEQ Tlme (S)
Tty T3 T T T )
1 ex;{'z ot = —& Ay=—¢ :E FIG. 11. Pulse sequence needed to perform the quantysr U
2 \/5 1 2& operation. Here, the elements of the unperturbed single- and two-
. 1 gubit Hamiltonian needed to perform a certain operation undergo-
2 ex;{iaole) €=¢ 7'2:2—5 ing free unitary time evolution are shown. The dotted horizontal
1 lines denotet=0, and the horizontal lines are spaced|by=E;.
LT _ — The durations of each pulse are not equal in generélr;, i,]
3 eX[‘,(IZo‘%of) K=¢ T =1,...,6(cf. Table ). P ) senes 1
T 1
4 eXP('Z z) €2=¢ T4 a¢ Table I, Fig. 11 depicts the values of the elements of the
- 1 Hamiltonians. Interestingly enough, we find that for the only
5 exp(izoi) €=¢ 75T 2¢ two-qubit operatlo_n included in theydg operation,e and »
z are zero. T.husK is the only nonzero parameter ah%b
6 oxd —i ot or €= — & A= — & =3¢ assumes dmgona} form.. For flux qub!ts, |mplem¢nt|ng the
2\ 2 ' § pulse sequence Fig. 11 involves negative and positive values
tuning the magnetic frustration through the qubit loop below
or abovef=1/2. Note that, e.g., for realistic models of in-
1 0 0 O ductively coupled flux qubits, it is very difficult to turn on
the interaction Hamiltonian between the two qubits without
Uyor= 0100 (31) the individualo, terms ip the Hamilton?an. prever, for the
0 0 0 1 pulse sequence given in E@2), we might simply perform
00 1 0 the third, fourth, and fifth operations of E¢32) at once

using only the Hamiltonian with both the individua), terms

Up to a phase factor, the two-qubitk (or cnoT) operation — and the interqubit coupling.

can be realized by a sequence of five single-qubit and one To obtain the final reduced density matrix after perform-
two-qubit quantum logic operations. Each of these six operalnd the six unitary operationt32), we iteratively determine
tions corresponds to an appropriate Hamiltonian undergoin§le density matrix after each operation with Bloch-Redfield
free unitary time evolution exXp-(i/4)Host]. The single- theory and insert the attained resultlng dens@y matrix as ini-
qubit operations are handled with Bloch-Redfield formalism,tial density matrix into the next operation. This procedure is
like the two-qubit operations. We assume dc puléestan- repeated for all possible unentangled initial states given in

taneous on and off switching of the Hamiltonian with zerothe preceding section. We inserted no additional time inter-
rise time of the signalor rectangular pulses vals between the operations. This is usually needed, if one
applies Bloch-Redfield formalism, because it is known to

7 c@+o? violate complete positivity on short time scales. However,
Uyxor=€expg —i S\ T Ucz(m) we circumvent this problem in our calculations by dropping
V2 the memory after each operation, when we iteratively calcu-

late the reduced density matrix. This procedure may lead to
small inaccuracies as compared to usingaPpPI[17], which,
however, should not affect our main conclusions.

wexd i = ol exd —i " a0+ a?
272 2\ 2

whereU () is given by Eq.(30). This generic implemen-
tation has been chosen in order to demonstrate the compari-
son to other coupling schemgk7] as well as for computa- We have analyzed the gate quality factors in the cases of
tional convenience, it is not necessarily the optimum schema common and of two distinct baths, respectively. In Fig. 12,
for application under cryogenic conditions, where slow rise-the temperature dependence of the deviations of the four gate
time ac pulses are preferred. Table | shows the parameters vggiality factors from their ideal values are depicted as a log-
inserted into the one- and two-qubit Hamiltonian to receivelog plot. At temperatures below =2.5x10 2 K~0.5T,
the Ucor Operation. In our case, we assumged Eg. How-  the purity and fidelity are clearly higher for the case of one
ever, there is no restriction in the use of other valueséfor common bath, but if temperature is increased above this
For a typical energy scale of 1 GHz, the resulting times fromcharacteristic threshold, fidelity and purity are slightly higher
Table | are in the nanosecond range. for the case of two baths.

To better visualize the pulse sequence needed to perform In the case of one common bath the fidelity, purity, and
the quantum kg operation, which was already given in entanglement capability are approaching their ideal value 1,

(32)
B. Temperature dependence

1. Controlled phase-shift gate
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FIG. 12. Log-log plot of the
temperature dependence of the de-
viations of the four gate quantifi-
ers from their ideal values after
performing the controlled phase-
shift (cPHASE gate operation. In
all casesg=a;=a,=10"3. The
full curves are provided as guides
to the eye.
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when temperature goes to zero. This is related to the fact thail in their ground states and can be excited through sponta-
in the case of one common bath all relaxation and dephasingeous emission. But for the case of one common bath, the
rates vanish during the two-qubit step of the controlleddeviation from the ideal fidelity goes to zero, when tempera-
phase-shift gate due to the special symmetries of the Hamikure goes to zero. This is due to the special symmetiess (
tonian, when temperature goes to zero as depicted in Fig. $he onlynorvanishing parameter in the two-qubit operajion
The controlled phase-shift operation creates entanglesf the Hamiltonian, which rules out spontaneous emission.
ment. The creation of entanglement is impeded by decoheffhese symmetries are also reflected in the temperature de-
ence effects that vanish when temperature approaches zependence of the rates, Fig. 9. There, for one common bath,
Therefore, the entanglement capability exhibits the same beall rates vanish folf — 0. Note that these rates only describe
havior as the fidelity and purity. For zero dissipatiom ( the two-qubit part of the operation. However, the single-
=0), the quantum degree has the value 0.5 but the entanglgubit part behaves similarly, because the terms in the single-
ment capability is— 0.5 thus, characterizing a maximum en- qubit Hamiltonian are alse o, .
tangled state. The reason is that the Bell-states, which are
generated by the controlled phase-shift gate from the input
states, result in a basis that is different from the used basis, Different to the preceding section, we now add two
but can be transformed using only local transformations.  single-qubit operationgHadamard gatesto the controlled
Furthermore, for finite dissipation, Fig. 9 shows that alsophase-shift operation that dwt commute with the coupling
for the case of two distinct baths, there are only three nonto the bath. In Fig. 13, the deviations of the gate quality
vanishing rates fof — 0. The system, being prepared in one factors from their ideal values are depicted as a log-log plot.
of the 16 initial states, might relax into one of the eigenstateg\gain, at temperatures below=2.5x10 2 K~0.5T,, the
that is an entangled state. purity and fidelity are higher for the case of one common
We observe the saturation of the deviation for the case dbath, but if temperature is increased above this characteristic
two baths and can directly recognize the effects of the symthreshold, fidelity and purity are higher for the case of two
metries of the controlled phase-shift operation. For giggn baths. Note that, we have chosen a rather largthis value
the fidelity and purity cannot be increased anymore by low-can substantially be improved by means of enginedririj
ering the temperature in the case of two distinct baths. InterThe fidelity and purity are clearly higher for the case of one
estingly enough, we find that for two qubits coupling to onecommon bath, when temperature is decreased beloW 0.5
common bath, the situation is different for temperatures beThis is related to the fact that in the case of one common
low 0.5T,. Above a temperature of =4.8X10 2 K, the  path, all relaxation and dephasing rates vanish during the
decrease of the gate quality factors shows a linear depemwo-qubit-step of the Wyg, due to the special symmetries of
dence on temperature for both cases of one common or twhe Hamiltonian, when temperature goes to zero as discussed
distinct heat baths before it again saturates at abo&itk10 in the preceding paragraph. However, the quantum degree
~2x10°T. Finite decoherence effects in the fidelity, purity and the entanglement capability tend towards the same value
and entanglement capability &t=0 for the case of two dis- for both the case of one common and two distinct baths. This
tinct baths are resulting from the coupling of the system tds due to the fact that both quantum degree and entanglement
the environment of harmonic oscillators, whi@dtT=0) are  capability are, different than fidelity and purity, not defined

2. ControllednoT gate
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FIG. 13. Log-log plot of the
temperature dependence of the de-
viations of the four gate quantifi-
ers from their ideal values after
performing the ogr gate opera-
tion. In all cases,a=a;=a,
=103, The dotted line indicates
the upper bound set by the
Clauser-Horne-Shimony-Holt in-
equality. The full curves are pro-
vided as guides to the eye.

-4 ] | | | ] 4 ] ] ] ] ]

10 10?2 10 10" 10% 10
T/T, T,

as mean values but rather characterize the “best” possible The dotted line in Fig. 13 shows that the temperature has
case of all given input states. This results in the same valu be less than abolt=21T,=1 K in order to obtain values
for both cases. of the quantum degree being larger thgis:0.78. Only then,

In the recent work by Thorwart and 'Hagi [17], the  the Clauser-Horne-Shimony-Holt inequality is violated and
Uxor gate was investigated for&)@ o)) coupling scheme  nonlocal correlations between the qubits occur as described
and one common bath. They find a pronounced degradatian Ref.[17].
of the gate performance, in particular, the gate quality factors
only weakly depend on temperature. They set the strength of C. Dependence on the dissipation strength

. - - _ 74 - - _
the dissipative effects ta=10 . Their choice of param The deviations from the ideal values of the gate quantifi-

eters wase~10E;, A~1E,, andK~0.55; which is on the ers possess a linear dependencexaas expected. Generall
same order of magnitude as the values given in Table |I. A%1 P P P ) y

can be seen in Fig. 13, we also observe only a weak decrea éno special symmetries of the Hamiltonian are present
of the gate quality factors for both the cases of one common

ere are always finite decoherence effects alsd@-a0.
bath and two distinct baths in the same temperature ran herefore, we can not improve the gate quality factors below
discussed by Thorwart and "Hggi, both fora=10"2 and

9 certain saturation value, when lowering the temperature
a=10"% and overall substantially better values. This is due

[17], as was also discussed in the preceding section. By bet-
() o () ; S ter isolating the system from the environment and by care-
to the fact that f_oray ©ay c_ouplmg, the Hamlltc_)man does fully engineering the environmefpt 3], one can decrease the
not commute with the coupling to the bath during the two- gyengih of the dissipative effects characterizedsbyin or-

qubit steps of the kg pulsg sequence. der to obtain the desired value of 0.999 99 #&rP, and Q
We observe the saturation of the deviation for both th 17], @ needs to be below 16 at T=0.21T.= 10 mK
' 21T .

cases of two baths and one common bath. For givethe
fidelity and purity can not be increased anymore by lowering
the temperature, different from the behavior for the con-
trolled phase-shift gate that was discussed in the preceding To investigate the anatomy of theykk quantum logic
section. This is due to the application of the Hadamard gateperation, we calculated the occupation probabilities of the
whose Hamiltonian does not commute with the coupling tosinglet/triplet states after each of the six operations, of which
the bath. Above a temperature Bf, the decrease of the gate the Usgr consists. This time resolved picture of the dynam-
quality factors shows a linear dependence on temperature faecs of the two-qubit system, when performing a gate opera-
both cases. Here, different from the controlled phase-shiftion, gives insight into details of our implementation of the
gate, we observe finite decoherence effects in all four gat&lyog operation and the dissipative effects that occur during
quantifiers also at =0, both for the case of one common or the operation. Thus, we are able to characterize the physical
two distinct heat baths. These decoherence effects are resuftrocess, which maps the input density magrido p,¢ in an

ing from the coupling of the system to the environment ofopen quantum systef33]. When the system is prepared in
harmonic oscillators, whickat T=0) are all in their ground the statd | |)=|00), the Usor Operation(31) does not alter
states and can be excited through spontaneous emission th® initial state and after performing thek operation, the
already described above. final state should equal the initial stdte| )=|00). This can

D. Time resolved controlledNOT operation
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0.1 . I — . | 0.4 T , T T T
[ o—o0 a=0
[ =-aT=21E-1K, 0=10% 2 baths 03
i ¥ T ~Bee
s [ AATR1ESIK a=107%, 1 bath ] S s i N
= 005 02 \: -
o [ P ¢ N\ FIG. 14. Time resolved Lhr
i /s o operation. The system is initially
K 5 01 prepared in the stat®0). Occu-
L ’,}‘" pation probabilities of the singlet/

08—t | o1 ol o1 41 0 ' ! ' L ! triplet states are shown after

0 05 1 1.5 0.5 15 : i )

1 . I . | . | 0.4 . | . . | completion of a time stepr; (i
=1,...,6). For a=a1=a,
=102 and T=21T,=1 K clear

03 - :
0.8 = deviations from the ideal case can
A s be observed. Qubit parameters are
o= A g 02 set according to Table I. The lines
06 /P a~ are provided as guides to the eye.
¥ 0.1
I S — /
S g---g-——-g
0.4 1 I I I 1 I c 1 I
0 05 1 1.5 0.5
vt

clearly be observed in Fig. 14. During thgk operation,

also less close to their ideal value for the case of two distinct

occupation probabilities of the four states change accordingaths. The case of two distinct baths also shows bigger de-

to the individual operations given in E2). At T=21T,,

viations from the ideal casex=0) during the Uyor Opera-

the case of two baths differs significantly from the case oftion (see Fig. 14 But, if the system is initially prepared in

one common bath. After the third operati¢ime two-qubit

the state|17)=|11), the case of two distinct baths shows

operation; only there the distinction between one common obigger deviations from the ideal case during theskJopera-

two distinct baths makes senseccupation probabilities are tion, while the resulting state is closer to the ideal case for
different for both environments resulting in a less ideal resultwo distinct baths compared to one common bath.
for the case of two baths. In Figs. 14 and 15, it looks like there would be no deco-
In Fig. 14, the resulting state after performing theogd ~ herence effectéor at least much weaker decoherence effects
operation always deviates more from the ideal vafoe « after performing théfirst two) single-qubit operations. How-
=0, i.e., no dissipationfor the case of two distinct baths, if ever, not all input states are affected by the decoherence
all other parameters are fixed and set to the same values feffects the same way. And when we regard all possible input
both cases. The staf, is less close to the ideal occupa- states, there are finite decoherence effects. This can be ex-
tion probability one and the other singlet/triplet states areplained with Fig. 16. Figure 16 depicts the time resolved

1 T I T I T I 05 T T T
—o a=0
081\ &-aT=21 E~1K, 0=10% 2baths ]| 0.4
06|\ 44 T=21 E=1K, 0=10% 1 bath 203
— - - - +
o 0.4-_ éo.z - FIG. 15. Time resolved &by
| o operation. The system is initially
02k 04 prepared in the statfl1). Occu-
L pation probabilities of the singlet/
o5 L 0{5 1 '1 1 : 0 L triplet gtates are shown after
01 : | : | : | 05 i completion of a time step; (i
L =1,...,6). For a=a1=ay
- 0.4 =102 and T=21T=1 K, de-
- ~ viations from the ideal case can be
A r A N 503 observed. Qubit parameters are set
g2 005 / o 3 according to Table I. The lines are
- / R Q=02 provided as guides to the eye.
r I g
L / J 0.1
K ! / ! | ! !
% o5 ¢ 1 s 0 s s
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) T : T " ] measures of the quality of a quantum logic operation. We
099951 T=0 - illustrate that the gate quality factors depend linearlyagn
B e A B & ] as expected. The time resolvegdg operation(Figs. 14 and
a  } ., 4 15) again illustrates the difference between one common and
iy s two distinct baths, and moreover, we observe that single-
qubit decoherence effectso, during the Wog Operation are
09075 . ! . ! . L] weak. The time scales of the dynamics of the coupled two
° °e " ! ' qubit system are comparable to the time scales, which were
1.00 ' . — . ' T already observed in experiments and discussed in the litera-
r T=100 mK=2.1 GHz 1 ture [13]
- . The question, whether one common bath or two distinct
00990 e 7 baths are less destructive regarding quantum coherence can
- T ] not be clearly answered. For low enough temperatures, cou-
I 1 pling to one common bath yields better results. However,
080 : ' : ' : ! when the temperature is increased, two distinct baths do bet-
tt, ter; in both temperature regimes, though, the gate quantifiers
are only slightly different for both cases.
Compared to the work of Thorwafil7], the interaction
part of our model Hamiltonian possesses symmettibe
Hamiltonian of the two-qubit operation and the errors com-
mute that lead to better gate quality factors. Furthermore,
analysis of the symmetries and error sources of our model
system can lead to improved coupling schemes for solid-
purity when performing the Lbg operation. We clearly ob-  state qubits. Milburn and co-workers on the other hand fo-
serve that there are finite decoherence effects for the firfi;tused on comparison of classical and quantum mechanical
single-qubit operations in Eq32) as well. The difference dynamics[15] and estimated the decoherence properties of
between the single-qubit and two-qubit operations is thewo coupled two-state systems.
steeper decrease of the purity due to stronger decoherence in Governale[16] determined the decoherence properties of
the case of the two-qubit operation. The upper panel in Figiwo coupled charge qubits whose Hamiltonian differs from
16 depicts the behavior of the purity for—0. Decoherence Eq. (2) by the type of interqubit coupling, namelyrg,l)

due to theo, terms in the Hamiltonian will vanish fol ®052) coupling. However, introducing the quality factors

T
|

0.998

0.995

T
1

0.985

FIG. 16. Time resolved purity for the dg operation. The value
of the purity after each time step (i=1,...,6) isshown. Here
a=a;=a,=10"2, and T=2.1T=100 mK (lower panel or T
=0 (upper panel Qubit parameters are set according to Table I.
The lines are provided as guides to the eye.

—0 in the case of one common bath. gives a measure to judge how certain qubit designs perform
quantum gate operations.
VI. CONCLUSION As a next step, one should consider driving, to be able to

pbserve and discuss Rabi oscillations in systems of two
I;?oupled qubits. It should be investigated, how the decoher-
ence properties are modified, if one adds more qubits to the
system.

We presented a full analysis of the dynamics and decohe
ence properties of two solid-state qubits coupled to eac
other via a generic type of Ising coupling and coupled, more
over, either to a common bath, or two independent baths.
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