PHYSICAL REVIEW B, VOLUME 65, 214421

Nonequilibrium excitations in ferromagnetic nanopatrticles

Silvia Kleff2* and Jan von Delft
ICenter for NanoScience and Sektion Physik, Ludwig-Maximilians-UniverSiteresienstrasse 37, 80333 Minen, Germany
2Institut fir Theoretische Festkperphysik, UniversitaKarlsruhe, 76128 Karlsruhe, Germany
(Received 17 October 2001; revised manuscript received 1 February 2002; published 3 Jyne 2002

In recent measurements of tunneling transport through individual ferromagnetic Co nanograins, Deshmukh,
Gueaon, Ralphet al. (DGR) [Phys. Rev. Lett83, 4148 (1999; M. M. Deshmukhet al, ibid. 87, 226801
(2001)] observed a tunneling spectrum with discrete resonances, whose spacing was much smaller than what
one would expect from naive independent-electron estimates. In a previous publi&tkieff, J. von Delft,
M. Deshmukh, and D. C. Ralph, Phys. Rev6B 220401(2001)], we had suggested that this was a conse-
guence of nonequilibrium excitations, and had proposed a “minimal model” for ferromagnetism in nanograins
with a discrete excitation spectrum as a framework for analyzing the experimental data. In the present paper,
we provide a detailed analysis of the properties of this model: We delineate which many-body electron states
must be considered when constructing the tunneling spectrum, discuss various nonequilibrium scenarios, and
compare their results with the experimental data of DGR. We show that a combination of nonequilibrium spin
and single-particle excitations can account for most of the observed features, in particular the abundance of
resonances, the resonance spacing, and the absence of Zeeman splitting.

DOI: 10.1103/PhysRevB.65.214421 PACS nuni®er75.50.Cc, 73.23.Hk, 73.40.Gk

[. INTRODUCTION cle’s total spin as a quantum-mechanical variable. We
argued that the main features of the measured tunneling
An important milestone in the study of itinerant ferromag- spectra can be understood within this model by assuming
netism was reached during the last two years, when Deslthat nonequilibrium spin accumulation occurs, which can
mukh, Gueon, Ralphet al>? (DGR), using single-electron produce a much denser spectrum of tunneling excitations
tunneling spectroscopysucceeded for the first time in re- than expected within an independent-electron model. The
solving discrete resonances in the tunneling spectrunsonclusion that nonequilibrium effects play an important role
through individual ferromagnetic single-domain cobalt nan-has since been confirmed by more recent measurements by
ograins, with diameters between 1 and 4 nm. Their workDGR (Ref. 2 on a gated device, in which new resonances
goes beyond previous studies of ferromagnetic singleappeared as the gate voltage was tuned to drive the system
electron transistors,® which elucidated the interplay of fer- further away from equilibrium.
romagnetism and charging effects: the fact that DGR’s Co In the present paper, we provide a detailed analysis of
grains were sufficiently small such that discrete resonanceaquilibrium and nonequilibrium tunneling through ferromag-
could be resolved means that they were probing the truaetic grains, within the framework of our minimal model.
guantum states participating in electron tunneling, which al-The present analysis goes well beyond that of Ref. 3, in that
lows the nature of electron correlations in itinerant ferromag-we consider not only the spin ground states of Fig. 2 in Ref.
nets to be studied in unprecedented detail. Besides the intrii3, but also spin-wave excitations and single-particle excita-
sic scientific interest in studying ferromagnetism on thetions. The latter turn out to be necessary to understand why a
nanometer scale, the insights so gained might also be of teckmall resonance spacing is observed even when the threshold
nological interest, since the size of memory elements in magpias voltage for the onset of tunneling is rather small, so that
netic storage technologies is decreasing extremely rapidlynonequilibrium effects cannot be very strong.
and particles as small as 4 nm are coming under The structure of the paper is as follows. In Sec. Il we
investigation:® summarize the experimental results of Deshmeakhl? and
An examination of the magnetic-field dependence of theGueon et al! The Hamiltonian of our minimal model is pre-
individual resonances observed by DGR indicated that twosented in Sec. lll, together with a convenient set of basis
current models, in which spin-up and spin-down electronstates for analyzing the low-lying excitations and their ener-
bands are considered effectively independently, are inadgies. In Sec. IV we discuss two different equilibrium excita-
equate for describing the true electronic states inside #ons in ferromagnetic grains, namely, single-particle excita-
nanometer-scale ferromagnet—so that a fundamentally diftions and spin excitations. A detailed discussion of
ferent theoretical approach is required. To this end, a simplaonequilibrium excitations and their consequences for tun-
phenomenological model was recently introduced by theneling spectra is given in Sec. V: First we calculate the cur-
present authors together with Deshmukh and Ralphg in-  rent through a grain for a nonequilibrium scenario involving
dependently by Canali and MacDonald\Ve regard this as a only transitions between the ground states) of a ladder
“minimal model” for ferromagnetic nanograins, in that it of spin multiplets of different total spirs; the resonance
seems to be the simplest model possible for a discrete-stagpacing for the peaks in the conductance is found to be in
system which takes into account the electronic correlationgiuantitative agreement with DGR’s measurements if we as-
induced by magnetic interactions and which treats the partisume a total ground-state spin of absgi=1000 and that the
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resonances are predominantly due to the tunneling of minoi, . ~4.6 eVis, for minority/majority electrons;**respec-

ity electrons. We then generalize this nonequilibrium scetively. (In Ref. 2 many more resonances were observed than
nario by including also all more highly excited statesm) in Ref. 1, due to lower-noise tunnel barriérs.

of these spin multiplets, finding that if the total spin is large (P2 In the small-field regime go,H<0.2 T), the tunnel-
(s>1), the Zeeman splitting of the observed resonanceshg resonance energies show strong nonlinear dependence on
should be strongly suppressed, in agreement with DGR’s ex, with hysteresis and jumps at the switching figHt,|. For
periments. Finally, we show that a combination of single-fields beyond the switching field, the levels can exhibit non-
particle and spin excitations in the presence of nonequilibmonotonic variations as a function &f, with each level
rium can lead to the large number of resonances seen ifehaving differently. For a more detailed discussion of the
experiments. Some concluding remarks can be found in Segnagnetic-field dependence of the tunneling energies see
VI Refs. 2 and 3.

A brief account of our results on the most simple nonequi-  (P3) In the large-field regime |H|>|Hg,|), the reso-
librium scenario in ferromagnetic grains has already beemances depend roughly linearly d, with H slopes that
given in Ref. 3. The present paper includes a detailed derigimost all have the same sign for a given grain, i.e., slopes of
vation of these result§Sec. V B, since this paves the way opposite signs due to Zeeman shifting of spin-up and spin-
for the more complicated nonequilibrium scenarios presentegown levelé13 are not observed.
in Sec. VC and Sec. VD, which have not been reported (P4) Measurements on a gated devighowed that the
before. observed resonances correspond predominantly to the tun-

neling of minority electrons.
Il. SUMMARY OF EXPERIMENTAL RESULTS (P5 Measurements on a gated deviedso showed that
someof the resonances must be due to nonequilibrium exci-

In DGR’s experiments;? a nanoscale cobalt grain was tations, since soméut not al) resonances disappear when
used as a central island in a single-electron transistor: it waghe Coulomb-blockade threshold for the onset of tunneling
connected via tunnel barriers to external leads and for one qf.e., the amount of nonequilibriunis reduced by tuning the
the grains in Ref. 2, the central grain was also capacitivelyate voltage to lie close to a degeneracy point.
coupled to a gate. The electronic spectrum of the particle was We will argue below that thenain features of the mea-
determined by measuring the tunnel conductance through thgured tunneling spectra, as summarized above, can be quali-
grain as a function of transport voltag¥) [gate voltage tatively understood within our model. However, we will not
(Vg)] and magnetic fieldugH at a fixed temperature of attempt to give an overly detaileguantitativecomparison
=90 mK. The diameters of the Co grains were estimated tqvith experimental data fagveryaspect of the experiment. In
be 1-4 nm. Assuming a roughly hemispherical shape, thgiew of the richness of DGR'’s experimental data, especially
number of atoms in each grain then was in the raNge the very complicated magnetic-field dependence of reso-
~20-1500, implying a total spin a&f,~0.8N,~17-1250. nances, such a goal would clearly be overambitious. Instead

Since the charging energy>30 meV) was very much we shall strive to understand the main trends and features of
larger than typical values of the transport voltageV( the experiment, e.g., the absence of Zeeman splitting and the
<9 meV) and the temperature, fluctuations in electrorrole played by nonequilibrium, and do a quantitative com-
number on the grain are strongly suppressed, so that coherggdrison only for a few selected quantities, e.g., the resonance
superposition between different electron numbérseed not  spacing.
be considered. The energy balance condition that determines
through which eigenstates of the grain electrons can tunnel

for given values of transpofaind gate voltage thus involve Il MODEL
differences between eigenenergies of a grain witfixad In this section we introduce a simple model for ultrasmall
particle number Nor N+ 1,2 ferromagnetic grains. The challenge is to describe the indi-
vidual quantized electronic excitations of a ferromagnetic
AEG=E{"T-El, (1)  nanoparticle, taking into account the electronic correlations

induced by magnetic interactions and anisotropy forces.
each corresponding to the energy cost of some rate-limiting
electron-tunneling procesi)N—|f)N*! onto or off the
grain. Here|i)N denotes a discrete eigenstate, with eigenen- ] )
ergy E, of a grain withN electrons, etc. As the magnetic  We propose to model a nanoscale magnet with discrete
field H is swept, the resonances undergo energy shifts ang*citations by the following “minimal” Hamiltoniart:
crossings.

A. Hamiltonian

The excitation spectra measured by DGR had several H=Hc+Ho+ Hexcht Hzeet Huni (29
properties that differ strikingly from those of previously
studied nonmagnetic Al and Au graft's including the fol- He=eVpdN+EcoN?, (2b)

lowing: (P1) Many more low-energy excitationgere ob-

served than expected: For all Co grains studied, the observed

level spacing isl,,=0.2 meV, which is muclsmallerthan H :E sclc (20)
the independent-electron estimate af;,~1.2 eV/s, and 04 eI
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U N —_— —_— —_—— _
Hexch_ - 58' S, (Zd) —— R — . — — R
T AEE T =3
=N
Hye= —hS, 29 e + =3/ F==F
11,155 11,08 11,-18
Huni= — kn(S-n)?/sg, (2f) FIG. 1. The spin-wave multiplefs,m)y for s=1, N=6. The

. . position of each level represents its kinetic enesgy
with h=gcsupuoH. Here Hc is the standard Coulomb

charging energy for a nanoparticle withN excess electrons.

Vp=[Qo+2,V,C,]/C, for r=(L,R,g), is the electrostatic B. Basis states

potential energy of the island, witi==,C,. C,, Cg, and Let us for the moment set the anisotropy strerigik-0,
C, are the tunnel junctions connecting the grain to the left oland use the eigenstates ®{(ky=0) to construct a conve-
right lead or the gate electrode, respectively, &hd Vg,  hient set of “bare” basis states. Since the Hamiltonian then

and V, are the voltages of the left/right leads and the gatecommutes with the total spin, these states can be grouped
electrode.Q, is an initial random offset charge arf: into spin multiplets that are labeled by the& S and $*
=¢2/2C is the unit of charging energy. eigenvalues, says(s+1) and m. For example, the bare
'H, describes the kinetic energy of a single band of singleground state of{(ky=0) for givenN, s, andh(>0), say,
electron statefj, o), labeled by a discrete indgxand a spin  |s,s)y), can be written explicitly as a member of the follow-

index o=(T,]), with the spin-quantization axis chosen in ing multiplet of normalized statets,m)} (illustrated in Fig.
thezdirection. The exchange, Zeeman, and anisotropy terms,):

Hexchr Hzee, @aNdH i, are functions of the total spin vector
S=3;S;, whereS; is the spin vector of the electrons in level

nT nl
I -
|s,s>'0“=]1:[l CJTle;[l ¢l [vag, (4)
R -
SJ :E Z CJTUO-UU’Cjo’ (3)
. | _ (s+m)! S )& Mg gl -
(o are Pauli matrics Heyen is a rotationally invariant term S\M)o= "\ (25)1 (s~ m)!_( -) S,S)o -

which models the effects of an exchange field and forces the
system to adopt a nonzero total ground-state spin,sga@n

_ _v . f ; ; ;
account of this term, spins aligned parallel or antiparallel to1€r€ Ny =N/2xs, andS_=Z,c;c;; is the spin-lowering
= e i operator. Within this model, the energy difference between
(S) may be thought of as forming “majority” and “minor-

ity” bands, which effectively rotate rigidly together with the the spin multiplet|s,m) and all other states that are con-
S D structed from the same single-electron levels is at least of

magnetization direction. We shall take the mean level SPacy der _ avery large value£2 eV for Co.1

ings near the respective Fermi energids;,~1.19 eVk, ©F.maj~ &F,min: y1arg :

and dn,~4.61 eVk,, and the exchange splitting of the CaJSh: twglﬁi'eor}osvf-:ngfnzirioeigltzcﬁtr°p>yNtirc,m§2'mV]V(.';.l;r
Fermi energiesAr=er ma— F.min (=2 €V for Co,** as gy €19 )

characteristic parameters of the model. superpositions of the bare states in the multipdetn)g . We

N N +
Hzee describes the spin Zeeman energy in an externa(l"ﬂolcl)se :Iatt’ﬁls stuct:h th#ﬂ,’(‘nih—%s,lm}o as kN/r;t,_’lot ..We
magnetic fieldd =HZ. Finally, the uniaxial anisotropfty, - o cor 1€ S ategs,m)” the spin-wave multipletsince

) ) - X . each can be viewed as a homogeneous spin wave.
is the simplest nontrivial form of an anisotropy modeling the
combined effects of crystalline, shape, and surface anisotro-

pies, etct’ n is the unit vector in the easy-axis direction and C. Eigenenergies
kn(>0) is a volume-independent constaky, can be esti-
mated from the measured switching field usirg,
~ puomgHsw Which yieldsky~0.01 meV (see Ref. 14 of
Ref. 3. For completeness we note that our analysis in
previous paperRef. 3, see also Ref.)2showed that the
anisotropy constarity undergoes fluctuations, i.e., varies be-
tween different electronic states within a ferromagnetic
nanopatrticle. It was shown that these fluctuations have sig-
nificant consequences for the magnetic-field dependence of
the resonance energies. However, in the present paper we
shall focus only on understanding the characteristic spacingsith ds=s—s;, dm=m—my, and SN=N—-Ng. It is
between resonances observed in DGR’s experiments, and nstraightforward to show that the voltage-independent contri-
on their magnetic-field dependence; we will therefore neglecbution to Eq.(6) has the following form, written by Canali
fluctuations inky throughout this paper. and MacDonald?!

In the absence of anisotropies((,=0), it is possible to
write explicit expressions for the low-lying excitation ener-
agies of our model. Let us denote the excitation energy of a

state|s,m) relative to the ground statb;o,m())glo (for a
gated deviceby'?

SE(8s,8m, SN) +eVpoN, (6)
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SE(8s,6m, SN) TABLE I. Matrix elementsM}” and excitation energieSE;; of
those final statelf)N"1=|s;,m;)§ " * that can be reached from the
dra dmi — dpai dmi initial state|i)N=|sy,s0)) by adding a spirs electron to levelj
_ 2 maj min maj min 0:°0/0 1
_(5N) ?4‘ 8 +EC +5N 8F+ 4 + 4 } :nT-i-lorjz:nl-i-l.
(8s)? (jo) St .My M AEf;
+ T[dmaj+ dmin— U]+ 8s| Ap—U(sp+1/2)
(i11) So+1/2s0+1/2 1 Ec+&r mait dma
A o et A —(U12)(so+ 3/4)—h/2
+ 2 - 2 + 5S5N 2 - 2 —h5m (7) (] 11) So+ 1/2,3071/2 l/\ 250+l EC+8F,maj+dmaj
—(U12)(so+ 3/4)+ h/2
Here we introduced the average of majority- and (i2l) so=1/25,—1/2 1 Ect &g mint Omin
+(UI2)(so+ 1/4)+ h/2

minority-band Fermi energiesg= (&g mat €r min)/2. The
stability of the ground-state spsy, i.e., the requirement that
SE(8s,6m,8N)>0, implies? the relationAr=U(sy+ 1/2)
+do, Wheredo(~1/s,) is a small, grain-dependent energy Wave multiplets,m)g by an amount of ordes;, — ¢, ; this is
satisfying at least of order of the single-electron level spacidgs;
=4.61 eVk, (respectively,d,i,=1.19 eVky), i.e., rather
—(dma— U/2) + h<do<dpj,— U/2+h. ®)  large compared td [cf. (PD]; thus the mechanism caus-
Hence, the magnitude df may be estimated ad=Ar/s, ing the observed abundance of low-energy excitations, what-
=2 eV/s,. Note that the ground-state spis, can be ever it is, cannot only involve purely single-particle excita-
changed by a sufficiently large change in applied magneti@ions, but must also involve spin excitations.
field. However, the range over which the applied magnetic
field has to be swept between two successive changes in
ground-state spin is of ordeth= (d,+ dmin—U)/2, which B. Spin-wave excitations
is large in nanomagnetgdH=25 T for Co particles with  \we shall now study transitions between two multiplets of
diameters<4 nm). Therefore, for a given value of, we _ spin-wave states, with initial stat¢i$’\'=|si ,mi>N and final
shall, as ‘!ong as we nfgle_ct nonequilibrium effects, conS|de§tates|f>N+1: |s;,me)N*L. Consider first the large-field re-
only the “ground-state” spin valus,. gime h>h,,, (where hy, = gefitsitoHey). Since hereMye.
dominates ovefH,,, we may seky=0 and construct the
matrix elementsM}’ using thebare spin-wave multiplets

N N+1 i L

To construct the tunneling spectrum associated with, sayS *M)o and [si,me)g . The Cond't'S”Mfl #0 then im
adding an electron to the grain, we must, in principle, calcuPlies the spin selection rulegs;—s;|=1/2 and |m;—m|
late the excitation energieSE;; for all the allowed transi- ~

IV. EQUILIBRIUM TRANSITIONS

tions, i.e., those for which the tunneling matrix element ~_ Among all possible final state$) satisfying these selec-
_ tion rules, Table I lists those three which can be reached by
M7= N*1(f[ el [N (9  adding an electron to tHewest availabldevels of|sg,So)} ,

is nonzerd2 For now, we shall neglect nonequilibrium ef- N@mely,j;=n;+1 andj,=n +1: A spin electron can be
fects and thus consider only those tunneling processes f@dded only to level, (Table I, row 3, whereas a spin-
which the initial state corresponds to the grain’s ground stateglectron can be added to either leyglrow 2) or j, (row 3).
i.e., [iYN=]so,50)". In particular, we shall focus on two dif- ~ The excitation energieAE{; (Table I, column 4 of the
ferent types of equilibrium transitionéA) transitions involv-  (j;1) and (,|) transitions are degeneratetat 0 and Zee-
ing single-particle excitations whose resonance spacing, esaan split as a function ofi, but, in accord with(P3), this
timated from the electron density of states, is found to besplitting will not be observable: the weight of thi () tran-
much larger than observed in DGR’s experiments @B  sition is smaller than that of thej{]) transition (Table I,
transitions between different spin-wave states, of which onlytolumn 3 by a Clebsch-Gordan coefficient of order 18P
two tran'sitions are found to have significant weight,.leaving\,'\,hich is negligibly small for larges, grains® The (j;1) and
unexplained the large number of resonances seen in expefir, | transitions both have large, comparable weights, and
ments. would produce resonances with largeslopes of opposite
signs. Depending on whether the difference in their excita-
tion energiegTable |, column 4is close to or far from @it
Apart from the multiplet§s,m)q discussed in Sec. Il B, is at most of orded,;—U/2, i.e., =3 meV for a 4-nm-
higher-energy multiplets can be built by creating additionaldiameter Co particfé), either both or only one of thej{1)
single-particle excitations, e.g., by starting from the bareand (j,|) transitions would be observable in the regime of
multiplet constructed by applying the spin-lowering operatoriowest excitation energigsay,<0.5 meV). However, in an
to the state:;r,Tcnls,s%,with n;<jsn; andj’'>n;. How-  equilibrium tunneling scenario, this leaves unexplained the
ever, their eigenenergies lie higher than those of the spinlarge observed density of tunneling resonand@, since,

A. Single-particle excitations
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1 ; y , ; - T 1 citations(Sec. IV A) nor spin-wave excitation§Sec. IV B)],
we shall in this section explore nonequilibrium effects. Our
conclusion will be that a combination of nonequilibrium spin
and single-particle excitations produces a much denser spec-
trum of tunneling states than expected within an
independent-electron model. For a spin s3f=1000, this
nonequilibrium scenario gives a resonance spacing of
_ 50 =0.2 meV for the spacing of resonances due to the tunnel-
h/ky, h/ky, ing of minor_ity electrons, in accord with the observed reso-
nance spacing.

FIG. 2. Matrix elementsMl? for the transitions|s;,s;)" Nonequilibrium spin accumulation had of course already
—|st,m)N*1 (s;=20), calculated forH,,,+Hzee and plotted as been studied previously in the context of single-electron
functions ofh/ky sweeping positive to negative, for the following transistors with ferromagnetic componefitS,and spin ac-
final states(a) |s;—3,5—3)" "% (b) [si+3,5+3)N " (solid lines  cumulation for nanograins with discrete energy levels was
and|s;+3,5—3)N " (dotted lines. Compared to these, all other first analyzed by Barrset al?* However, these analyses all
final states have negligible matrix elements. The solid lines aremployed a single-particle description in which all states that
thick for M}/ and thin forM{! (both contribute to theametransi-  were considered were simple Slater determinants of single-
tion [i)—1f)). particle states. Within our present model, we have to go be-

apart from these two transitions, there are no others wit 9”d this simple picture by .con5|de.r|ng the.true mgny—body
significant weightand excitation energies less thad,, ¢/9enstates of the Hamiltonian, which are in gendraar
(dmap- combmanonsqf SIater determlnqnts. o

Next we argue that this problem persists also for the case After explaining the general idea of nonequilibrium pro-
with anisotropy, wherek#0. A priori one might have ex- Ccesses in ferromagnetic grains in Sec. V A, we shall describe
pected to see more low-lying excitations then, since the sedifferent nonequilibrium scenarios. For each, we calculate
lection rule |[m;—m;|=1/2 no longer applies if the matrix the correspondmg theoretical tunnel spectra and compare
elementsM ¢ are formed using the exact spin-wave multip- 'esonance spacings and the number of resonances with
lets |so,m;)N and|sy*+1/2m)N*1, which are notS* eigen- DGR’s measurements. We show in Sec. V B that nonequilib-
states. We have therefore numerically diagonaliZégl. rium spin excitations lead to resonance spacings as observed
+ Hyni, 1 as a function oh/ky, for a few selected values of in measurements and, in Sec. V C, that Zeeman splittings are
Sp, to determine the eigenstatessy,m;)N and |sg suppressed for large spisy. A combination of spin and
+1/2m:)N*! and calculate the matrix elemenitsl? (Fig. single-particle excitationgSec. V D significantly enhances
2), for both spin-increasing and -decreasing transitiogys ( the number of tunneling resonances achievable for a given
=5*1/2,j=ny +1). setting of the gate voltage, making it possible to explain the

We find that in both cases, the transition probabilitylarge number of resonances observed by DGR even for the
S, |ML12 from |sg,50)N to |Sg+ 1/25,= 1/2—n)N* L is very  case of a small Coulomb-blockade thresh@le., weak non-
much larger fom=0 than forany othern#0 state. This is equilibrium).
the same trend as that found in Table I. Thus, even though
H,ni Causes violations of one of the spin selection rules, the
extra transitions have too little weight to explain the large A. General master equation
density of low-energy excitations that is observed)."” In general,N-electron states other than the ground state

Apart from the fact that only two of the above-discussed.,n pe populated during the process of current flow, and this

transitions have significant weight there are two additiona}nay affect the experimental tunneling spectrthf? A
important considerations which lead us to conclude that th%imple scenario is illustrated in Fig. 3. Even if a first tunnel-

abundance of resonances seen in experiments cannot be
plained by equilibrium spin-wave transitions aloiig:First,
the resonances associated with final stigesn;) that differ

0,2
I

fi

|M

% event causes a “charging” transition from tNeelectron
ground state|yg>’\‘ to the (N*=1)-electron ground state

: ! |yg>N11, it may be energetically possible for the subsequent
Fnlg 0'1n m\fa yvould hr?ve ﬁ StF;]aCInt% Ofb ordecrjkN “discharging” tunneling transition to return the particle to an
~0.01 me\], i.e., much smaller than the observed reso-

U _ DSt excitedN-electron statéy,)" instead of| y,)", provided the
nance spacmg(nl)d Se%(_)g_d, for high magnetic f|e!ds hthese applied voltage is sufﬁcieently largeV= Eg?— Eg'. Likewise
resonances would exhibit a systematic increase in the mag- ; . L= e '
nitude of their slopegwhich is «|s, —m|) that was not ob- Yurther charging and discharging transitions may allow any

. : of a large ensemble of states to be occupied at higher and
s_erved in experiment. We therefore assert that the la_rge_deﬂigher levels of an energy ladder, terminating only when an
sity of resonances cannot be explained by equilibrium ’

¢ i lone: i | iibri focts b energy-increasing transition requires more energy than the
lcr)?/\?s' lons alone, we will explore nonequilibrium efrects e'applied voltage provides. As the voltage is increased, the

total current(or conductance may increase stepwiséor
V. NONEQUILIBRIUM TRANSITIONS show peak)sv_v_hen thresholds are c_r(_)s:_;ed to allow higher-
energy transitions up the nonequilibrium ladder, thereby
Since the large density of resonand®d) cannot be ex- changing the occupation probabilities of the ensemble of
plained by equilibrium transitiongeither single-particle ex- nonequilibrium states and opening new tunneling channels.
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NO N0+1 r 2 _

. 30, =T [(leidly )P (E,~ By +eVo).

Here f(E) = 1/(e¥/*eT+ 1) is the Fermi function aneV, is
the electrostatic potential-energy difference between lead

and the grain,

eV.=eV,—eVy. (12)

lI-5/2;1) The third and fourth terms in E§10) describe electronic

(spin-conserving relaxation processes inside the grain. For
simplicity, we shall only consider electronic relaxation be-
tween energetically “neighboring” single-particle levels, i.e.,
we take

(|-372;1)
[I-1/2;1)

g A | _ 1
of g — -V Eiyr—l“e'z |<y|C(i—1)o-Ci0'|7,>|2' (13)
AE:; S RN R io
[10;0% o _ _ _
(Generalizations of this assumption are straightforward,
FIG. 3. lllustration of a nonequilibrium scenario involving only though cumbersomgThe last two terms of Eq10) describe
spin ground states|5s; SN)=|so+ 85,50+ 8s)™0" ™", for the case  the rate at which the probability of a given distribution in-
in which the first electron that tunnels is a minority electran ( creasegdecreasesdue to spin-flip relaxation in the ferro-
=—1) that enters the grairp(= + 1). Hereds and N characterize 4 qnetic grain. For simplicity we shall assume all spin-flip
the spin with respect to the overall spin ground stae:s—spand 0|y tion Tates to be much smaller than all other ratés
SN=N-—Ng (see Secs. lll C and VBThe vetrt:cal arrows indicate <T" T and hence takd =0 throughout this papé? ’
H ap ap (0] H i Ll 1 .
the energy difference By, AE,2, andAE,". Charging transi (Again, it is straightforward to consider generalizations of
tions are numbered as=0, 1, 2 --. . .
this case. Moreover, all rated” are assumed to be indepen-
dent of the specific single-particle leviet involved.

Let {} be the set of all states involved in a nonequilib- The current through the grain can then be calculatétl as

rium ladder of excitations, i.e., the set of all discrete states
with a nonzero occupation probabiliB( y) for a given bias
voltage, gate voltage, temperature, and magnetic field. To l,=e>, (E;,—E;,)P()f’). (14)
find the occupation probabilit?(y) for all the statesy) of 124

the ladder one has to solve a normalization condition

2, P(y")=1 and a stationary master equation of the ffrm B. Spin accumulation

In a ferromagnetic particle, in addition to the nonequilib-
rium occupation of single-electron states discussed previ-
ously for nonmagnetic particléd,nonequilibrium spin exci-
tations are possible, too, if the spin-flip rafé" is smaller

+§jy,p(7/)_257f,yp(7)}' (100 than the tunneling ratE"".23 In this case a ladder of transi-
tions will occur between states with different total sygEn
for eachy. The first(second term in Eq.(10) describes the causing each to have a finite occupation probability and thus
rate at which the probability of a given configuration in- leading tospin accumulatioron the grairf.?%2!
creasegdecreasesdue to electrons tunneling onto or off the ~ The simplest nontrivial case, namely, a ladder of spin
grain, and the remaining terms are associated with electronimultiplet ground statefs,s) (see Fig. 3was already briefly
relaxation and spin-flip relaxation on the grain, respectivelydiscussed in Ref. 3. Below we shall discuss this case in more
>, is the total tunneling-induced transition rate from detail. We shall calculate the resonance spacing of steps in
initial state|y’) to final state|y). Considering sequential the current(or of peaks in the differential conductanand
tunneling only, it has the form the number of resonances for transitions between spin
ground states. We shall characterize spin ground states by
their spin and charge relative to the overall ground state.,

szr:ELR p§+ 3P, (11)  we shall write

0= {Z,,P(y)=2,,P(9)+3} P(y) -5 P(»)

Y #y

|| 8s; ON)=|sp+ 85,85+ ds)No* N, (15
wherezry*y, (Ery;,) involves the coherent transfer of an elec-

tron onto(from) the grain from(onto) leadr and is given by with &s and 6N as defined in Sec. 1l C after E¢6). We

shall find that the resonance spacing agrees very well with

DGR’s measurements.

S el vV 2F(E.—E —eV.), _ Consider a sequence_of noneqwhbnum transitions form-
vy .E(r (el yIf (B, — B, ) ing a “ladder” (L*P) with “rung index” n=0,1,2...,
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where each rung corresponds to a “charging” transitiond,.) happen to be almost equal, this partial cancellation of

(L3H) followed by a “discharging” transition” (15): two rather large energies produces a much smaller energy,
i Lo SEMAP~(4.6-1.0) eV/sy=3.6 eVl 19
|lapn;0) — |[@p(n+1/2);p) — [|ap(n+1);0). res” = ( ) eViso o, (199

(Above, the notation| 8s; SN) is used) The indicesp and & SEMNP~(1.2-1.0) eV/sy=0.2 eVis,,  (19b
are used to distinguish whether tfiest electron that tunnels
enters or leaves the graip=(+1,—1), and whether itis a Where we used the parameter estimates given in Secs. Il and

majority or minority electrong = (maj, min)=(+1,—1). I11.%° This brings us to one of the main conclusions of this
Using Eq.(7), the threshold energy costs for transitions Paper:the small resonance spacing @22 meVobserved by
L% andL&b can be calculated to Bt DGR is consistent with predictioid9b) for minority-electron
' ' charging eventdf the ground state spin is assumed to be
AEﬁ"’l= E[ap(n+1/2);p]—E(apn;0) aboutsy,=1000, which is within the estimated size range of
DGR’s grains. Satisfactorily, the conclusion that minority
=AEgh+n[d,—U/2], (168  electrons dominate the charging transitions, which was
reached independently by Canali and MacDonald'tduas
AEf{’;: E[ap(n+1);0]—E[ap(n+1/2);p] recently been confirmed experimentally for DRG’s gated de-
ap B vice, as has been the conclusion that nonequilibrium physics
=AEgy+nld,—U/2], (16b is involved[cf. points(P4) and(P5) of Sec. Il
with We shall therefore henceforth consider only the case in
which charging transitions are due to minority electrons, i.e.,
AE&R=d, (14 p)/2+Ec+ p(er+ady/2)—U/S, we takea=min (but for notational brevity will sometimes

still use the indexr instead of “min”). The conductance will
then show a limited number, say-"., of resonances due to
charging transitions, with a rather small spacing df,

(Above, the notationa means maf min and min-maj) —U/2, followed by an unlimited number of resonances due

Note that the total-energy cost for the combined transitiond® discharging transitions, with a much larger spacing of
LR and Lg%, namely dma—U/2. This can be seen as follows: let us consider for

definiteness a circuit witN, = —Vz=V/2, and suppose that
p 1-p U eV>0, so that electrons flow from left to right through the
AEgh,=AEQ +AEGS= do—— +da——+pade— 5, ferromagnetic grain. Then transitidrf; involves tunneling
(17) across the left junction ip=1, or the right junction ifp

. ) o =—1 [and likewiseL;? involves tunneling across junction
is always =0; this follows intuitively from the fact that :

R,L) for p=(—1,1)]. The voltage thresholds, sa@p/:)
AEQY, is the excitation energy between the overall ground( L) for p=(~1,1)]. The voltage thresholds, sy (or

p p ap
state || 8s;6N)=||0;0) and the adjacent-spin ground state i(;\/g)’%,ersefsgfr?etcz;r?;/fricnorq?at:;tﬁ)lirgxgo(?ﬁléic;,rcﬁgrn%
[|ap;0), and more formally from conditio8) on dj,. ging nl ging

Assuming that the peaks in the conductance are due tgansitionLﬁg) to occur, are determined by the conditions

successive charging transitions becoming accessible as the
bias voltage is increased, the resonance spacing for the lad- DeVpBAEﬁﬂ, (209
derL“P can readily be calculated using Eq%6):

AEGS=d (1-p)/2—Ec— p(er—adg/2) —3U/8.

ap
SECR=AES, ~AESR=d,~UR. (18 peVp=AEnz. (200
This result, which evidently depends only on whether theHere eV,, the electrostatic potential-energy difference be-
charging transition involves the tunneling of a majority or tween leadp and the grain, i$from Eq.(12)] related to the
minority electron,a=(maj,min), can be intuitively under- actual applied voltage by
stood as follows: The resonance spacifg.., is a differ- .
ence of energy differences, i.e., a type(dfscrete second evpzpeVB,)—eV , (21)
derivative of the total energy. The contributidp reflects the
discrete second derivative with respect to the quasiparticl&hereB,=(C,+Cy/2)/C is a capacitance ratio which con-
number of the energy involved in creatimgparticle-like or  verts applied voltage to enerdy, and eVgEe(Qo
hole-like excitations relative to the overall ground state, us—+V,C,)/C is an offset energy. It follows from Eq&0) and
ing only a electrons. The term-U/2 reflects the discrete (21) thatVyf andVy5 are given by
second derivative with respect to the spin of the exchange
energy. The partial cancellation betwegpand—U/2 in Eq. P_ ApEap X
(18) reflects the opposite signs of the kinetic and exchange BpeVhi=AEnT+PeVy, (229
energies in the Hamiltoniaf?), and is thus very generic. -
Very significantly, since U/2 and d,, (but not BoeVib=AERL—peVs. (22b)
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In particular, the threshold voltagégﬁ for the first charging
transition, Lg%, determines the measured size of the
Coulomb-blockade regiofin energy unity, say, E&"esh

ELes=e VB, = AESh+ peY,. (23)
This enables us to eIimina‘poaeN\/g from Eq.(22) and write it
as[using Eqs(16) and(17)]

BpeVeh=n(d,—U/2)+EL"N, (249

BeVeh=n(d,—U/2)—EL"™" AESS.  (24b

Now, wheneveEZ™=$AES P, i.e., wheneveEL™"is
not too small, the inequality

eVii>eVih (29

will hold for sufficiently small values oh (at least forn
=0). However, for large enoughit will cease to hold, since
for the casex=min that we are considering, the “step size”
dmg—U/2 for ev;ﬁg is much larger than the “step size”
dpyin—U/2 for evﬁﬁ. Thus, the first few measured conduc-
tance resonances will be due to a sequendeatifier closely
spaced charging transitions, as opposed t@much more

widely spacegldischarging transitions, because each time the

bias voltage is incremented keW; ) to make the next charg-
ing transitionL,‘.f’p1 energetically accessible, this bias voltage
increment is already large enoug’namely,>evﬁ5) to also
allow the discharging transition?® to occur. However, once
the inequality Eq(25) is violated, the subsequent discharg-
ing transitionL %, will become possible only after the total
bias voltage increment reached/;%, i.e., henceforthdis-
charging (instead of chargin)gtransiiions will determine the

PHYSICAL REVIEW B 65 214421
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0.2f (a)

r (b)

0.1

150 200

eVB, (meV)

700 250

FIG. 4. Current as a function @&V B,_ for the following param-
eters: a=min, p=+1, s,=10, d.,,=1.19 eVhky, dnai
=461 eVk,, U=2 eVls,, B =0.3, Bg=07, EI*s
=0.8 eVisy, Eh,=0 eVisy,, I'/TR=08, I''=0, and T
=80 mK (Ref. 26. (a) Only spin excitations(b) Spin excitations
and single-particle excitationd®/T'R=10°. Arrows mark addi-
tional current steps due to combined spin and single-particle exci-
tations. No significance should be attached to step heights here,
since they depend ofunknown tunneling matrix elements, which
for simplicity we took to be all equa{Ref. 27. Parameters are
chosen according to Fig. 1 of Ref. 2.

the plotted region. Experimental datsee Fig. 1 in Ref. P
on the other hand show 12 resonances for the parameters
used.

To summarize the conclusions of this section, a nonequi-
librium scenario involving only spin ground states, and as-
suming charging transitions involving minority electrons, re-
sults in a spacing of resonancesk ~0.2 meV for s,
=1000, which agrees roughly with the spacing observed.

conductance resonances, which will henceforth be spacddowever, the number of resonances predicted by(£6). is

much more widely.

To calculate the total number of closely spaced reso
nances due to charging transition§l,, we must thus deter-
mine how largen can become before the condition Eg5)
ceases to hold. Using Eq®4) andB,+B,=1, this condi-
tion can be rearranged to yield an expressiom@g, which
is found to be given by the smallest integer larger than o
equal to

thresh__ min,p
EC BpA EO,tot

1+ .
Bp( A~ U/2) — Bo(dpnin— U/2)

(26)

The prediction than®. increases linearly witke!"""is in

qualitative agreement with Fig. 2 of Ref3However, it is
not quite consistent with more recent data on Co grains,

sometimes much smaller than observed, i.e., WBBI*"is

small (on the order ofd,)-

C. Spin-wave excitation

In the preceding section, we considered only transitions

petween different spin ground statés,s). In the present

section we summarize what happens when this scenario is
extended to includall higher-lying states of the correspond-
ing multiplets|s,m) (see Fig. 5. We find that this results in

a fine structure for the current steps, which would, however,
be resolvable only fovery low temperatur€§ and hence
would not be expected to be observable in DGR’s present
measurements. Moreover, we find that the Zeeman splitting
of resonances is strongly suppressed for a largesgpil. A
more detailed discussion of the results presented here will be

where, even when the Coulomb-blockade threshold was veryiven in the Appendix.

small (EL®"<1 meV), the differential conductance
showed many ¥ 10) peaks, i.e., many more than Eg6)
would predict. To illustrate this, we have solved Ed0)
numerically for the discussed transitions and calculated th

Figure 5 shows a typical set of possible transitions be-
tween a series of spin multiplets,m), with s values- - - sq
+1, 5o+ 1/2, 59, Sop—1/2, 55— 1- - -. The anisotropy energy
éifts the degeneracy of thes2-1 spin-wave states in each

current for the parameters of the model and a thresholehultiplet, producing a typical level spacing of ordgy. Fig-

charging energy oEX"®=0.8 eVis, as a function o VB,

ure 6 shows the current for transitions between different

[see Fig. 4a)]. The calculated current shows three steps inspin-wave states as illustrated in Fig. 5. Figurf@) Gzero
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N, N,+1 N, +1 N,
|8,+1/2,5,-3/2)
[s,+1/2,8,~1/2) .
o lso+1,8-1) J |se+1/2,5,+1/2 '
A ]
\ Is=1/2,5-5/2) FIG. 5. lllustration of a nonequilibrium sce-
IS+, ) q
0 ’ . . . . .
\'— |se=1/2,5,~3/2) . nario involving spin-wave states: Different mul-
yASrs+ ) ls,~1/2,5,-1/2) tiplets |s,m) for Ny andNy+ 1 electrons on the
et -_— ; grain are depicted. Due to selection rules only

specific transitiongmarked by arrowsare pos-
sible.

n=0

- op=—1

op=1 -

magnetic field and Fig. &d) (nonzero magnetic fiejJdshow  6(f)]. Note that theS*-decreasing step in Fig(# is signifi-

that the current features a series of large-scale steps, similaantly higher than theS*increasing step, implying that

to those discussed previously with a spacing that can bg&,-decreasing transitions carry considerably more weight
shown to still be given byd,,;,—U/2(=0.2 eV/sy). In a  than S,-increasing ones. Moreover, the difference in their
magnetic field each of these steps splits in two substeps, ageights increases substantially ®sis increased, as can be
illustrated into Fig. €), which depicts one of these large- seen from Fig. 7, which shows how the difference in step
scale steps in more detail. Furthermore, if the temperature igeights forS,-decreasing and -increasing transitions evolves
sufficiently low, additional fine structure emerges in the formwith s,

of a set of very fine ministef$-ig. 6(c) and Fig. &f)]; these Let us now summarize the consequences of the nonequi-
can be associated with transitions between the various spiibrium scenario discussed above for the tunneling spectra
wave states of neighboring multiplets. The spacing betweemeasured by DGR() First, the temperature in DGR’s ex-
these ministeps, which &y /sg(~0.01 meVAkp), is due to  periments, namelyT~80 mK, is too high for the fine cur-
the lifting of the degeneracy within each multiplet due to therent steps of Figs.(6) and Gf), due to spin-wave excitations,
anisotropy energy. The two substeps in Fige)&an be in-  to have been observable. Instead, only the large-scale current
terpreted as follows: they arise due to Zeeman splitting besteps of Figs. @) and &d) would be observable. The ob-
tween the group of alB*-decreasing transitiongninisteps  served resonance spacing &f,.s~0.2 meV[cf. (P1] in-

on the right side in Fig. @)] and the group of all deed does agree with that expected for minority-electron
S*-increasing transitiongministeps on the left side in Fig. charging transitions ang,=1000 [cf. Eq. (19b)]. (ii) Sec-
ond, the nonequilibrium scenario discussed above can also
account for the factP3 that the vast majority of the ob-
served transitions within a given sample shift in energy with

700 750 800 756.95 757
(b)

757.05 756.995 757 757.005

ol J@F—

0.4f -0 mk] 1 ” ' T T T T T
02} ()
o o * *
- .
L ot R
=osp 5 ook . i
0.6} \ga *
5 .
0.4 %
.
0.2f Z‘-’ @
o= o N= e 0.8- . .
700 750 800 75695 757 757.05 756.98 757 757.02 Al
eVvB, (meV) decreasing Al
.
FIG. 6. Current as a function &V B_ for the following param-
eters: a=min, p: + 1, 50: 10, dminzl.lg eVBO, dmaj 0'70 a ;—, * 1|0 * 1‘5 * 2‘0 * 2‘5
=4.61 eVhky, U=2 eVISy, B_.=0.4, Bg=0.6, ky=0.01 meV, Sy

I'“/TR=0.8, I'S'=0, andI'®=0, and a Coulomb-blockade region
of 7 eVlsy; (8—(c) h=0 meV;(d)-(f) h=0.05 meV;(b) and(e)
show the fourth current step ¢#) and(d) for T=80 mK; (c) and overall height of steps due to &f-decreasing transitions anill

(f) show the same step for a lower temperaturd f0.8 mMK. No = Al goet Al jner is the overall current stegh) Al 4o /Al, calculated
significance should be attached to step heights here, since they dedamerically for various, values for the second step in the current
pend on(unknown tunneling matrix elements. andI'“/T'R=0.1.

FIG. 7. (8) A Zeeman-split current step, whetkl 4, is the
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a similar slope for large magnetic fields, since 1, s,~7/2,~(s,~7/2)>
S*-decreasing transitions carry far more weight than ls,~3,-(5,-3) > &
S%-increasing transitionéFig. 7). - - 2854 2 te 0
The reader interested in the details of the results presented %9{6 Is,~7/2,-(4-9/2)>
in this subsection is encouraged to read the Appendix. In I85-3~(85-4) )~ e T
particular, there it is explained that the reason for the differ- ™ Is,-7/2,~(s,-11/2)>
ence in weights betweef,-decreasing and,-increasing Is,~3,~(5,-5) > %9‘13/7—
transitions can be traced to Clebsch-Gordan coefficients in - : 25¢ -
the tunneling matrix elements. . .
a
. Is,~7/2,8,~11/2>
D. Spin and single-particle excitations .
We saw in Secs. V E_{gnd V O that a.nonequilit.)rium . AN ls,~7/2,8,-9/2)
scenario involving transitions between different spin states N1
(spin-wave statgsof the grain leads to resonances in tunnel- w 2
ing spectra spaced t,,,—U/2, which fors,=1000 gives a w{’\% |s,=7/2,8,-7/2 )
value of =~0.2 meV, as observed in experiments. However, 5,3, 5,—4> 4 1
these scenarios are not always able to explain the large num- Ko,
ber of resonances observed, sim& given in Eq.(26) de- N

pends strongly on the threshold charging energy and can be- I5-3%-3>
come as small asvo when EX"®"is of order of or smaller y _
FIG. 8. Transitions from thesg— 3) to the &,— 7/2) multiplet.

tha\?\/dmmh. I bel that the abund f Arrows indicate all transitions allowed by the selection rule ®fat
€ shall now argue below that the abundance of Tesog,, change only by+1/2. The width of an arrow schematically

nances measured by DGR can be explained by taking thggicates the size of the Clebsch-Gordan coefficient involved in the
analysis one step further, namely, by including single-particlenatrix element of the corresponding transition. The energy separa-
excitations in addition to spin excitations. For the spin exci-tions between the various levels are not drawn to scale. The order in
tations we shall henceforth restrict our considerations to tranwhich transitions become possible as the applied voltage is in-
sitions between spin ground states as in Sec V B, since wereased is given by the numbers in the arrows, which range from 1
saw in Sec. V C that DGR’s experimental temperature wao 2s,—6 for S*increasing transitions, and then frons;2-5 to

too high to resolve the fine structure due to spin-wave tran4so—12 for S*-decreasing transitions.

sitions. Furthermore, we shall asstfhE®'>T""" and hence

shall take into account only excited single-particle states in- We also investigated the gate-voltage dependence of these
volving a single particle-hole pair, i.e., states which can beresonances. Figure 9 shows resonances as a function of bias
reached from the corresponding ground states ksingle  voltage @VB ) and threshold charging energf™".

tunneling transition, namely, a majority/minority electron en-  Note thatEl"*s"depends linearly on gate voltage via Eq.
tering theN-electron grain or a majority/minority electron (23). Figure 9 should be compared with the experimental
leaving theN + 1-electron grairt! Figure 8 illustrates some plot in Ref. 2[Fig. 3@)], which shows the conductance as a

examples. function of gate and bias voltages. There a number of tun-
We solved Eq(10) numerically for the parameters of Fig.
1 in Ref. 2 and calculated the current; the result is shown in e

Fig. 4(b). The current shows 16 steps in the plotted region. - | ——
Note that the calculation of the current was done for the —

same parameters as in Figapwhere only spin excitations o _ o
were taken into account. The arrows in Figb¥mark all — — (@ & — —
additional resonances with respect t@)4vhich arise due to _ —_
a combination of spin and single-particle excitations. Most of — .

+

the resonances in Fig(ld) are due to tunneling of minority + — —

electrons, namely, 14 resonances out of 16. This results from £ (b) Y

the very different density of states of minority and majority N — Nt

electrons at the Fermi energgf. (P4)]. ls.s> e :t |s-1/2,5-1/2>
Thus, when single-particle excitations are considered in $ 36_

addition to nonequilibrium spin accumulation, additional
resonances appear at higher voltages, so that the number of fiG. 9. Illustration of single-particle excitations: Examples of
resonances increases significantly. The resonances are ggited single-particle states, which can be reached from the ground
longer equally spaced, as was the case for pure spin excitgtate|s,s)N by (a) a majority electron ob) a minority electron
tions, but the average spacing is of the same order of magntering the grain, or from s— 1/2s— 1/2)N*1 state by(c) a ma-
nitude. jority electron or(d) a minority electron leaving the grain.
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neling resonances disappears as the Coulomb threshold tisanks to D.C. Ralph, M. Deshmukh, E. Bonet, and S.
reducedcf. (P5]. The same qualitative trend can be found Guaon for a fruitful collaboration in which they not only
in Fig. 9. In particular, both plots agree in thadt all reso- made their data available to us but also significantly contrib-
nances disappear for a small Coulomb threshold. However ated to the development of the theory. This work was sup-
more detailed understanding of the observed gate-voltage dperted by the DFG through SFB195, the DFG Program
pendence of resonances, i.e., which specific resonance disdjsemiconductor and Metallic Clusters,” and by the DAAD-
pears at which voltage, would require a more systematic exNSF.

amination, and a more reliable microscopic model.

APPENDIX: DETAILS ON NONEQUILIBRIUM
VI. CONCLUSIONS SPIN-WAVE EXCITATIONS

In summary, we have shown that nonequilibrium spin and In this Appendix we discuss the results of Sec. V C on
single-particle excitations within our model are able to ex-nonequilibrium spin-wave excitations in more detail. Figure
plain most of the experimental data by DGR on tunneling5 illustrates the possible transitions between different spin-
spectroscopy of ultrasmall ferromagnetic grains. In particuwave states of “neighboring” multiplets. For simplicity, we
lar, we showed that the small resonance spacing of 0.2 me®@ssume that both the magnetic field and the easy axis lie in
observed by DGRcf. (P1)], and their observation that reso- the z direction, so that the selection rulen;—m;|=1/2
nances correspond predominately to tunneling of minorityholds.
electrondcf. (P4)], are both consistent with predictigh9b) We solved Eq(10) numerically for a spiff of s,=10 and
in Sec. V B. We argued that a fine structure of resonances Coulomb-blockade region of 7 e&{/(as in Fig. 2, sample
due to spin-wave excitations would not be observable ir8 of Ref. 1), and calculated the current for zero magnetic
DGR’s experiment due to a too high temperat(see Sec. field [Figs. @a)—6(c)], and nonzero applied fie[dFigs. &d)—

V C). This is in agreement with the experimentally observedé(f)]. Figure &a) shows the current as function of energy
resonance spacingef. (P1)]. The nonequilibrium scenario (B eV) for a temperature of =80 mK and zero magnetic
discussed above can also account for the (B§ that the field, h=0 eV. The current displays seven equally spaced
vast majority of the observed transitions within a givensteps. These steps belong to transitions between successive
sample shift in energy with a similar slope for large magneticsets of pairs of multiplets, e.g., the first one belongs to tran-
fields: We argued that the observed resonances are imi¢ed sitions betweer|sy,m) and |s,—1/2m’), the next one to
expected to show Zeeman splitting in an applied magnetitransitions betweefs,—1,m) and|s,—3/2m’), etc. Figure
field, because the spin-decreasing transitions carry signifie(b) shows the fourth current step of Fig(ab on a finer
cantly more weight than spin-increasing ones, due taenergy scale. In Fig.(6) the same step is shown for a lower
Clebsch-Gordan coefficients in the tunneling matrix ele-temperature off=0.8 mK, at which it now reveals sub-
ments(Sec. V C and the AppendixWe showed that a com- structure in the form of 14 finer steps. Thesmall steps
bination of nonequilibrium spin and single-particle excita- correspond to transitions between various states of the two
tions can account for the number of resonances observed multiplets, |[so—3,m) and |so—7/2m), namely, the first
DGR’s experiment with a level spacing of order of 0.2 meV small step in Fig. 6c) corresponds to a transitiofis,— 3,

as observedcf. (P1), Sec. VO. Finally, we found that =(sy—4))—|so—7/2,%(so—7/2)), the next one tdsy— 3,
within our model the number of resonances increases with (s,—5))—|sy— 7/2,% (So— 9/2)), etc. The last step in Fig.
increasing gate voltage, which is in qualitative agreemeng(c) corresponds to |sy—3,%(Sp—3))—|Se— 7/2,% (S

with experimental data by DGRcompare Fig. 9 with Fig. —7/2)). It can be checked easily, using E@Qf), that their

3(a) of Ref. 2. spacing is given byky/so(=0.01 meVk). Similarly, all

Last, we want to mention that in our phenomenologicalother steps of Fig. @) (except for the first onehave a sub-
model spin-orbit interaction was incorporated only in an in-structure of smaller steps belonging to all transitions between
direct way, in that it gave rise to the anisotropy term in theneighboring multiplets that are allowed by the selection rules
Hamiltonian[Eq. 2]. In a microscopic theory spin-orbit cou- (as indicated in Fig. 6 Note that the number dfarge-scalg
pling would couple quasiparticle and spin excitations, so thasteps in Fig. 6a) is still given by Eq.(26) of Sec. V B, with
the separate and independent treatment of them used in ogrspacing given by,,,—U/2(=0.2 eVhy).
analysis would not be possible to the same extent as was In Figs. d)—6(f) a similar set of plots is shown as in
above. Including the effects of such a coupling is beyond therigs. §a)—6(c), but now in the presence of an applied mag-
scope of the present paper, but is a very interesting subjeefetic field,h=0.05 meV. Figure @) shows the current it-
for future work. self. Figures 6) and @f) again show the fourth current step
for two different temperatures. Figurgep shows that the
step of Fig. 6b) has Zeeman split into two steps and Fi¢) 6
shows that these two steps correspond to two groups of tran-

We thank C. Canali and A. MacDonald for advance com-sitions, namely, al&*increasingtransitions(steps on the left
munication of their work and several very helpful discus-side and S*-decreasingtransitions(right side between the
sions, and J. Becker, D. Boese, A. Brataas, E. Chudnovskywo multiplets|s,—3,m) and|sy,— 7/2/m). The fact that Fig.

A. Garg, C. Henley, D. Loss, W. Mke, A. Pasupathy, J. 6(f) shows many more steps than Figc)eresults from the
Petta, and G. Schofor fruitful discussions. We give special fact that the applied magnetic field lifts the degeneracy of
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250 - - - - As we increase the applied voltage further the first
S*-decreasing  transition [|sy—3,—(Sp—4))—|So—7/2,
200 ] —(so— 7/2))] becomes possiblet the top of the ladderAs
we increase the voltage further, more and more
150} S*-decreasing transitions become possible, the last transition
(Iso—3.80—3)—|so— 7/250—7/2)) lying at the bottom of
100l the ladder. Let us now compare Clebsch-Gordan coefficients
involved in the different transitions. In Fig. 10 their magni-
tude is schematically indicated by the width of the arrows
marking the transitions. For example, the Clebsch-Gordan
coefficient involved in the matrix element for the first
0 50 100 150 200 250 S*-increasing transition |§,— 3,50— 4)— |Sq— 7/250— 7/2))
eVB, (meV) as well as the firstS>-decreasing transitiofi|sy— 3,— (Sp
FIG. 10. Resonances as a functionEff"andeVB, for the —4))—|so=7/2,~ (so=7/2))] in Fig. 6(f) (and Fig. 10 is
same parameters as in Fig. 4. BE"™®"is increased additional reso- Of order O(1/s), hence these transitions carry very little
nances appear. Note that Figb¥icorresponds to a cut through Fig. Weight. By increasing the applied voltage, so that more tran-
9 for fixed EX""(gate voltagg- sitions become accessible, the Clebsch-Gordan coefficients
for S*-increasing transitions increase frdd{1/s) to O(1) as
stategs, = m). The first step in Fig. @) belongs to a transi- we goup the ladder and those f#*-decreasing transitions

ECthresh (meV)

501

tion |sg—3,50—4)—|sg— 7/250— 7/2), the next one tds, likewise increase fronD(1/s) to O(1) as we subsequently
—3,50—5)—|Sp—7/250—9/2), etc. The last step corre- go downthe ladder. Now, the occupation probabilitiésin
sponds tdsy—3,50— 3)— |Sg— 7/2.50— 7/2). general, are largé&tfor lower-lying spin-wave states than for

Since the individual substeps in Fig(fpare higher for higher-lying ones. Since transitions out of these more
the S*-decreasing transitior(o the right of the plotthan for ~ strongly populated lower-lying states of the spsa-t 3)
the S*increasing transitiongto the lef), the second large- multiplet have a Clebsch-Gordan coefficient of or@¢d ) if
scale step in Fig. @) is higher than the first. The reason for they areS* decreasing, and of ordé(1/s) if they are $*
this height difference lies in the fact that matrix elements forincreasing, we conclude that the total weight of all
transitions between different spin-wave states contairB*-decreasing transitions is larger than that of all
Clebsch-Gordan coefficients: Let us consider the two multipS*increasing transitions. The net result is that the
lets which give rise to the current steps in Figf)fnamely, = S*-decreasing step in Fig. (§ is higher than the
the (sp—3) and the §,— 7/2) multiplet. The energy levels of S*increasing step.
these multiplets are schematically depicted in Fig. 10. The The relative heights of the two large-scale steps in Fig.
first transition between the multiplets which becomes posé(e) are analyzed in Fig. 7, or more precisely, the height of
sible as the applied voltage is increased i§*@ncreasing the current step due to a@#*-decreasing transitiong\| 4ec,
transition, namely, the|sy,—3,50—4)—|So—7/25¢—7/2) relative to the total height of the current stap. Figure 7
transition at the bottom of the ladder. As the voltage is in-confirms thatS* -decreasing transitions typically carry sig-
creased further, more and mdB&increasing transitions be- nificantly more weight than?Sincreasing transitionsMore-
come possible(ln Fig. 10 they are numbered 1, 2 .,2s,  over, with increasing spis, the height ofAl 4 increases
—6.) The lastS%increasing transition, nameljs,—3,— (s, strongly relative taAl, so that for larges, no Zeeman split-
—3))—|sq—7/2,— (sp—7/2)), lies at the top of the ladder. ting is expected.
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26The ground-state spin &= 10 chosen here is of course unreal-

istically small, but for larger values the numerical analysis be-
comes intractably complicated. We do believe, though, that the
conclusions drawn from our numerical analysis are generic.

" A more general form for the anisotropy of an ultrasmall ferromag-2’For simplicity we have not included excited single-particle states

netic grain would beH = — =53 ST {PS) where £ 3 is a
Hermitian, traceless tensoZ (K {*=0), which describes the
energy cost for rotating the various spiﬁjs(see Ref. B
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spin-conserving electronic relaxation to B8~10° s, if we

which can only be reached from ground states by muliipén-
equilibrium) excitations. However, these transitions certainly ex-
ist asT®'~T'" (see Ref. 28 Since in our simple model, we
assumed a constant level spacing for spin-up and for spin-down
electrons[see Eq(2)] these additional transitions would lead to
resonances at precisely the same energies as the ones that we do
discuss. In a more realistic model with nonuniform level spac-
ing, however, we would expect that such additional transitions
lead to clusters of resonances. Depending on the strength of the
fluctuations in level spacing and the amount of nonequilibrium,
such clusters would or would not be resolvable in experiments
such as DGR’s. We have not analyzed these complications in
detail, however, since our aim is merely to show that even by
including only part of the single-particle excitations possible,
the number of resonances is increasing significahlith re-
spect tonrcé‘sgiven by Eq.(26)], making it possible to explain the
large number of resonances in DGR’s measurements.

use Eq.(8) of Ref. 22 (though it is not entirely clear that that 2For a spin ofsy=1000 this fine structure would only be resolv-

formula, derived for ordinary metals, is also applicable to a
strongly correlated ferromagnetic system such as Tus, for

able for T<0.2 mK. This follows from a comparison of the
spacing of the fine structure stepg,/sy, with kgT.

the grains of Ref. 1 or Ref. 4;¢' is of the same order or larger 2°Though this statement is of course somewhat of an oversimplifi-

thanT". As for the spin-flip ratel's, we do not know of a
reliable way to estimate it from theoretical considerations, ex-

cept to state that it is expected to be much smaller than the

nonspin-flip relaxation ratd;S<T"®. The condition for the oc-
currence of nonequilibrium spin accumulation, namdiy:"
>T'st would thus readily be satisfied for Ref. 1, but for Ref. 2,
one would need™s to be more than two orders-of-magnitude
smaller than our estimate f&®. This difference is rather large,
but might also indicate that our estimate Bf' is unreliably
large.

24We do not considef,,; or Hzee here, since in DGR’s experi-
ments the relevant energy scaldgy=0.01 meV andhax
~0.5 meV, are much smaller than the exchange splitting of
majority and minority bandsA~2 eV in Co.

2SFor general values ofl,,, dmaj, and U, one of the resonance
spacings ind,—U/2 in Eq. (18) could become negative. How-

ever, only positive resonance spacings lead to observable con-

ductance resonances. Thusdifi,—U/2<0 (or dp,— U/2<0),
only transitions involving the tunneling of majoritgr minority)

cation, since the occupation probabilities depend in a sensitive
way on the transition matrix elements, we do believe that it is,
ultimately, the reason why in our numerical calculatiRi). 7)

the total weight ofS*-decreasing transitions turns out to be
larger than forS*increasing transitions. Note also, that in the
calculation for Fig. 6 no relaxation processes were taken into
account, which of course is not realistic. In particular, in the
presence of relaxation it is to be expected that states with nega-
tive $¢ eigenvalues, which, loosely speaking correspond to a
spin vector pointing in a direction opposite to the applied mag-
netic field, would have little or no occupation probability. How-
ever, we believe that our qualitative discussion of the role of
Clebsch-Gordan coefficients above would still be valid for non-
zero relaxation since a nonzero relaxation would simply lead to
an even larger occupation probability for the low-lying spin-
wave states and smaller occupation probability for the high-
lying states. Therefore, we expect the inclusion of nonzero re-
laxation to make the ratid| 4o,/ Al even larger and the width of
the plateau between tt&-increasing an&*-decreasing steps in

electrons would lead to observable conductance resonances. Fig. 6e) wider.

Note, though, that the stability condition E@) precludes both
energy differences from being negative at the same time.
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