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Nonequilibrium excitations in ferromagnetic nanoparticles
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In recent measurements of tunneling transport through individual ferromagnetic Co nanograins, Deshmukh,
Guéron, Ralphet al. ~DGR! @Phys. Rev. Lett.83, 4148 ~1999!; M. M. Deshmukhet al., ibid. 87, 226801
~2001!# observed a tunneling spectrum with discrete resonances, whose spacing was much smaller than what
one would expect from naive independent-electron estimates. In a previous publication@S. Kleff, J. von Delft,
M. Deshmukh, and D. C. Ralph, Phys. Rev. B64, 220401~2001!#, we had suggested that this was a conse-
quence of nonequilibrium excitations, and had proposed a ‘‘minimal model’’ for ferromagnetism in nanograins
with a discrete excitation spectrum as a framework for analyzing the experimental data. In the present paper,
we provide a detailed analysis of the properties of this model: We delineate which many-body electron states
must be considered when constructing the tunneling spectrum, discuss various nonequilibrium scenarios, and
compare their results with the experimental data of DGR. We show that a combination of nonequilibrium spin
and single-particle excitations can account for most of the observed features, in particular the abundance of
resonances, the resonance spacing, and the absence of Zeeman splitting.

DOI: 10.1103/PhysRevB.65.214421 PACS number~s!: 75.50.Cc, 73.23.Hk, 73.40.Gk
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I. INTRODUCTION

An important milestone in the study of itinerant ferroma
netism was reached during the last two years, when De
mukh, Gue´ron, Ralphet al.1,2 ~DGR!, using single-electron
tunneling spectroscopy,4 succeeded for the first time in re
solving discrete resonances in the tunneling spect
through individual ferromagnetic single-domain cobalt na
ograins, with diameters between 1 and 4 nm. Their w
goes beyond previous studies of ferromagnetic sing
electron transistors,5–8 which elucidated the interplay of fer
romagnetism and charging effects: the fact that DGR’s
grains were sufficiently small such that discrete resonan
could be resolved means that they were probing the
quantum states participating in electron tunneling, which
lows the nature of electron correlations in itinerant ferrom
nets to be studied in unprecedented detail. Besides the in
sic scientific interest in studying ferromagnetism on t
nanometer scale, the insights so gained might also be of t
nological interest, since the size of memory elements in m
netic storage technologies is decreasing extremely rapid9

and particles as small as 4 nm are coming un
investigation.10

An examination of the magnetic-field dependence of
individual resonances observed by DGR indicated that t
current models, in which spin-up and spin-down electr
bands are considered effectively independently, are in
equate for describing the true electronic states insid
nanometer-scale ferromagnet—so that a fundamentally
ferent theoretical approach is required. To this end, a sim
phenomenological model was recently introduced by
present authors together with Deshmukh and Ralph,3 and in-
dependently by Canali and MacDonald.11 We regard this as a
‘‘minimal model’’ for ferromagnetic nanograins, in that
seems to be the simplest model possible for a discrete-
system which takes into account the electronic correlati
induced by magnetic interactions and which treats the pa
0163-1829/2002/65~21!/214421~13!/$20.00 65 2144
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cle’s total spin as a quantum-mechanical variable.
argued3 that the main features of the measured tunnel
spectra can be understood within this model by assum
that nonequilibrium spin accumulation occurs, which c
produce a much denser spectrum of tunneling excitati
than expected within an independent-electron model. T
conclusion that nonequilibrium effects play an important ro
has since been confirmed by more recent measuremen
DGR ~Ref. 2! on a gated device, in which new resonanc
appeared as the gate voltage was tuned to drive the sy
further away from equilibrium.

In the present paper, we provide a detailed analysis
equilibrium and nonequilibrium tunneling through ferroma
netic grains, within the framework of our minimal mode
The present analysis goes well beyond that of Ref. 3, in
we consider not only the spin ground states of Fig. 2 in R
3, but also spin-wave excitations and single-particle exc
tions. The latter turn out to be necessary to understand w
small resonance spacing is observed even when the thres
bias voltage for the onset of tunneling is rather small, so t
nonequilibrium effects cannot be very strong.

The structure of the paper is as follows. In Sec. II w
summarize the experimental results of Deshmukhet al.2 and
Guéron et al.1 The Hamiltonian of our minimal model is pre
sented in Sec. III, together with a convenient set of ba
states for analyzing the low-lying excitations and their en
gies. In Sec. IV we discuss two different equilibrium excit
tions in ferromagnetic grains, namely, single-particle exc
tions and spin excitations. A detailed discussion
nonequilibrium excitations and their consequences for t
neling spectra is given in Sec. V: First we calculate the c
rent through a grain for a nonequilibrium scenario involvi
only transitions between the ground statesus,s& of a ladder
of spin multiplets of different total spins; the resonance
spacing for the peaks in the conductance is found to be
quantitative agreement with DGR’s measurements if we
sume a total ground-state spin of abouts0.1000 and that the
©2002 The American Physical Society21-1
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SILVIA KLEFF AND JAN von DELFT PHYSICAL REVIEW B 65 214421
resonances are predominantly due to the tunneling of mi
ity electrons. We then generalize this nonequilibrium s
nario by including also all more highly excited statesus,m&
of these spin multiplets, finding that if the total spin is lar
(s@1), the Zeeman splitting of the observed resonan
should be strongly suppressed, in agreement with DGR’s
periments. Finally, we show that a combination of sing
particle and spin excitations in the presence of nonequ
rium can lead to the large number of resonances see
experiments. Some concluding remarks can be found in
VI.

A brief account of our results on the most simple noneq
librium scenario in ferromagnetic grains has already b
given in Ref. 3. The present paper includes a detailed d
vation of these results~Sec. V B!, since this paves the wa
for the more complicated nonequilibrium scenarios presen
in Sec. V C and Sec. V D, which have not been repor
before.

II. SUMMARY OF EXPERIMENTAL RESULTS

In DGR’s experiments,1,2 a nanoscale cobalt grain wa
used as a central island in a single-electron transistor: it
connected via tunnel barriers to external leads and for on
the grains in Ref. 2, the central grain was also capacitiv
coupled to a gate. The electronic spectrum of the particle
determined by measuring the tunnel conductance through
grain as a function of transport voltage~V! @gate voltage
(Vg)# and magnetic fieldm0H at a fixed temperature o
&90 mK. The diameters of the Co grains were estimated
be 1–4 nm. Assuming a roughly hemispherical shape,
number of atoms in each grain then was in the rangeNa
'20–1500, implying a total spin ofs0'0.83Na'17–1250.

Since the charging energy (.30 meV) was very much
larger than typical values of the transport voltage (eV
,9 meV) and the temperature, fluctuations in electr
number on the grain are strongly suppressed, so that coh
superposition between different electron numbersN need not
be considered. The energy balance condition that determ
through which eigenstates of the grain electrons can tun
for given values of transport~and gate! voltage thus involve
differences between eigenenergies of a grain with afixed
particle number Nor N61,12

DEf i
6[Ef

N612Ei
N , ~1!

each corresponding to the energy cost of some rate-limi
electron-tunneling processu i &N→u f &N61 onto or off the
grain. Hereu i &N denotes a discrete eigenstate, with eigen
ergy Ei

N , of a grain withN electrons, etc. As the magnet
field H is swept, the resonances undergo energy shifts
crossings.

The excitation spectra measured by DGR had sev
properties that differ strikingly from those of previous
studied nonmagnetic Al and Au grains4,13 including the fol-
lowing: ~P1! Many more low-energy excitationswere ob-
served than expected: For all Co grains studied, the obse
level spacing isdobs&0.2 meV, which is muchsmallerthan
the independent-electron estimate ofdmin'1.2 eV/s0 and
21442
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dmaj'4.6 eV/s0 for minority/majority electrons,14,15 respec-
tively. ~In Ref. 2 many more resonances were observed t
in Ref. 1, due to lower-noise tunnel barriers.!

~P2! In the small-field regime (m0H,0.2 T), the tunnel-
ing resonance energies show strong nonlinear dependenc
H, with hysteresis and jumps at the switching fielduHswu. For
fields beyond the switching field, the levels can exhibit no
monotonic variations as a function ofH, with each level
behaving differently. For a more detailed discussion of
magnetic-field dependence of the tunneling energies
Refs. 2 and 3.

~P3! In the large-field regime (uHu@uHswu), the reso-
nances depend roughly linearly onH, with H slopes that
almost all have the same sign for a given grain, i.e., slope
opposite signs due to Zeeman shifting of spin-up and sp
down levels4,13 are not observed.

~P4! Measurements on a gated device2 showed that the
observed resonances correspond predominantly to the
neling of minority electrons.

~P5! Measurements on a gated device2 also showed that
someof the resonances must be due to nonequilibrium ex
tations, since some~but not all! resonances disappear whe
the Coulomb-blockade threshold for the onset of tunnel
~i.e., the amount of nonequilibrium! is reduced by tuning the
gate voltage to lie close to a degeneracy point.

We will argue below that themain features of the mea
sured tunneling spectra, as summarized above, can be q
tatively understood within our model. However, we will n
attempt to give an overly detailedquantitativecomparison
with experimental data foreveryaspect of the experiment. In
view of the richness of DGR’s experimental data, especia
the very complicated magnetic-field dependence of re
nances, such a goal would clearly be overambitious. Inst
we shall strive to understand the main trends and feature
the experiment, e.g., the absence of Zeeman splitting and
role played by nonequilibrium, and do a quantitative co
parison only for a few selected quantities, e.g., the resona
spacing.

III. MODEL

In this section we introduce a simple model for ultrasm
ferromagnetic grains. The challenge is to describe the in
vidual quantized electronic excitations of a ferromagne
nanoparticle, taking into account the electronic correlatio
induced by magnetic interactions and anisotropy forces.

A. Hamiltonian

We propose to model a nanoscale magnet with disc
excitations by the following ‘‘minimal’’ Hamiltonian:3,16

H5HC1H01Hexch1HZee1Huni , ~2a!

HC5eVDdN̂1ECdN̂2, ~2b!

H05(
j s

« j cj s
† cj s , ~2c!
1-2
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Hexch52
U

2
SW •SW , ~2d!

HZee52hSz, ~2e!

Huni52kN~SW •n̂!2/s0 , ~2f!

with h5geffmBm0H. Here HC is the standard Coulomb
charging energy for a nanoparticle withdN excess electrons
VD5@Q01( rVrCr #/C, for r 5(L,R,g), is the electrostatic
potential energy of the island, withC[( rCr . CL , CR , and
Cg are the tunnel junctions connecting the grain to the lef
right lead or the gate electrode, respectively, andVL , VR ,
and Vg are the voltages of the left/right leads and the g
electrode.Q0 is an initial random offset charge andEC
5e2/2C is the unit of charging energy.

H0 describes the kinetic energy of a single band of sing
electron statesu j ,s&, labeled by a discrete indexj and a spin
index s5(↑,↓), with the spin-quantization axis chosen
thez direction. The exchange, Zeeman, and anisotropy ter
Hexch, HZee, andHuni , are functions of the total spin vecto
SW 5( jSW j , whereSW j is the spin vector of the electrons in lev
j,

SW j5
1

2 (
s8s

cj s
† sW ss8cj s8 ~3!

(sW are Pauli matrices!. Hexch is a rotationally invariant term
which models the effects of an exchange field and forces
system to adopt a nonzero total ground-state spin, say,s0. On
account of this term, spins aligned parallel or antiparalle

^SW & may be thought of as forming ‘‘majority’’ and ‘‘minor-
ity’’ bands, which effectively rotate rigidly together with th
magnetization direction. We shall take the mean level sp
ings near the respective Fermi energies,dmin'1.19 eV/s0
and dmaj'4.61 eV/s0, and the exchange splitting of th
Fermi energies,DF[«F,maj2«F,min ('2 eV for Co!,14 as
characteristic parameters of the model.

HZee describes the spin Zeeman energy in an exte
magnetic fieldHW 5Hẑ. Finally, the uniaxial anisotropyHuni
is the simplest nontrivial form of an anisotropy modeling t
combined effects of crystalline, shape, and surface aniso
pies, etc.17 n̂ is the unit vector in the easy-axis direction a
kN(.0) is a volume-independent constant.kN can be esti-
mated from the measured switching field usingkN
'm0mBHsw, which yields kN'0.01 meV ~see Ref. 14 of
Ref. 3!. For completeness we note that our analysis in
previous paper~Ref. 3, see also Ref. 2! showed that the
anisotropy constantkN undergoes fluctuations, i.e., varies b
tween different electronic states within a ferromagne
nanoparticle. It was shown that these fluctuations have
nificant consequences for the magnetic-field dependenc
the resonance energies. However, in the present pape
shall focus only on understanding the characteristic spac
between resonances observed in DGR’s experiments, an
on their magnetic-field dependence; we will therefore neg
fluctuations inkN throughout this paper.
21442
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B. Basis states

Let us for the moment set the anisotropy strengthkN50,
and use the eigenstates ofH(kN50) to construct a conve
nient set of ‘‘bare’’ basis states. Since the Hamiltonian th
commutes with the total spin, these states can be grou
into spin multiplets that are labeled by theirSW •SW and Sz

eigenvalues, say,s(s11) and m. For example, the bare
ground state ofH(kN50) for given N, s, andh(.0), say,
us,s&0

N , can be written explicitly as a member of the follow
ing multiplet of normalized states,us,m&0

N ~illustrated in Fig.
1!:

us,s&0
N[)

j 51

n↑
cj↑

† )
j 51

n↓
cj↓

† uvac&, ~4!

us,m&0
N[A ~s1m!!

~2s!! ~s2m!!
~S2!(s2m)us,s&0

N . ~5!

Here n↑/↓5N/26s, and S25( j cj↓
† cj↑ is the spin-lowering

operator. Within this model, the energy difference betwe
the spin multipletus,m& and all other states that are co
structed from the same single-electron levels is at leas
order«F,maj2«F,min , a very large value (.2 eV for Co!.14

The inclusion of a nonzero anisotropy term,Huni , will
cause the true low-energy eigenstates,us,m&N, to be linear
superpositions of the bare states in the multipletus,m&0

N . We
choose labels such thatus,m&N→us,m&0

N as kN /h→01. We
shall call the statesus,m&N the spin-wave multiplet, since
each can be viewed as a homogeneous spin wave.

C. Eigenenergies

In the absence of anisotropies (Huni50), it is possible to
write explicit expressions for the low-lying excitation ene
gies of our model. Let us denote the excitation energy o
state us,m&0

N relative to the ground stateus0 ,m0&0
N0 ~for a

gated device! by12

dE~ds,dm,dN!1eVDdN, ~6!

with ds5s2s0 , dm5m2m0, and dN5N2N0. It is
straightforward to show that the voltage-independent con
bution to Eq.~6! has the following form, written by Canal
and MacDonald:11

FIG. 1. The spin-wave multipletus,m&0
N for s51, N56. The

position of each level represents its kinetic energy« j .
1-3
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dE~ds,dm,dN!

5~dN!2Fdmaj

8
1

dmin

8
1ECG1dNF «̄F1

dmaj

4
1

dmin

4 G
1

~ds!2

2
@dmaj1dmin2U#1dsFDF2U~s011/2!

1
dmaj

2
2

dmin

2 G1dsdNFdmaj

2
2

dmin

2 G2hdm. ~7!

Here we introduced the average of majority- a
minority-band Fermi energies«̄F5(«F,maj1«F,min)/2. The
stability of the ground-state spins0, i.e., the requirement tha
dE(ds,dm,dN).0, implies11 the relationDF5U(s011/2)
1d0, whered0(;1/s0) is a small, grain-dependent energ
satisfying

2~dmaj2U/2!1h,d0,dmin2U/21h. ~8!

Hence, the magnitude ofU may be estimated asU.DF /s0
.2 eV/s0. Note that the ground-state spins0 can be
changed by a sufficiently large change in applied magn
field. However, the range over which the applied magne
field has to be swept between two successive change
ground-state spin is of orderdh.(dmaj1dmin2U)/2, which
is large in nanomagnets (m0dH*25 T for Co particles with
diameters&4 nm). Therefore, for a given value ofN, we
shall, as long as we neglect nonequilibrium effects, cons
only the ‘‘ground-state’’ spin values0.

IV. EQUILIBRIUM TRANSITIONS

To construct the tunneling spectrum associated with,
adding an electron to the grain, we must, in principle, cal
late the excitation energiesDEf i

1 for all the allowed transi-
tions, i.e., those for which the tunneling matrix element

M f i
j s[ N11^ f ucj s

† u i &N ~9!

is nonzero.12 For now, we shall neglect nonequilibrium e
fects and thus consider only those tunneling processes
which the initial state corresponds to the grain’s ground st
i.e., u i &N5us0 ,s0&

N. In particular, we shall focus on two dif
ferent types of equilibrium transitions:~A! transitions involv-
ing single-particle excitations whose resonance spacing
timated from the electron density of states, is found to
much larger than observed in DGR’s experiments and~B!
transitions between different spin-wave states, of which o
two transitions are found to have significant weight, leav
unexplained the large number of resonances seen in ex
ments.

A. Single-particle excitations

Apart from the multipletsus,m&0
N discussed in Sec. III B

higher-energy multiplets can be built by creating additio
single-particle excitations, e.g., by starting from the b
multiplet constructed by applying the spin-lowering opera
to the statecj 8↑

† cj↑us,s&0
N , with n↓, j <n↑ and j 8.n↑ . How-

ever, their eigenenergies lie higher than those of the s
21442
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wave multipletus,m&0
N by an amount of order« j 82« j ; this is

at least of order of the single-electron level spacing,dmaj

54.61 eV/s0 ~respectively,dmin51.19 eV/s0), i.e., rather
large compared todobs @cf. ~P1!#; thus the mechanism caus
ing the observed abundance of low-energy excitations, w
ever it is, cannot only involve purely single-particle excit
tions, but must also involve spin excitations.

B. Spin-wave excitations

We shall now study transitions between two multiplets
spin-wave states, with initial statesu i &N5usi ,mi&

N and final
statesu f &N115usf ,mf&

N11. Consider first the large-field re
gime h@hsw ~where hsw5geffmBm0Hsw). Since hereHZee

dominates overHuni , we may setkN50 and construct the
matrix elementsM f i

j s using thebare spin-wave multiplets
usi ,mi&0

N and usf ,mf&0
N11. The conditionM f i

j sÞ0 then im-
plies the spin selection rulesusf2si u51/2 and umf2mi u
51/2.

Among all possible final statesu f & satisfying these selec
tion rules, Table I lists those three which can be reached
adding an electron to thelowest availablelevels ofus0 ,s0&0

N ,
namely, j 15n↑11 and j 25n↓11: A spin-↑ electron can be
added only to levelj 1 ~Table I, row 1!, whereas a spin-↓
electron can be added to either levelj 1 ~row 2! or j 2 ~row 3!.

The excitation energiesDEf i
1 ~Table I, column 4! of the

( j 1↑) and (j 1↓) transitions are degenerate ath50 and Zee-
man split as a function ofh, but, in accord with~P3!, this
splitting will not be observable: the weight of the (j 1↓) tran-
sition is smaller than that of the (j 1↑) transition ~Table I,
column 3! by a Clebsch-Gordan coefficient of order 1/(2s0)
which is negligibly small for large-s0 grains.1 The (j 1↑) and
( j 2↓) transitions both have large, comparable weights, a
would produce resonances with large-h slopes of opposite
signs. Depending on whether the difference in their exc
tion energies~Table I, column 4! is close to or far from 0~it
is at most of orderdmaj2U/2, i.e., &3 meV for a 4-nm-
diameter Co particle14!, either both or only one of the (j 1↑)
and (j 2↓) transitions would be observable in the regime
lowest excitation energies~say,&0.5 meV). However, in an
equilibrium tunneling scenario, this leaves unexplained
large observed density of tunneling resonances~P1!, since,

TABLE I. Matrix elementsM f i
j s and excitation energiesDEf i

1 of
those final statesu f &N115usf ,mf&0

N11 that can be reached from th
initial stateu i &N5us0 ,s0&0

N by adding a spin-s electron to levelj 1

5n↑11 or j 25n↓11.

( j s) sf ,mf M f i
j s DEf i

1

( j 1↑) s011/2,s011/2 1 EC1«F,maj1dmaj

2(U/2)(s013/4)2h/2
( j 1↓) s011/2,s021/2 1/A2s011 EC1«F,maj1dmaj

2(U/2)(s013/4)1h/2
( j 2↓) s021/2,s021/2 1 EC1«F,min1dmin

1(U/2)(s011/4)1h/2
1-4
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apart from these two transitions, there are no others w
significant weightand excitation energies less thandmin
(dmaj).

Next we argue that this problem persists also for the c
with anisotropy, wherekNÞ0. A priori one might have ex-
pected to see more low-lying excitations then, since the
lection rule umf2mi u51/2 no longer applies if the matrix
elementsM f i

j s are formed using the exact spin-wave multi
lets us0 ,mi&

N and us061/2,mf&
N11, which are notSz eigen-

states. We have therefore numerically diagonalizedHZee
1Huni ,

18 as a function ofh/kN , for a few selected values o
s0, to determine the eigenstatesus0 ,mi&

N and us0
61/2,mf&

N11 and calculate the matrix elementsM f i
j s ~Fig.

2!, for both spin-increasing and -decreasing transitionssf
5s061/2, j 5n↑/↓11).

We find that in both cases, the transition probabil
(suM f i

j su2 from us0 ,s0&
N to us061/2,s061/22n&N11 is very

much larger forn50 than forany othernÞ0 state. This is
the same trend as that found in Table I. Thus, even tho
Huni causes violations of one of the spin selection rules,
extra transitions have too little weight to explain the lar
density of low-energy excitations that is observed~P1!.19

Apart from the fact that only two of the above-discuss
transitions have significant weight there are two additio
important considerations which lead us to conclude that
abundance of resonances seen in experiments cannot b
plained by equilibrium spin-wave transitions alone:~i! First,
the resonances associated with final statesusf ,mf& that differ
only in mf would have a spacing of orderkN

@'0.01 meV#, i.e., much smaller than the observed res
nance spacing.~ii ! Second, for high magnetic fields thes
resonances would exhibit a systematic increase in the m
nitude of their slopes~which is }usi2mf u) that was not ob-
served in experiment. We therefore assert that the large
sity of resonances cannot be explained by equilibri
transitions alone; we will explore nonequilibrium effects b
low.

V. NONEQUILIBRIUM TRANSITIONS

Since the large density of resonances~P1! cannot be ex-
plained by equilibrium transitions@neither single-particle ex

FIG. 2. Matrix elementsM f i
j s for the transitions usi ,si&

N

→usf ,mf&
N11 (si520), calculated forHuni1HZee and plotted as

functions ofh/kN sweeping positive to negative, for the followin
final states:~a! usi2

1
2 ,si2

1
2 &N11; ~b! usi1

1
2 ,si1

1
2 &N11 ~solid lines!

and usi1
1
2 ,si2

1
2 &N11 ~dotted lines!. Compared to these, all othe

final states have negligible matrix elements. The solid lines
thick for M f i

j↑ and thin forM f i
j↓ ~both contribute to thesametransi-

tion u i &→u f &).
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citations~Sec. IV A! nor spin-wave excitations~Sec. IV B!#,
we shall in this section explore nonequilibrium effects. O
conclusion will be that a combination of nonequilibrium sp
and single-particle excitations produces a much denser s
trum of tunneling states than expected within
independent-electron model. For a spin ofs0.1000, this
nonequilibrium scenario gives a resonance spacing
.0.2 meV for the spacing of resonances due to the tun
ing of minority electrons, in accord with the observed res
nance spacing.

Nonequilibrium spin accumulation had of course alrea
been studied previously in the context of single-electr
transistors with ferromagnetic components,6,20 and spin ac-
cumulation for nanograins with discrete energy levels w
first analyzed by Barna´s et al.21 However, these analyses a
employed a single-particle description in which all states t
were considered were simple Slater determinants of sin
particle states. Within our present model, we have to go
yond this simple picture by considering the true many-bo
eigenstates of the Hamiltonian, which are in generallinear
combinationsof Slater determinants.

After explaining the general idea of nonequilibrium pr
cesses in ferromagnetic grains in Sec. V A, we shall desc
different nonequilibrium scenarios. For each, we calcul
the corresponding theoretical tunnel spectra and comp
resonance spacings and the number of resonances
DGR’s measurements. We show in Sec. V B that nonequi
rium spin excitations lead to resonance spacings as obse
in measurements and, in Sec. V C, that Zeeman splittings
suppressed for large spins0. A combination of spin and
single-particle excitations~Sec. V D! significantly enhances
the number of tunneling resonances achievable for a gi
setting of the gate voltage, making it possible to explain
large number of resonances observed by DGR even for
case of a small Coulomb-blockade threshold~i.e., weak non-
equilibrium!.

A. General master equation

In general,N-electron states other than the ground st
can be populated during the process of current flow, and
may affect the experimental tunneling spectrum.12,22 A
simple scenario is illustrated in Fig. 3. Even if a first tunn
ing event causes a ‘‘charging’’ transition from theN-electron
ground stateugg&

N to the (N61)-electron ground state
ugg&

N61, it may be energetically possible for the subsequ
‘‘discharging’’ tunneling transition to return the particle to a
excitedN-electron stateuge&

N instead ofugg&
N, provided the

applied voltage is sufficiently large,eV*Ee
N2Eg

N . Likewise,
further charging and discharging transitions may allow a
of a large ensemble of states to be occupied at higher
higher levels of an energy ladder, terminating only when
energy-increasing transition requires more energy than
applied voltage provides. As the voltage is increased,
total current ~or conductance! may increase stepwise~or
show peaks! when thresholds are crossed to allow high
energy transitions up the nonequilibrium ladder, there
changing the occupation probabilities of the ensemble
nonequilibrium states and opening new tunneling channe

e

1-5
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SILVIA KLEFF AND JAN von DELFT PHYSICAL REVIEW B 65 214421
Let $g% be the set of all states involved in a nonequili
rium ladder of excitations, i.e., the set of all discrete sta
with a nonzero occupation probabilityP(g) for a given bias
voltage, gate voltage, temperature, and magnetic field.
find the occupation probabilityP(g) for all the statesug& of
the ladder one has to solve a normalization condit
(g8P(g8)51 and a stationary master equation of the form12

05 (
g8Þg

$Sgg8P~g8!2Sg8gP~g!1Sgg8
el P~g8!2Sg8g

el P~g!

1Sgg8
sf P~g8!2Sg8g

sf P~g!%, ~10!

for eachg. The first~second! term in Eq.~10! describes the
rate at which the probability of a given configuration i
creases~decreases! due to electrons tunneling onto or off th
grain, and the remaining terms are associated with electr
relaxation and spin-flip relaxation on the grain, respective

Sgg8 is the total tunneling-induced transition rate fro
initial state ug8& to final stateug&. Considering sequentia
tunneling only, it has the form

Sgg85 (
r 5L,R

(
p56

Sgg8
rp , ~11!

whereSgg8
r 1 (Sgg8

r 2 ) involves the coherent transfer of an ele
tron onto~from! the grain from~onto! leadr and is given by

Sgg8
r 1

5G r(
is

u^gucis
† ug8&u2f ~Eg2Eg82eV̄r !,

FIG. 3. Illustration of a nonequilibrium scenario involving on
spin ground states,uuds;dN&[us01ds,s01ds&N01dN, for the case
in which the first electron that tunnels is a minority electrona
521) that enters the grain (p511). Hereds anddN characterize
the spin with respect to the overall spin ground state:ds5s2s0 and
dN5N2N0 ~see Secs. III C and V B!. The vertical arrows indicate
the energy differencesDEn,1

ap , DEn,2
ap , andDE0

tot . Charging transi-
tions are numbered asn50, 1, 2•••.
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Sgg8
r 2

5G r(
is

u^gucisug8&u2f ~Eg2Eg81eV̄r !.

Here f (E)51/(eE/kBT11) is the Fermi function andeV̄r is
the electrostatic potential-energy difference between lear
and the grain,

eV̄r[eVr2eVD . ~12!

The third and fourth terms in Eq.~10! describe electronic
~spin-conserving! relaxation processes inside the grain. F
simplicity, we shall only consider electronic relaxation b
tween energetically ‘‘neighboring’’ single-particle levels, i.e
we take

Sgg8
el

5Gel(
is

u^guc( i 21)s
† cisug8&u2. ~13!

~Generalizations of this assumption are straightforwa
though cumbersome.! The last two terms of Eq.~10! describe
the rate at which the probability of a given distribution i
creases~decreases! due to spin-flip relaxation in the ferro
magnetic grain. For simplicity we shall assume all spin-fl
relaxation rates to be much smaller than all other rates,Gsf

,G r / l ,Gel, and hence takeSsf50 throughout this paper.23

~Again, it is straightforward to consider generalizations
this case.! Moreover, all ratesG are assumed to be indepe
dent of the specific single-particle levelis involved.

The current through the grain can then be calculated12

I r5e(
gg8

~Sgg8
r 1

2Sgg8
r 2

!P~g8!. ~14!

B. Spin accumulation

In a ferromagnetic particle, in addition to the nonequili
rium occupation of single-electron states discussed pr
ously for nonmagnetic particles,22 nonequilibrium spin exci-
tations are possible, too, if the spin-flip rateGsf is smaller
than the tunneling rateG tun.23 In this case a ladder of trans
tions will occur between states with different total spins,
causing each to have a finite occupation probability and t
leading tospin accumulationon the grain.6,20,21

The simplest nontrivial case, namely, a ladder of s
multiplet ground statesus,s& ~see Fig. 3! was already briefly
discussed in Ref. 3. Below we shall discuss this case in m
detail. We shall calculate the resonance spacing of step
the current~or of peaks in the differential conductance! and
the number of resonances for transitions between s
ground states. We shall characterize spin ground state
their spin and charge relative to the overall ground state, i.e.,
we shall write

uuds;dN&[us01ds,s01ds&N01dN, ~15!

with ds and dN as defined in Sec. III C after Eq.~6!. We
shall find that the resonance spacing agrees very well w
DGR’s measurements.

Consider a sequence of nonequilibrium transitions for
ing a ‘‘ladder’’ (Lap) with ‘‘rung index’’ n50,1,2, . . . ,
1-6
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where each rung corresponds to a ‘‘charging’’ transiti
(Ln,1

ap) followed by a ‘‘discharging’’ transition’’ (Ln,2
ap):

uuapn;0& →
Ln,1

ap

uuap~n11/2!;p& →
Ln,2

ap

uuap~n11!;0&.

~Above, the notationuuds;dN& is used.! The indicesp anda
are used to distinguish whether thefirst electron that tunnels
enters or leaves the grain,p5(11,21), and whether it is a
majority or minority electron,a5(maj,min)5(11,21).

Using Eq.~7!, the threshold energy costs for transitio
Ln,1

ap andLn,2
ap can be calculated to be24

DEn,1
ap5E@ap~n11/2!;p#2E~apn;0!

5DE0,1
ap1n@da2U/2#, ~16a!

DEn,2
ap5E@ap~n11!;0#2E@ap~n11/2!;p#

5DE0,2
ap1n@dā2U/2#, ~16b!

with

DE0,1
ap5da~11p!/21EC1p~ «̄F1ad0/2!2U/8,

DE0,2
ap5dā~12p!/22EC2p~ «̄F2ad0/2!23U/8.

~Above, the notationā means maj̄5min and min̄5maj.!
Note that the total-energy cost for the combined transiti
L0,1

ap andL0,2
ap , namely,

DE0,tot
ap [DE0,1

ap1DE0,2
ap5da

11p

2
1dā

12p

2
1pad02

U

2
,

~17!

is always >0; this follows intuitively from the fact that
DE0,tot

ap is the excitation energy between the overall grou
state uuds;dN&5uu0;0& and the adjacent-spin ground sta
uuap;0&, and more formally from condition~8! on d0.

Assuming that the peaks in the conductance are du
successive charging transitions becoming accessible as
bias voltage is increased, the resonance spacing for the
der Lap can readily be calculated using Eqs.~16!:

dEres
ap[DEn11,1

ap 2DEn,1
ap5da2U/2. ~18!

This result, which evidently depends only on whether
charging transition involves the tunneling of a majority
minority electron,a5(maj,min), can be intuitively under
stood as follows: The resonance spacing,dEres

ap , is a differ-
ence of energy differences, i.e., a type of~discrete! second
derivative of the total energy. The contributionda reflects the
discrete second derivative with respect to the quasipar
number of the energy involved in creatingn-particle-like or
hole-like excitations relative to the overall ground state,
ing only a electrons. The term2U/2 reflects the discrete
second derivative with respect to the spin of the excha
energy. The partial cancellation betweenda and2U/2 in Eq.
~18! reflects the opposite signs of the kinetic and excha
energies in the Hamiltonian~2!, and is thus very generic
Very significantly, since U/2 and dmin ~but not
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dmaj) happen to be almost equal, this partial cancellation
two rather large energies produces a much smaller ener

dEres
maj,p.~4.621.0! eV/s053.6 eV/s0 , ~19a!

dEres
min,p.~1.221.0! eV/s050.2 eV/s0 , ~19b!

where we used the parameter estimates given in Secs. II
III. 25 This brings us to one of the main conclusions of th
paper:the small resonance spacing of0.2 meVobserved by
DGR is consistent with prediction~19b! for minority-electron
charging eventsif the ground state spin is assumed to
abouts0.1000, which is within the estimated size range
DGR’s grains. Satisfactorily, the conclusion that minor
electrons dominate the charging transitions, which w
reached independently by Canali and MacDonald too,11 has
recently been confirmed experimentally for DRG’s gated
vice, as has been the conclusion that nonequilibrium phy
is involved @cf. points~P4! and ~P5! of Sec. II#.

We shall therefore henceforth consider only the case
which charging transitions are due to minority electrons, i
we takea5min ~but for notational brevity will sometimes
still use the indexa instead of ‘‘min’’!. The conductance will
then show a limited number, say,nres

ch , of resonances due to
charging transitions, with a rather small spacing ofdmin
2U/2, followed by an unlimited number of resonances d
to discharging transitions, with a much larger spacing o
dmaj2U/2. This can be seen as follows: let us consider
definiteness a circuit withVL52VR5V/2, and suppose tha
eV.0, so that electrons flow from left to right through th
ferromagnetic grain. Then transitionLn,1

ap involves tunneling
across the left junction ifp51, or the right junction ifp
521 @and likewiseLn,2

ap involves tunneling across junctio

(R,L) for p̄5(21,1)#. The voltage thresholds, say,eVn,1
ap ~or

eVn,2
ap), needed to overcome the energy costDEn,1

ap ~or DEn,2
ap)

in order for the charging transitionLn,1
ap ~or the discharging

transitionLn,2
ap) to occur, are determined by the conditions

peV̄p>DEn,1
ap , ~20a!

p̄eV̄p̄>DEn,2
ap . ~20b!

Here eV̄p , the electrostatic potential-energy difference b
tween leadp and the grain, is@from Eq. ~12!# related to the
actual applied voltage by

eV̄p5peVBp2eṼg , ~21!

whereBp[(Cp̄1Cg/2)/C is a capacitance ratio which con
verts applied voltage to energy,12 and eṼg[e(Q0
1VgCg)/C is an offset energy. It follows from Eqs.~20! and
~21! that Vn,1

ap andVn,2
ap are given by

BpeVn,1
ap5DEn,1

ap1peṼg , ~22a!

Bp̄eVn,2
ap5DEn,2

ap2peṼg . ~22b!
1-7
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SILVIA KLEFF AND JAN von DELFT PHYSICAL REVIEW B 65 214421
In particular, the threshold voltageV0,1
ap for the first charging

transition, L0,1
ap , determines the measured size of t

Coulomb-blockade region~in energy units!, say,EC
thresh:

EC
thresh[eV0,1

apBp5DE0,1
ap1peṼg . ~23!

This enables us to eliminatepeṼg from Eq.~22! and write it
as @using Eqs.~16! and ~17!#

BpeVn,1
ap5n~da2U/2!1EC

thresh, ~24a!

Bp̄eVn,2
ap5n~dā2U/2!2EC

thresh1DE0,tot
a,p . ~24b!

Now, wheneverEC
thresh* 1

2 DE0,tot
a,p , i.e., wheneverEC

thresh is
not too small, the inequality

eVn,1
ap.eVn,2

ap ~25!

will hold for sufficiently small values ofn ~at least forn
50). However, for large enoughn it will cease to hold, since
for the casea5min that we are considering, the ‘‘step size
dmaj2U/2 for eVn,2

ap is much larger than the ‘‘step size
dmin2U/2 for eVn,1

ap . Thus, the first few measured condu
tance resonances will be due to a sequence of~rather closely
spaced! charging transitions, as opposed to~much more
widely spaced! discharging transitions, because each time
bias voltage is incremented byeVn,1

ap to make the next charg
ing transitionLn,1

ap energetically accessible, this bias volta
increment is already large enough~namely,.eVn,2

ap) to also
allow the discharging transitionLn,2

ap to occur. However, once
the inequality Eq.~25! is violated, the subsequent dischar
ing transitionLn,2

ap will become possible only after the tota
bias voltage increment reacheseVn,2

ap , i.e., henceforthdis-
charging~instead of charging! transitions will determine the
conductance resonances, which will henceforth be spa
much more widely.

To calculate the total number of closely spaced re
nances due to charging transitions,nres

ch , we must thus deter
mine how largen can become before the condition Eq.~25!
ceases to hold. Using Eqs.~24! andBp1Bp̄51, this condi-
tion can be rearranged to yield an expression fornres

ch , which
is found to be given by the smallest integer larger than
equal to

11
EC

thresh2BpDE0,tot
min,p

Bp~dmaj2U/2!2Bp̄~dmin2U/2!
. ~26!

The prediction thatnres
ch increases linearly withEC

threshis in
qualitative agreement with Fig. 2 of Ref. 1.3 However, it is
not quite consistent with more recent data on Co grain2

where, even when the Coulomb-blockade threshold was v
small (EC

thresh&1 meV), the differential conductanc
showed many (.10) peaks, i.e., many more than Eq.~26!
would predict. To illustrate this, we have solved Eq.~10!
numerically for the discussed transitions and calculated
current for the parameters of the model and a thresh
charging energy ofEC

thresh50.8 eV/s0 as a function ofeVBL

@see Fig. 4~a!#. The calculated current shows three steps
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the plotted region. Experimental data~see Fig. 1 in Ref. 2!
on the other hand show'12 resonances for the paramete
used.

To summarize the conclusions of this section, a noneq
librium scenario involving only spin ground states, and a
suming charging transitions involving minority electrons, r
sults in a spacing of resonances,dEres'0.2 meV for s0
51000, which agrees roughly with the spacing observ
However, the number of resonances predicted by Eq.~26! is
sometimes much smaller than observed, i.e., whenEC

thresh is
small ~on the order ofdmin).

C. Spin-wave excitation

In the preceding section, we considered only transitio
between different spin ground states,us,s&. In the present
section we summarize what happens when this scenar
extended to includeall higher-lying states of the correspond
ing multipletsus,m& ~see Fig. 5!. We find that this results in
a fine structure for the current steps, which would, howev
be resolvable only forvery low temperatures28 and hence
would not be expected to be observable in DGR’s pres
measurements. Moreover, we find that the Zeeman split
of resonances is strongly suppressed for a large spins0@1. A
more detailed discussion of the results presented here wi
given in the Appendix.

Figure 5 shows a typical set of possible transitions
tween a series of spin multipletsus,m&, with s values•••s0
11, s011/2, s0 , s021/2, s021•••. The anisotropy energy
lifts the degeneracy of the 2s11 spin-wave states in eac
multiplet, producing a typical level spacing of orderkN . Fig-
ure 6 shows the current for transitions between differ
spin-wave states as illustrated in Fig. 5. Figure 6~a! ~zero

FIG. 4. Current as a function ofeVBL for the following param-
eters: a5min, p511, s0510, dmin51.19 eV/s0 , dmaj

54.61 eV/s0 , U52 eV/s0 , BL50.3, BR50.7, EC
thresh

50.8 eV/s0 , E0,tot
ap 50 eV/s0 , GL/GR50.8, Gsf50, and T

580 mK ~Ref. 26!. ~a! Only spin excitations.~b! Spin excitations
and single-particle excitations:Gel/GR5106. Arrows mark addi-
tional current steps due to combined spin and single-particle e
tations. No significance should be attached to step heights h
since they depend on~unknown! tunneling matrix elements, which
for simplicity we took to be all equal~Ref. 27!. Parameters are
chosen according to Fig. 1 of Ref. 2.
1-8
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FIG. 5. Illustration of a nonequilibrium sce
nario involving spin-wave states: Different mu
tiplets us,m& for N0 and N011 electrons on the
grain are depicted. Due to selection rules on
specific transitions~marked by arrows! are pos-
sible.
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magnetic field! and Fig. 6~d! ~nonzero magnetic field! show
that the current features a series of large-scale steps, sim
to those discussed previously with a spacing that can
shown to still be given bydmin2U/2(50.2 eV/s0). In a
magnetic field each of these steps splits in two substeps
illustrated into Fig. 6~e!, which depicts one of these large
scale steps in more detail. Furthermore, if the temperatur
sufficiently low, additional fine structure emerges in the fo
of a set of very fine ministeps@Fig. 6~c! and Fig. 6~f!#; these
can be associated with transitions between the various
wave states of neighboring multiplets. The spacing betw
these ministeps, which iskN /s0('0.01 meV/s0), is due to
the lifting of the degeneracy within each multiplet due to t
anisotropy energy. The two substeps in Fig. 6~e! can be in-
terpreted as follows: they arise due to Zeeman splitting
tween the group of allSz-decreasing transitions@ministeps
on the right side in Fig. 6~f!# and the group of all
Sz-increasing transitions@ministeps on the left side in Fig

FIG. 6. Current as a function ofeVBL for the following param-
eters: a5min, p511, s0510, dmin51.19 eV/s0 , dmaj

54.61 eV/s0 , U52 eV/S0 , BL50.4, BR50.6, kN50.01 meV,
GL/GR50.8, Gsf50, andGel50, and a Coulomb-blockade regio
of 7 eV/s0; ~a!–~c! h50 meV; ~d!–~f! h50.05 meV;~b! and~e!
show the fourth current step of~a! and ~d! for T580 mK; ~c! and
~f! show the same step for a lower temperature ofT50.8 mK. No
significance should be attached to step heights here, since the
pend on~unknown! tunneling matrix elements.
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6~f!#. Note that theSz-decreasing step in Fig. 6~e! is signifi-
cantly higher than theSz-increasing step, implying tha
Sz-decreasing transitions carry considerably more wei
than Sz-increasing ones. Moreover, the difference in th
weights increases substantially ass0 is increased, as can b
seen from Fig. 7, which shows how the difference in s
heights forSz-decreasing and -increasing transitions evolv
with s0.

Let us now summarize the consequences of the none
librium scenario discussed above for the tunneling spe
measured by DGR.~i! First, the temperature in DGR’s ex
periments, namely,T'80 mK, is too high for the fine cur-
rent steps of Figs. 6~c! and 6~f!, due to spin-wave excitations
to have been observable. Instead, only the large-scale cu
steps of Figs. 6~a! and 6~d! would be observable. The ob
served resonance spacing ofdEres'0.2 meV @cf. ~P1!# in-
deed does agree with that expected for minority-elect
charging transitions ands0.1000 @cf. Eq. ~19b!#. ~ii ! Sec-
ond, the nonequilibrium scenario discussed above can
account for the fact~P3! that the vast majority of the ob
served transitions within a given sample shift in energy w

de-

FIG. 7. ~a! A Zeeman-split current step, whereDI decr is the
overall height of steps due to allSz-decreasing transitions andDI
5DI decr1DI incr is the overall current step.~b! DI decr/DI , calculated
numerically for variouss0 values for the second step in the curre
andGL/GR50.1.
1-9
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SILVIA KLEFF AND JAN von DELFT PHYSICAL REVIEW B 65 214421
a similar slope for large magnetic fields, since fors0@1,
Sz-decreasing transitions carry far more weight th
Sz-increasing transitions~Fig. 7!.

The reader interested in the details of the results prese
in this subsection is encouraged to read the Appendix
particular, there it is explained that the reason for the diff
ence in weights betweenSz-decreasing andSz-increasing
transitions can be traced to Clebsch-Gordan coefficient
the tunneling matrix elements.

D. Spin and single-particle excitations

We saw in Secs. V B~and V C! that a nonequilibrium
scenario involving transitions between different spin sta
~spin-wave states! of the grain leads to resonances in tunn
ing spectra spaced bydmin2U/2, which fors051000 gives a
value of'0.2 meV, as observed in experiments. Howev
these scenarios are not always able to explain the large n
ber of resonances observed, sincenres

ch given in Eq.~26! de-
pends strongly on the threshold charging energy and can
come as small astwo when EC

thresh is of order of or smaller
thandmin .

We shall now argue below that the abundance of re
nances measured by DGR can be explained by taking
analysis one step further, namely, by including single-part
excitations in addition to spin excitations. For the spin ex
tations we shall henceforth restrict our considerations to tr
sitions between spin ground states as in Sec V B, since
saw in Sec. V C that DGR’s experimental temperature w
too high to resolve the fine structure due to spin-wave tr
sitions. Furthermore, we shall assume23 Gel@G tun, and hence
shall take into account only excited single-particle states
volving a single particle-hole pair, i.e., states which can
reached from the corresponding ground states by asingle
tunneling transition, namely, a majority/minority electron e
tering theN-electron grain or a majority/minority electro
leaving theN11-electron grain.27 Figure 8 illustrates some
examples.

We solved Eq.~10! numerically for the parameters of Fig
1 in Ref. 2 and calculated the current; the result is shown
Fig. 4~b!. The current shows 16 steps in the plotted regi
Note that the calculation of the current was done for
same parameters as in Fig. 4~a! where only spin excitations
were taken into account. The arrows in Fig. 4~b! mark all
additional resonances with respect to 4~a! which arise due to
a combination of spin and single-particle excitations. Mos
the resonances in Fig. 4~b! are due to tunneling of minority
electrons, namely, 14 resonances out of 16. This results f
the very different density of states of minority and major
electrons at the Fermi energy@cf. ~P4!#.

Thus, when single-particle excitations are considered
addition to nonequilibrium spin accumulation, addition
resonances appear at higher voltages, so that the numb
resonances increases significantly. The resonances ar
longer equally spaced, as was the case for pure spin ex
tions, but the average spacing is of the same order of m
nitude.
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We also investigated the gate-voltage dependence of t
resonances. Figure 9 shows resonances as a function of
voltage (eVBL) and threshold charging energyEC

thresh.
Note thatEC

threshdepends linearly on gate voltage via E
~23!. Figure 9 should be compared with the experimen
plot in Ref. 2@Fig. 3~a!#, which shows the conductance as
function of gate and bias voltages. There a number of t

FIG. 8. Transitions from the (s023) to the (s027/2) multiplet.
Arrows indicate all transitions allowed by the selection rule thatSz

can change only by61/2. The width of an arrow schematicall
indicates the size of the Clebsch-Gordan coefficient involved in
matrix element of the corresponding transition. The energy sep
tions between the various levels are not drawn to scale. The ord
which transitions become possible as the applied voltage is
creased is given by the numbers in the arrows, which range fro
to 2s026 for Sz-increasing transitions, and then from 2s025 to
4s0212 for Sz-decreasing transitions.

FIG. 9. Illustration of single-particle excitations: Examples
excited single-particle states, which can be reached from the gro
state us,s&N by ~a! a majority electron or~b! a minority electron
entering the grain, or from aus21/2,s21/2&N11 state by~c! a ma-
jority electron or~d! a minority electron leaving the grain.
1-10
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neling resonances disappears as the Coulomb thresho
reduced@cf. ~P5!#. The same qualitative trend can be fou
in Fig. 9. In particular, both plots agree in thatnot all reso-
nances disappear for a small Coulomb threshold. Howev
more detailed understanding of the observed gate-voltage
pendence of resonances, i.e., which specific resonance d
pears at which voltage, would require a more systematic
amination, and a more reliable microscopic model.

VI. CONCLUSIONS

In summary, we have shown that nonequilibrium spin a
single-particle excitations within our model are able to e
plain most of the experimental data by DGR on tunnel
spectroscopy of ultrasmall ferromagnetic grains. In parti
lar, we showed that the small resonance spacing of 0.2 m
observed by DGR@cf. ~P1!#, and their observation that reso
nances correspond predominately to tunneling of mino
electrons@cf. ~P4!#, are both consistent with prediction~19b!
in Sec. V B. We argued that a fine structure of resonan
due to spin-wave excitations would not be observable
DGR’s experiment due to a too high temperature~see Sec.
V C!. This is in agreement with the experimentally observ
resonance spacing@cf. ~P1!#. The nonequilibrium scenario
discussed above can also account for the fact~P3! that the
vast majority of the observed transitions within a giv
sample shift in energy with a similar slope for large magne
fields: We argued that the observed resonances are indeenot
expected to show Zeeman splitting in an applied magn
field, because the spin-decreasing transitions carry sig
cantly more weight than spin-increasing ones, due
Clebsch-Gordan coefficients in the tunneling matrix e
ments~Sec. V C and the Appendix!. We showed that a com
bination of nonequilibrium spin and single-particle excit
tions can account for the number of resonances observe
DGR’s experiment with a level spacing of order of 0.2 me
as observed@cf. ~P1!, Sec. V D#. Finally, we found that
within our model the number of resonances increases w
increasing gate voltage, which is in qualitative agreem
with experimental data by DGR@compare Fig. 9 with Fig.
3~a! of Ref. 2#.

Last, we want to mention that in our phenomenologi
model spin-orbit interaction was incorporated only in an
direct way, in that it gave rise to the anisotropy term in t
Hamiltonian@Eq. 2#. In a microscopic theory spin-orbit cou
pling would couple quasiparticle and spin excitations, so t
the separate and independent treatment of them used in
analysis would not be possible to the same extent as
above. Including the effects of such a coupling is beyond
scope of the present paper, but is a very interesting sub
for future work.
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APPENDIX: DETAILS ON NONEQUILIBRIUM
SPIN-WAVE EXCITATIONS

In this Appendix we discuss the results of Sec. V C
nonequilibrium spin-wave excitations in more detail. Figu
5 illustrates the possible transitions between different sp
wave states of ‘‘neighboring’’ multiplets. For simplicity, w
assume that both the magnetic field and the easy axis li
the z direction, so that the selection ruleumf2mi u51/2
holds.

We solved Eq.~10! numerically for a spin26 of s0510 and
a Coulomb-blockade region of 7 eV/s0 ~as in Fig. 2, sample
3 of Ref. 1!, and calculated the current for zero magne
field @Figs. 6~a!–6~c!#, and nonzero applied field@Figs. 6~d!–
6~f!#. Figure 6~a! shows the current as function of energ
(BLeV) for a temperature ofT580 mK and zero magnetic
field, h50 eV. The current displays seven equally spac
steps. These steps belong to transitions between succe
sets of pairs of multiplets, e.g., the first one belongs to tr
sitions betweenus0 ,m& and us021/2,m8&, the next one to
transitions betweenus021,m& and us023/2,m8&, etc. Figure
6~b! shows the fourth current step of Fig. 6~a! on a finer
energy scale. In Fig. 6~c! the same step is shown for a lowe
temperature ofT50.8 mK, at which it now reveals sub
structure in the form of 14 finer steps. Thesesmall steps
correspond to transitions between various states of the
multiplets, us023,m& and us027/2,m&, namely, the first
small step in Fig. 6~c! corresponds to a transition,us023,
6(s024)&→us027/2,6(s027/2)&, the next one tous023,
6(s025)&→us027/2,6(s029/2)&, etc. The last step in Fig
6~c! corresponds to us023,6(s023)&→us027/2,6(s0
27/2)&. It can be checked easily, using Eq.~2f!, that their
spacing is given bykN /s0(.0.01 meV/s0). Similarly, all
other steps of Fig. 6~a! ~except for the first one! have a sub-
structure of smaller steps belonging to all transitions betw
neighboring multiplets that are allowed by the selection ru
~as indicated in Fig. 5!. Note that the number of~large-scale!
steps in Fig. 6~a! is still given by Eq.~26! of Sec. V B, with
a spacing given bydmin2U/2(50.2 eV/s0).

In Figs. 6~d!–6~f! a similar set of plots is shown as i
Figs. 6~a!–6~c!, but now in the presence of an applied ma
netic field,h50.05 meV. Figure 6~d! shows the current it-
self. Figures 6~e! and 6~f! again show the fourth current ste
for two different temperatures. Figure 6~e! shows that the
step of Fig. 6~b! has Zeeman split into two steps and Fig. 6~f!
shows that these two steps correspond to two groups of t
sitions, namely, allSz-increasingtransitions~steps on the left
side! and Sz-decreasingtransitions~right side! between the
two multipletsus023,m& andus027/2,m&. The fact that Fig.
6~f! shows many more steps than Fig. 6~c! results from the
fact that the applied magnetic field lifts the degeneracy
1-11
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statesus,6m&. The first step in Fig. 6~f! belongs to a transi-
tion us023,s024&→us027/2,s027/2&, the next one tous0
23,s025&→us027/2,s029/2&, etc. The last step corre
sponds tous023,s023&→us027/2,s027/2&.

Since the individual substeps in Fig. 6~f! are higher for
theSz-decreasing transitions~to the right of the plot! than for
the Sz-increasing transitions~to the left!, the second large-
scale step in Fig. 6~e! is higher than the first. The reason fo
this height difference lies in the fact that matrix elements
transitions between different spin-wave states cont
Clebsch-Gordan coefficients: Let us consider the two mult
lets which give rise to the current steps in Fig. 6~f!, namely,
the (s023) and the (s027/2) multiplet. The energy levels o
these multiplets are schematically depicted in Fig. 10. T
first transition between the multiplets which becomes p
sible as the applied voltage is increased is aSz-increasing
transition, namely, theus023,s024&→us027/2,s027/2&
transition at the bottom of the ladder. As the voltage is
creased further, more and moreSz-increasing transitions be
come possible.~In Fig. 10 they are numbered 1, 2, . . . ,2s0
26.! The lastSz-increasing transition, namely,us023,2(s0
23)&→us027/2,2(s027/2)&, lies at the top of the ladder

FIG. 10. Resonances as a function ofEC
thresh and eVBL for the

same parameters as in Fig. 4. AsEC
threshis increased additional reso

nances appear. Note that Fig. 4~b! corresponds to a cut through Fig
9 for fixed EC

thresh ~gate voltage!.-
s

v

o
i
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As we increase the applied voltage further the fi
Sz-decreasing transition @ us023,2(s024)&→us027/2,
2(s027/2)&] becomes possible~at the top of the ladder!. As
we increase the voltage further, more and mo
Sz-decreasing transitions become possible, the last trans
(us023,s023&→us027/2,s027/2&) lying at the bottom of
the ladder. Let us now compare Clebsch-Gordan coefficie
involved in the different transitions. In Fig. 10 their magn
tude is schematically indicated by the width of the arro
marking the transitions. For example, the Clebsch-Gor
coefficient involved in the matrix element for the fir
Sz-increasing transition (us023,s024&→us027/2,s027/2&)
as well as the firstSz-decreasing transition@ us023,2(s0

24)&→us027/2,2(s027/2)&] in Fig. 6~f! ~and Fig. 10! is
of order O(1/s), hence these transitions carry very litt
weight. By increasing the applied voltage, so that more tr
sitions become accessible, the Clebsch-Gordan coeffici
for Sz-increasing transitions increase fromO(1/s) to O(1) as
we go up the ladder and those forSz-decreasing transition
likewise increase fromO(1/s) to O(1) as we subsequentl
go down the ladder. Now, the occupation probabilitiesP, in
general, are larger29 for lower-lying spin-wave states than fo
higher-lying ones. Since transitions out of these m
strongly populated lower-lying states of the spin-(s023)
multiplet have a Clebsch-Gordan coefficient of orderO(1) if
they areSz decreasing, and of orderO(1/s) if they areSz

increasing, we conclude that the total weight of
Sz-decreasing transitions is larger than that of
Sz-increasing transitions. The net result is that t
Sz-decreasing step in Fig. 6~e! is higher than the
Sz-increasing step.

The relative heights of the two large-scale steps in F
6~e! are analyzed in Fig. 7, or more precisely, the height
the current step due to allSz-decreasing transitions,DI decr,
relative to the total height of the current stepDI . Figure 7
confirms thatSz -decreasing transitions typically carry sig
nificantly more weight than Sz -increasing transitions. More-
over, with increasing spins0 the height ofDI decr increases
strongly relative toDI , so that for larges0 no Zeeman split-
ting is expected.
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