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Thermodynamic properties of a small superconducting grain
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The reduced BCS Hamiltonian for a metallic grain with a finite number of electrons is considered. The
crossover between the ultrasmall regime, in which the level spacingd is larger than the bulk superconducting
gap D and the small regime, whereD*d, is investigated analytically and numerically. The condensation
energy, spin magnetization, and tunneling peak spectrum are calculated analytically in the ultrasmall regime,
using an approximation controlled by 1/lnN as a small parameter, whereN is the number of interacting
electron pairs. The condensation energy in this regime is perturbative in the coupling constantl and is
proportional todNl25l2vD . We find that also in a large regime withD.d, in which pairing correlations are
already rather well developed, the perturbative part of the condensation energy is larger than the singular, BCS
part. The condition for the condensation energy to be well approximated by the BCS result is found to be
roughlyD.AdvD. We show how the condensation energy can, in principle, be extracted from a measurement
of the spin magnetization curve and find a reentrant susceptibility at zero temperature as a function of magnetic
field, which can serve as a sensitive probe for the existence of superconducting correlations in ultrasmall
grains. Numerical results are presented, which suggest that in the largeN limit the 1/N correction to the BCS
result for the condensation energy is larger thanD.
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I. INTRODUCTION AND SUMMARY OF RESULTS

In the macroscopic limit, a system described by the
duced BCS Hamiltonian is well treated by the mean-fi
BCS method.1 When the size of a superconducting sam
becomes small, two related questions can be asked: wh
the lower size limit for which superconducting properties a
observable, and what is the lower size limit for the valid
of the BCS theory?

In 1959 Anderson2 considered the first question and a
gued that ‘‘superconductivity would no longer be possibl
once the electron spectrum’s mean level spacingd becomes
larger than the bulk superconducting gapD. @1/d5N(0), the
density of states per spin species near the Fermi ene
henced}1/vol.# This statement sets a lower limit for the siz
above which a grain still exhibits superconducting prop
ties, but at the same time states that such a grain can we
much smaller than the superconducting coherence len
Superconductors in the regime where the level spacin
comparable to the gap energy have been studied for m
years both theoretically~e.g., Ref. 3! and experimentally
~e.g., Ref. 4, see also the review by Perenboomet al.5!.

Recently, Ralph, Black, and Tinkham performed me
surements on single superconducting nm-scale grains in
regimes ofD*d andD&d.6 These experiments and the co
siderable amount of theoretical work they initiated7–18 found
various properties indicative of strong superconducting p
ing correlations in grains withD*d ~to be called ‘‘small
grains’’!, but not in grains withD,d ~to be called ‘‘ultra-
small grains’’!, thus supporting Anderson’s criterion. The
properties include~i! a parity-dependent gap in the excitatio
spectrum~the gap exists only for grains with an even numb
of electrons!, which is driven to zero by magnetic field;6,8,9,15

~ii ! a difference of orderD in the ground-state energies o
0163-1829/2001/63~21!/214518~16!/$20.00 63 2145
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even and odd grains;10,14 and ~iii ! a first-order paramagneti
transition induced by a magnetic field.9,15

Though ultrasmall grains with D,d do not have as
strongly developed signatures of pairing correlations as
small grains withD*d mentioned above, pairing correla
tions nevertheless do exist in such grains, albeit in the fo
of weaker fluctuations, and they can affect various phys
quantities. For example, Lorenzoet al.19 found that pairing
correlations affect the temperature dependence of the
susceptibility of grains also in the ultrasmall regime.

The crossover regime between small and ultrasmall gra
has also been studied in some detail numerically, usin
simple reduced BCS model with a discrete set of sing
particle levels.13,14,16,18In particular, it was found that the
condensation energyEcond ~i.e., the energy gain of the exac
ground state relative to the uncorrelated Fermi ground st!
smoothly crosses over from being extensive~proportional to
the size of the system! for D.d to being intensive forD
,d.

One of the goals of the present paper is to obtain furt
insights into the crossover from the ultrasmall regime, wh
can be treated perturbatively in the dimensionless coup
(l) of the said reduced BCS model, to the small regim
which cannot. Our point of departure is an exact soluti
due to Richardson and Sherman20,21 of the reduced BCS
model of present interest. By analyzing Richardson’s so
tion both analytically and numerically in the crossover r
gime, we elucidate in detail when and how perturbati
theory in l breaks down, how the answer depends on
system size, and how the standard BCS results are recov
in the bulk limit d!D.

The bulk regime is of course well known to require
nonperturbative treatment; indeed, the BCS result for
condensation energy
©2001 The American Physical Society18-1
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Econd
BCS5D2/~2d! ~1!

is not analytical inl asl→0, since the bulk gap is given b

D~l!5vD /sinh~1/l! @.2vDe21/l for l!1#,
~2!

where vD5Nd is the bandwidth about the Fermi energ
within which the pairing interaction acts~typically the Debye
frequency!. This nonanalyticity arises because BCS consi
the thermodynamic limit of an infinite system size (N→`,
d→0 at fixedvD).

We shall argue that if instead one considers a system
a finite number of pairs, sayN, the condensation energ
Econd(l) is an analytical function aboutl50, with a finite
radius of convergence given approximately byl* 51/lnN.
For l,l* (12l* ), corresponding toD,d @by Eq. ~2!#.22

Econd(l) is found to be well approximated by the perturb
tive result

Econd
pert ~l!5 ln 2•l2vD . ~3!

On the other hand, the BCS mean-field resultEcond
BCS of Eq.

~1! is found to become reliable only forl.2l* , corre-
sponding to roughlyD.AvDd. Thus, we identify a substan
tial intermediate regime,

l* ,l,2l* , i.e., d,D,AvDd, ~4!

in which neither the perturbative result nor the BCS me
field result adequately reproducesEcond ~though, roughly
speaking, the sumEcond

pert 1Econd
BCS does!.

The existence of this intermediate regime implies that
regime of validity of the BCS mean-field approach for c
culatingEcond is significantly smaller than realized hithert
the crossover level spacing (d.D2/vD) beyond which it
becomes inadequate is considerably smaller than the s
(d.D) beyond which the BCS approach formally brea
down ~in the sense of yielding no nontrivial solution to th
self-consistency equation8! and up to which strong signature
for pairing correlations can still be observed, as mention
above.

We are also able to pinpoint the reason for the failure
the BCS approach in the intermediate regime~4!: we shall
show in detail thatEcond

BCS incorporates only contributions t
Econd from the strongly pair-correlated, ‘‘condensed’’ leve
within D of the Fermi energyEF , but neglects contributions
from all the remaining, ‘‘weakly pair-fluctuating’’ levels tha
extend to a distancevD from EF . Although the latter levels
are so weakly correlated that their contribution can be ca
lated perturbatively, essentially yieldingEcond

pert , this contribu-
tion turns out to be larger thanEcond

BCS as long asD
,lAvDd and is not negligible compared to theEcond

BCS in the
whole intermediate regime~4!. ~Note though, thatEcond

pert

would largely cancel out when one considers energy dif
ences between eigenstates that differ only in the spe
placement of a small number of electrons in levels nearEF .
An example would be the ground-state energy difference
tween an even and odd superconducting grain, for which
BCS approach would be adequate in the intermediate
21451
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gime.! Our results for the condensation energy in regime
and II also show that the condensation energy is not a
versal function ofd/D, but an explicit function ofvD .

It should be mentioned here that the question of how
recover the BCS gap equation from Richardson’s exact
lution has been solved by Richardson himself23 by effec-
tively doing a 1/N expansion around the bulk, thermod
namic limit. Our work differs from his in that we do a
expansion inl around the ultrasmall limit for a system o
finite size, withl,1/lnN as a small parameter.

Using the insights gained from our studies of the cond
sation energy, we also calculate various other thermo
namic properties of ultrasmall grains at zero temperatu
using a controlled analytical approximation withl,1/lnN
as the small parameter. Specifically, we calculate the s
magnetization and susceptibility curves, and tunneling p
spectrum of ultrasmall grains and find that pairing corre
tions have their signature in all the above physical quantit
even in the regimel,l* where pairing correlations ar
weakest.

The condensation energy can, in principle, be measu
by integrating the spin magnetization as a function of m
netic field ~H! and comparing it to the linear curve of
normal grain. In fact, as we discuss in Sec. III, since
energy levels in the grain are not equally~or systematically!
spaced, one needs to do the measurement on an ensem
grains. Calculating the spin susceptibility of an ultrasm
grain, we find that forH@d/mB , pairing fluctuations of lev-
els far away fromEF result in a correction of the orde
l2d/mBH to the normal susceptibility. Interestingly, this co
rection persists for all fieldsH,vD /mB , i.e., well beyond
the Clogston-Chandrashekar fieldmBHCC5D/A2,24 at
which, for bulk systems, a first-order transition occurs fro
the superconducting ground state to a paramagnetic gro
state.~Only for H.vD /mB , the grain becomes effectivel
‘‘normal,’’ since then all the levels withinvD from the
Fermi energy become unpaired.! The correction to the spin
susceptibility results in a reentrant behavior of the differe
tial susceptibility as a function of magnetic field, whic
could possibly serve as a sensitive probe to detect super
ducting correlations in ultrasmall grains.19 ~The conse-
quences of pairing correlations in the regimeH.HCC have
also been studied by Aleiner and Altshuler,11 who found an
anomaly in the tunneling density of states.! Similarly, we
argue below that in ultrasmall superconducting grains, p
ing fluctuations involving levels far away fromEF are suffi-
ciently strong that they also leave their mark in the spec
heat~even forT@Tc) and the tunneling peak spectrum.

All our calculations are done for grains with an even nu
ber of electrons. The results for grains with an odd numbe
electrons are similar in the ultrasmall regime and will
discussed shortly for each calculated quantity.

The paper is arranged as follows: In Sec. II we calcul
the condensation energy of an ultrasmall superconduc
grain in the regimeD,d and also analyze the intermedia
regime of Eq.~4! for larger grains. In Sec. III the spin mag
netization of ultrasmall grains as a function of magnetic fie
is calculated. It is shown that the condensation energy
given by integrating the magnetization fromH50 to
8-2
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THERMODYNAMIC PROPERTIES OF A SMALL . . . PHYSICAL REVIEW B63 214518
vD /mB . In Sec. IV we calculate the differential spin susce
tibility of ultrasmall grains as a function of magnetic fie
and find that it exhibits a reentrant behavior. In Sec. V
tunneling peak spectrum of an ultrasmall superconduc
grain is calculated. In Sec. VI we present numerical res
for the contribution of the ‘‘condensed’’ and ‘‘fluctuating’
levels to the condensation energy.

The technical aspects of our calculations are collecte
three appendices. In Appendix A a detailed derivation of the
accuracy of the condensation energy approximation is giv
In Appendix B the functional behavior of the prefactors
the series expansion of the approximate condensation en
is analyzed. In Appendix C the series expansion of the ex
condensation energy is discussed.

II. CONDENSATION ENERGY OF AN ULTRASMALL
GRAIN

A. Richardson’s equations

We consider the reduced BCS Hamiltonian

Ĥ5 (
j ,s56

e j cj s
† cj s2ld(

i , j

I

ci 1
† ci 2

† cj 2cj 1 ~5!

for a grain with a given, finite number of electronsN̄. The
first term is the kinetic term, which we will refer to asĤ0,
and the second term is the interaction Hamiltonian, deno
ĤI . The sum inĤI is over all the levels inside the rang
EF2vD,e,EF1vD , which we designate asI. The Hamil-
tonian~5! is the usual BCS Hamiltonian used when discu
ing superconducting grains8–19 and its validity is discussed
in, e.g., Refs. 11, 25, and 26.~In particular, for the model to
be valid the grain’s dimensionless conductanceg must be
much larger than one.! In all cases discussed below we co
sider states in which all levels belowEF2vD are doubly
occupied, while all levels aboveEF1vD are empty. Since
the dynamics of electrons occupying levels outside the ra
I and their contribution to the total energy are trivially give
by Ĥ0, we will not consider them henceforth.

Richardson and Sherman20,21 showed that this Hamil-
tonian, with a finite number of electrons, can be solved
actly. They define for each single-particle eigenstate ofĤ0

the operatorj j5cj 1
† cj 12cj 2

† cj 2 . This operator, for anyj,
is a constant of motion of the Hamiltonian~5! and takes the
value 61 if the level is singly occupied, and 0 otherwis
The many-body eigenstates of Eq.~5! can therefore be clas
sified into different subspaces according to their value of
j j ’s, i.e., according to the configuration of levels withinI that
are occupied by one electron only. The many-body eig
states and the eigenenergies of Eq.~5! are then found
separately20,21 for each of the above subspaces.

The electrons in the singly occupied levels are not sc
tered to other levels by the interaction term, and the sin
occupied levels are ‘‘blocked’’ to pair scattering, and w
therefore designate them asB. The dynamics of the singly
occupied levels is also trivially given byĤ0. Therefore, for
each setB one has to solve the reduced Hamiltonian
21451
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Ĥ5(
j

U

2e jbj
†bj2ld(

i , j

U

bi
†bj . ~6!

Herebj
†5cj 1

† cj 2
† creates apair of electrons in levelj, andU

is the set of paired levels withinI, i.e., the set of all levels
that belong toI but not toB ~the notation, in general, follows
Ref. 26!. Below, sums over levels labeled byj are to be
understood as sums over levels withinU.

Once the configuration of unpaired electrons is given,
chardson and Sherman21 ~see Ref. 17 for a review! show that
the eigenstates of the system are given by

ua&5)
i PB

cis i

† uCk&, uCk&5C)
n51

k

Bn
†u0&,

Bn
†5(

j

bj
†

2e j2En
, ~7!

where 2k is the number of electrons occupying the u
blocked levels, andu0& is the state with all the levels below
EF2vD fully occupied and all the levels aboveEF2vD
empty ~in our modelu0& is the vacuum state!. The energy
parametersEn ~with n51, . . . ,k) are the solutions of a se
of k coupled nonlinear equations, thenth equation of which
is given by

1

ld
1 (

m51(Þn)

k
2

Em2En
2(

j

1

2e j2En
50. ~8!

The total energy of the system is given by20,21

E5(
j

B

e j1 (
n51

k

En . ~9!

Since the ground state of a grain with an even number
electrons does not contain any singly occupied levels~i.e.,
U5I ), the even ground-state energy is simplyEg.s.

5(n51
k En . Its l→0 limit is Eg.s.(l50)5(n51

k 2en , where
$2en ,n51, . . . ,k% is the set of thek lowest-lying single-pair
energies.@This is consistent with the observation, followin
from Eq.~8!, that in the limitl→0 the set ofEn’s reduces to
a set ofk single-pair energies 2e j , which, for the ground
state, must have the lowest total energy possible.# Conse-
quently, the interaction energy of the even ground st
Eint(l), defined to be the reduction of the exact ground-st
energy as the interaction is turned on from zero to so
finite l, can be written as

Eint~l![Eg.s.~0!2Eg.s.~l!5( dEn , ~10!

where we introduced the energy differencesdEn[2«n

2En . A closely related quantity is the condensation ene
Econd(l), defined to be the energy gain of the exact ev
ground state relative to the uncorrelated Fermi ground st

Econd~l![EF.g.s~l!2Eg.s~l!, ~11!
8-3
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5 (
n51

k

~2en2l2En!5Eint~l!2kld. ~12!

Thel contribution in the first sum in Eq.~12! is the Hartree
self-energy of levelj in the Fermi ground state.

B. Perturbative results for Econd and Eint

Let us now consider the case in which the setI of inter-
acting levels consists of 2N equally spaced energy leve
betweenEF2vD and EF1vD , occupied by 2N electrons,
so that k5N. Measuring the single-particle energies wi
respect to the bottom of the interacting band, we thus t
e j5 jd, where j 51, . . . ,2N and d5vD /N. ~Note that N

ÞN̄ the total number of electrons in the grain, which is
order 2EF /d, not 2vD /d.!

Using Eq. ~8!, the energy differencesdEn occurring in
Eq. ~10! can be rewritten as

dEn[2en2En5
ld

12lan
, ~13!

where

an5dS (
j 51(Þn)

2N
1

2e j2En
2 (

m51(Þn)

N
2

Em2En
D . ~14!

For smalll, it is natural to approximatedEn by

dEn
0[lnd, where ln[

l

12lan
0

, ~15!

andan
0[an(l50) is given by

an
05 (

j 51(Þn)

2N
1

2 j 22n
2 (

m51(Þn)

N
2

2m22n
. ~16!

The accuracy of this approximation is studied in Appendix
~by deriving an expression fordan5an2an

0), where we find
that the relative error indEn depends on bothl and N.
Specifically, we find that for alln,

dEn /dEn
0511O@1/~ ln N!2# for l,1/~2 lnN!,

~17a!

dEn /dEn
0511O~1/c2!

for 1/~2 lnN!,l,1/lnN2c/~ ln N!2,

~17b!

for anyc.1. Note that Eq.~17b! implies the emergence of
second scale nearl51/lnN, namely, 1/(lnN)2.

To the accuracy given by Eqs.~17a! and~17b!, the inter-
action and condensation energies can be approximated

Eint
0 5Econd

0 1Nld. (
n51

N

dEn
05 (

n51

N

lnd, ~18!

whereln is given in Eq.~15!. This result coincides with tha
obtained by Matveev and Larkin@Eq. ~17! of Ref. 10#; more-
21451
e

f

over, our approach allows us to give a controlled estimate
the error introduced by this approximation, both for Eq.~18!
and our explicit calculation ofEint andEcond in Appendix B.
Interestingly, Eq.~18! can be interpreted as a sum over t
Hartree self-energieslnd of the lowestN levels, each of
which is evaluated using its own level-specific ‘‘renorma
ized coupling constant’’ln ~thus motivating our choice o
notation!. The emergence of such renormalized coupli
constants has been noted before,27 in particular by Matveev
and Larkin10 and Berger and Halperin.14 Matveev and Lar-
kin, for example, were concerned with perturbatively calc
lating a certain parity parameter that was essentially equa
lNd/2 and found

lN
ML.

l

12l ln~vD /d!
, ~19!

in agreement with our result@Eq. ~15!# for lN @see Eq.~B6!
and the statement following it#.

Now, calculating the interaction or condensation energ
is considerably more involved than calculating the parity p
rameter of Matveev and Larkin, since, in contrast to th
calculation, not only one but allN renormalized couplingsln

enter in Eq.~18! for Eint
0 or Econd

0 . This is a major compli-
cation, since theirn dependence turns out to be sufficient
important to make it impossible to replace allln by a single
‘‘effective coupling constant.’’

Nevertheless, progress can be made by expandingEint
0 or

Econd
0 in powers ofl and analyzing the convergence prope

ties of the resulting series. This is done in Appendix B~for
Eint

0 , but here we shall give the results forEcond
0 , which is

slightly more convenient, since it lacks the Hartree term!. It
is found that the convergence radius of the power series
Econd

0 (l) is

l* 51/lnN. ~20!

The regime of analyticity,

l,l* , i.e., D,d, ~21!

@by Eq.~2!# will be called ‘‘regime I’’ below. Within regime
I, we obtain an analytical expression forEcond

0 (l) as a series
in l. We find~see Appendix B! that the series forEcond

0 does
not have one parameter that describes the ratio between
secutive terms in the series. Denoting themth term in the
power series asEcond

0(m) , we show that the low powers fulfil
the relationEcond

0(m11)/Econd
0(m).m•l while the high powers ful-

fill the relationEcond
0(m11)/Econd

0(m).l• ln N. This results in hav-
ing two separate scales inl. While the high powers dictate
the convergence radius of the series to bel* , their contribu-
tion is large only forl*l* (12l* ) ~see Appendix B!, in-
troducing the aforementioned second scale of 1/(lnN)2 near
l51/lnN. As a result, forl,l* (12l* ) ~i.e., in most of
regime I!, Econd

0 is well approximated by the contribution o
the low powers that turn out to correspond simply to t
second-order perturbative result~up to a relative correction
of 1/lnN, see Appendix B!:
8-4
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Econd
0 .Econd

pert ~l!5 ln 2•l2vD@11O~1/lnN!#

for l,l* ~12l* !. ~22!

This is illustrated in Fig. 1. Intuitively speaking, this contr
bution can be attributed to pairing fluctuations involvingall
the levels in the rangeEF2vD,e,EF1vD .

C. Analysis of the intermediate regimel*ËlË2l*

Although we are not able to extend the analytical cal
lation to the regime ofl.l* ~i.e., D.d), we are able to
draw some conclusions about the value of the condensa
energy in the latter regime. First, we note that the pertur
tive result ~22! for the condensation energy atl5l* is
larger than the BCS mean-field result~1! as a function ofl,
i.e., Econd

pert (l* )@Econd
BCS(l), as long asD,lAvDd. In this

regimeEcond
BCS(l) is thus also much smaller than the actu

condensation energyEcond(l) @since, assuming monotonic
ity of Econd(l) as function of l, we have Econd(l)
.Econd

pert (l* ) for l.l* #. In terms ofl andN the condition
is ln@ln 2•(l* )2/2#12/l. ln N, which, for largeN, is roughly
l,2l* . @Note that the exponential dependence ofD on l
causes a relatively small change in the condition forl
(,l* versus,2l* ) to translate into a parametric change
the condition forD (,d versuslAvDd).# The Econd

pert con-
tribution in Eq.~24! becomes significantly smaller~by a fac-
tor l2) than theEcond

BCS contribution only forD.AvDd. Thus,
we identify an intermediate regime

d,D,AvDd, i.e., l* ,l,2l* ~23!

FIG. 1. The condensation energy of a grain withN51024, in
units of level spacing, is plotted as a function ofl. The solid line is
the numerical solution of the exact Richardson equations.
dashed line is the second-order approximation. The dotted lin
the BCS approximation. The BCS approximation is good forl
@l* [1/ln N. In the inset the same graph is given for a small ran
of l and a much smaller range forEcond. The value at which the
perturbative term equals the BCS term tends asymptotically
2/ln N ~see text!, but here it is somewhat smaller sinceN is not very
large.
21451
-

on
-

l

@by Eq. ~2!#, to be called ‘‘regime II,’’ in which the BCS
mean-field approach is severely inadequate for calcula
Econd, but which, according to the three properties me
tioned in the introduction, nevertheless already featu
strongly developed pairing correlations. In other words,
condition for the adequacy of the BCS mean-field appro
mation (l.2l* , ‘‘regime III’’ ! is more restrictive than the
condition for the existence of strongly developed pairing c
relations (l.l* ). Importantly, this also means that the BC
mean-field approach becomes inadequate already for m
smaller level spacingsd'D2/vD , than those at which it
formally breaks down~in the sense of yielding no nontrivia
solution to the self-consistency equation!, which occurs for
d*D.

The inadequacy of the BCS approximation in regime
stems from the abundance of ‘‘fluctuating’’ levels compar
to ‘‘condensed’’ levels. Each ‘‘condensed’’ level within
rangeD from the Fermi energy contributes approximate
D/2 to the condensation energy and havingD/d, such levels
give the BCS termD2/2d. Though each ‘‘fluctuating’’ level
outside this range contributes only an amount of or
(dl)2/d to the condensation energy, there arevD /d such
levels, and forD,lAvDd the total contributionl2vD of all
fluctuating levels is larger thanD2/2d. This sets an energy
scaleAvDd, whichD has to exceed before the BCS appro
mation becomes reliable. The above interpretation of
relative contributions of ‘‘condensed’’ and ‘‘fluctuating’
levels to the total condensation energy is confirmed b
detailed numerical analysis, see Sec. VI.

Second, by numerically analyzing Richardson’s equatio
~see Refs. 20, 21, 28, and 29 and a review in Ref. 26!, we
find that in the regimel.l* , the condensation energy ca
be written as

Econd~l!5Econd
BCS~l!1D1a~l!Econd

pert ~l!, ~24!

where a(l) is a function of l of order unity. @A rather
similar, but not identical, form was obtained in Eq.~44! of
Ref. 18 from a fit to numerical results forEcond(l) obtained
with the density-matrix renormalization group.# As will be
discussed in more detail in Sec. VI, the first two terms in E
~24! represent the contributions of those levels lying with
D from EF ~to be called ‘‘condensed levels’’!, while the last
term is due to the remaining levels withinvD from EF ~to be
called ‘‘fluctuating levels’’!. According to Eq.~24!, the size-
independent correction to the BCS result~i.e., the leading-
order 1/N correction relative to the extensive, bulk result! is
at leastD.

The numerical analyses carried out in Sec. VI and App
dix C also give evidence thatEint ~and alsoEcond) is an
analytical function on the positive real axis ofl with a radius
of convergence aroundl50 of approximately 1/lnN. This is
in agreement with our analytical treatment of the pertur
tion series in Appendixes B and C.

The results for the condensation energy of grains with
odd number of electrons are similar. In the ground state o
odd grain the state at the Fermi level is occupied by a sin
electron. Due to the considerations above, one does all
calculations neglecting this level, and therefore, when

e
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e

to
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ground-state energy is concerned, a grain with an odd n
ber of electrons is equivalent to a grain with an even num
of electrons with a noninteracting level spectrum, which do
not contain the single level at the Fermi energy and is o
erwise identical. This change introduces only small quant
tive changes in the results above.

One way in which one can, in principle, measure the
teraction energy of an ultrasmall superconducting grain is
measurement of the specific heat. The interaction energ
then given by

Eint5E
0

`

@cs~T!2cn~T!#dT. ~25!

cn(s)5dĒn(s) /dT, whereĒn(s) is the thermal average of th
energy of a normal~superconducting! grain. While in mac-
roscopic samples one obtains the leading-order~extensive!
term of the interaction energy by performing the above in
gral from zero toTc , in ultrasmall grains, since the fluctua
tions involve states in the whole range ofEF2vD,e,EF
1vD , one has to replace the upper limit of the integral
Tmax'vD in order to have a good estimate ofEint . At T
.Tmax, one expects that the interaction term in the Ham
tonian would play a negligible role, and (Ēs) and (Ēn)
would be roughly the same. Another way to measure
interaction energy is by spin magnetization measurement
we discuss in the next section.

III. SPIN MAGNETIZATION OF AN ULTRASMALL
GRAIN

Since the condensation energy of an ultrasmall grain
contributions from all the levels within the range ofvD , in
order to measure it one has to probe all the levels within
range. One way to do this is to put an ultrasmall, prefera
pancake-shaped grain in a magnetic field parallel to the
direction. One can then neglect orbital magnetization a
consider only the Pauli paramagnetism.30

The interaction energy can then be obtained by

Eint5E
0

vD /mB
~Mn2Ms!dH, ~26!

whereMn(s) is the magnetization of the normal~supercon-
ducting! grain. This is a general thermodynamic identity, r
lying only on the fact that the electrons further thanvD from
EF are noninteracting, so thatMn(H)5Ms(H) for mBH
.vD . We now derive this relation for ultrasmall superco
ducting grains and calculate the magnetization of such gr
for H@d/mB .

We introduce the Zeeman term to the Hamiltonian~5!
changinge j→e j2smBH ~taking theg factor to equal 2!.
Each eigenstate of the Hamiltonian~5! is also an eigenstat
of the modified Hamiltonian, with an energyEH5EH50
2mBH(n↑2n↓), wheren↑(n↓) is the number of levels sin
gly occupied by an electron with a spin in~opposite to! the
direction of the magnetic field.

We consider, as above, an ultrasmall grain with an e
number of electrons and neglect orders ofl higher than two
21451
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in the calculations of the eigenstate energies below. AT
50 and zero magnetic field the ground state of the sys
has no broken pairs, meaning there are no bare levels o
pied with a single electron. Of all the states withl broken
pairs, the one with the lowest energy will be denotedc l and
its energyEl . One can show thatc l has all thel levels
closest toEF from above and all thel levels closest toEF
from below singly occupied, while all the other levels are n
singly occupied. ForHÞ0 all the electrons in the singly
occupied levels will have their spin in the direction of th
magnetic field. In this caseEl(H)5El(0)22lmBH. For T
50 and finiteH the ground state of the system isc l with the
smallestEl(H) of all l ’s. While for a large superconductin
grain an abrupt transition froml 50 to l 5D/(A2d) occurs at
H5D/(A2mB),24 in an ultrasmall grain the number of bro
ken pairs in the ground state increases by one at a time aH
is increased.15 The magnetic field for which the transition o
the ground state fromc l 21 to c l occurs is denotedHl . For
Hl,H,Hl 11 , c l is the ground state of the grain wit
ground state energyEl(0)22lmBH, and therefore the mag
netization equals 2lmB . The magnetization is a step functio
in H, with equal steps of magnitude 2mB . One needs only to
find the values ofHl to get the magnetization curve. Th
above picture is also true for a normal grain.~By normal and
superconducting grains we mean here similar grains, with
same single-particle noninteracting spectrum that differ o
by the value ofl, which is zero for the normal grain an
finite for the superconducting grain. The relation of t
above to a realistic situation is discussed below.! From its
definition as the solution of

El
s/n~Hl

s/n!5El 21
s/n ~Hl

s/n!, ~27!

~for both pair-correlated or normal grains!, Hl
s/n is given by

2mBHl
s/n5El

s/n~0!2El 21
s/n ~0!. ~28!

It follows that

(
l 51

l max

2mBHl
s/n5El max

s/n ~0!2E0
s/n~0!. ~29!

Taking l max5vD /d and subtracting the equation for norm
grains from that for pair-correlated ones, we find

(
l 51

l max

2mB~Hl
s2Hl

n!5E0
n~0!2E0

s~0!5Eint , ~30!

where we tookEl max

s (0)5El max

n (0), since at energies beyon

l maxd5vD the pairing interaction is no longer operativ
But, as can be seen from Fig. 2~drawn for equally spaced
normal and pair-correlated grains!, the sum on the left-hand
side equals the area between the solid and dashed lines
hence also equals the integral in Eq.~26!.

Finding Hl amounts to solving Eq.~27!. We first assume
that the noninteracting energy levels in the grain are equ
spaced. For a normal grain this equation then reduce
(2l 21)d22mBH50, where the first term is the extra k
netic energy of thel state compared to thel 21 state, and the
second term is its gain in Zeeman energy. In an ultrasm
8-6
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THERMODYNAMIC PROPERTIES OF A SMALL . . . PHYSICAL REVIEW B63 214518
superconducting grain one has to add the energy contr
tions due toĤI to the different ground states. To seco
order inl, one can show, by using either Richardson’s eq
tions or perturbation theory, that the difference in the int
action energies ofc l andc l 21 is

ld1 1
2 •S (

j 52l 21

N1 l 21

1/j 1 (
j 52l

N1 l

1/j D l2d.ld1 ln̂~2l ,N!l2d,

~31!

where we define lnˆ(i,j)[(k5i
j 1/k. Therefore, the equation fo

Hl is

~2l 21!d1ld1 ln̂~2l ,N!l2d22mBH50. ~32!

The above equation is true for alll ,vD /d, while for larger
l the interaction term vanishes, and one obtains the s
equation as for the normal grain.

The first term in the equation reflects the kinetic-ene
cost of breaking thel th pair and is similar to the norma
grain case. The second term reflects the ‘‘direct’’~Hartree!
energy cost of breaking a pair, coming from the diagonal p
of the interaction term in the Hamiltonian~5!. This term is
not l dependent, and therefore is not reflected in the sus
tibility, as we shall see in the next section. The third term
the result of the two levels, onel below EF and onel above
EF becoming blocked to pairing fluctuations. Its magnitu
is a decreasing function ofl, since as the levels are furthe
from EF their contribution to the pairing fluctuations
smaller. This dependence onl is reflected in the susceptibil
ity.

In Fig. 2 we plot the magnetization curve for a norm
grain (l50) and a superconducting grain with the sam
equally spaced noninteracting spectrum. Using Eq.~30!, Eq.

FIG. 2. Magnetization curve of normal~solid! and supercon-
ducting~dashed! grains with an equally spaced noninteracting sp
trum. The width of the rectangles between the curves decre
with increasing magnetic field due to the decrease of the sec
order term. The sum of all the areas of the rectangles eq
Econd/d.
21451
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~32!, and the expressions above Eq.~32!, one immediately
confirms the equality~to second order inl) of the interaction
energy, as was calculated in Appendix B, and the integra
Eq. ~26!.

So far we considered the idealized case of grains w
equally spaced energy levels. In order to relate to exp
ment, we now relax this assumption. It is not possible to
the effects of superconducting correlations on the conde
tion energy by measuring only a single ultrasmall gra
since the fluctuations of the noninteracting energy lev
cause larger shifts in the position of theHl ’s than those in-
duced by the superconducting interaction. We therefore c
sider an ensemble of grains with the same noninterac
mean level spacingd̃ and an energy spectrum that obe
Gaussian orthogonal ensemble~GOE! statistics. We assum
that the pairing interaction constant in all the grains is
same, given byld̃, and calculate the mean spin magnetiz
tion of such an ensemble forH@d̃/mB . For each grain, the
equation~32! for Hl now becomes

z l1ld̃1 ln̂~2l ,N!l2d̃22mBHl50. ~33!

z l is the energy difference between thel th level above the
Fermi energy and thel th level below it in that grain. The
Hartree term is not affected by level statistics, and we
glect the change incurred by the second-order term due to
effects of level statistics, since this change is small compa
to its mean value. We approximate the second-order term
Eq. ~33! by l2d̃ ln@vD /(2mBH)# ~replacingl inside the loga-
rithm by its mean value and replacing lnˆ by ln). We then
obtain, for a given magnetic field, for each grain, an equat
for l, the number of broken pairs. It is given by the maximu
k that satisfies the equation

2mBH2ld̃2l2d̃ ln@vD /~2mBH !#>zk . ~34!

The mean value of the magnetization of a grain at a givenH
is therefore

M̄ s~H !52mB
2H/d̃2lmB2l2mB ln@vD /~2mBH !#.

~35!

The variation around the mean value is given by the va
tion of the number of levels within the energy range given
the left side of Eq.~34!. Since the level statistics of th
grains is given by GOE statistics, the variation in the ma
netization of one grain is approximatelydM̄ s(H)
5mB ln@2mBH/d̃#/p2 ~see e.g., Ref. 31!. This variation is in-
deed larger than the shift of the mean magnetization co
pared to that of a normal grain@Eq. ~35!#, but in an ensemble
of n grains the variation reduces as 1/An, while the shift in
the mean value does not change.

One can therefore, in principle, measure the interact
energy of ultrasmall superconducting grains by measur
the magnetization of an ensemble of such grains and ca
lating the integral in Eq.~26!. While Ms is measured,Mn is
given by the straight line starting from the origin with a slo
equal to the measured ensemble magnetization atH
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.vD /mB . The Hartree term in Eq.~35! shifts the magnetiza
tion of a pair-correlated grain relative to that of a norm
grain by a constant, resulting in a parallel line not interse
ing the origin. Its contribution to the integral is triviall
lvD . The second-order term changes the slope of the m
netization and introduces a nonlinear correction to the n
mal Pauli susceptibility, which we discuss in the next s
tion.

The consideration of grains with an odd number of el
trons would lead to similar results in the regimemBH@d.
The magnetization graph for an odd grain would be sim
to that in Fig. 2, only shifted by one unit down and half
unit to the left, not affecting the average quantities discuss

In this section we were concerned with the magnetizat
at H@d/mB , which depends on level statistics through th
effect on energy levels far fromEF . The effect of level
statistics is more dramatic for small magnetic fieldsH
&d/mB , for which the magnetization is due to the leve
closest toEF . In the next section we are interested in t
magnetic susceptibility also in the regime whereH'd/mB
and therefore consider the levels closest toEF more care-
fully. A more rigorous treatment of level statistics that w
also be valid in the regime ofH!d̃/mB is deferred to a
future work.

IV. REENTRANCE OF THE SUSCEPTIBILITY

Measuring the interaction energy by a magnetization m
surement might be a difficult task, since it requires very h
magnetic fields of the order ofvD /mB . As an alternative, we
propose here a susceptibility measurement that would re
the presence of superconducting correlations in ultrasm
grains and only requires magnetic fields of the orderd̃/mB .

Let xs/n(H,T)5]M̄ s/n(H,T)/]H denote the spin suscep
tibility as a function of magnetic field and temperature fo
superconducting or normal grain, respectively. Loren
et al.19 calculatedxs(0,T), finding that even for ultrasmal
grains it has a minimum atT'd̃, implying a reentrant be-
havior as a function of decreasingT. Since this reentrance
differs from the monotonic increase expected for the Pa
susceptibilityxn(0,T) of normal grains, they suggested th
it could be a sensitive probe to detect superconducting
relations in such grains.

In this section we discuss an analogous but complem
tary quantity, namely,xs(H,0). We find thatxs(H,0) has a
maximum atH'd̃/mB and decreases as 1/H for H@d̃/mB
~see Fig. 3!. Thus, xs(H,0) shows a reentrant behavior
ultrasmall superconducting grains, just asxs(0,T) does.
Since this again contrasts with the Pauli susceptibi
xn(H,0) of normal grains,32,33measuringxs(H,0) as a func-
tion of H could possibly serve as a sensitive probe to de
superconducting correlations in ultrasmall grains.

For H@d̃/mB we use Eq.~35! and obtain to first order in
d/mBH,

xs5x01l2mB /H, ~36!
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wherex052mB
2/d̃. The susceptibility is a decreasing fun

tion of H, and the positive 1/H correction to the normal grain
susceptibilityxn @for H@d̃/mB , to first order ind/mBH, one
obtainsxn5x0 ~Refs. 32 and 33!# is smaller than the lead
ing, normal term byl2d̃/2mBH5l2/2l .

The intuitive reason for why the correction is positive
as follows: For a given magnetic field, the magnetization o
pair-correlated grain is, on the average, smaller than that
normal grain~see Fig. 2!, because breaking pairs to increa
the magnetization costs pairing energy. However, since
pairing energy per extra pair decreases the further the p
involved lie fromEF , the difference between the two mag
netization curves decreases with increasingH. Consequently,
it requires a smallerH increment to break the next pair for
pair-correlated grain than a normal grain, implying a larg
susceptibility for the former.

The result in Eq.~36! is already sufficient to establish th
reentrant behavior of the susceptibilityxs(H,0), since asH is
lowered belowd̃ and approaches zero,xs(H,0) decreases
and approaches zero, too, due to level repulsion. Precise
H50 the susceptibilityxs(H,0) of an odd grain has an ad
ditional d(H)-like peak due to the contribution of the singl
unpaired electron atEF ; in fact, for finite T it is the contri-
bution of this unpaired electron that is responsible for
reentrance ofxs(0,T) predicted in Ref. 19. However, for an
nonzeroH the spin of this electron is fully aligned with th
magnetic field and hence makes no contribution toxs(H
.0,0).

We now proceed with a calculation ofxs, which gives a
quantitative estimate of the magnitude of the reentrance
fect. We consider an ensemble of odd and even grains. F
normal grain,xn(H) is proportional to the probability to
have a pair of states (l pair!, l above andl below EF ~de-
noted 2 l ) separated byz l[e l2e2 l52mBH and is given
by32,33

xn5
2mB

2

d̃
RS 2mBH

d̃
D , ~37!

FIG. 3. Spin susceptibility as a function of magnetic field atT
50 for l50.28 is shown. AsH decreases,xs increases, until

reaching a maximum of 1.02x0 for H'1.3d̃/mB , implying a reen-
trant behavior.xn(H) ~thin solid line! and the high-field approxi-
mation obtained in Eq.~36! ~dashed line! are given for comparison
8-8
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whereR(x) is the probability of finding two levels a spacin
x apart regardless of the position of the other level34

@R(x)512O(1/x2) for x@1#. We now consider a single
superconducting grain. Thel th pair of this grain would con-
tribute, without pairing interaction, to the value of the sp
susceptibility atH5z l /(2mB). However, due to the extra
energy cost of breaking a pair, which was discussed in
previous section, thel pair contributes to the susceptibility a
a higher magnetic field. This shift is specific to each grain
it is a function of the energies of the noninteracting lev
further thani from the Fermi energy~the levels closer thanl
to EF are singly occupied and therefore do not contribute
the interaction energy!. While the energy of thel pair is
arbitrary and later is taken to satisfy GOE statistics, we n
make the approximation that the levels further thanl from
EF are equally spaced with level spacingd̃, the first ones
being d̃ apart from thel levels. Due to the smallness of th
fluctuations in the GOE ensemble we believe that the ab
approximation is not only proper forH@d̃/mB , but also
gives fairly good results forH'd̃/mB . Under our approxi-
mation, which introduces a modification of Eq.~31! due to
the arbitrariness of the energies of thel pair, we find that the
l pair will contribute toxs(H) at az l-dependent fieldH(z l)
given by

H5
1

2mB
F z l1ld̃1 1

2 •S 1

z l
12(

j 51

N2 l
1

z l1 j D l2d̃G . ~38!

Therefore, for an ensemble of ultrasmall superconduc
grains as considered,

xs~H !5~2mB
2/d̃!P@2mBH~z!/d̃#, ~39!

whereH(z) is given by Eq.~38! with z l replaced byz, and

P@2mBH~z!/d̃#5R~z/d̃!~2mBdH/dz!21. ~40!

The result for this calculation withl50.28 is given in Fig. 3.
For larger, but still small grains, whereD>d̃, the spin

susceptibility is very different atH&D/mB . However, simi-
lar calculations35 to those leading to Eq.~36! show that for
D2/(d̃mB),H,vD /mB one obtains the same result as
Eq. ~36!. The reason essentially is that in this regime enou
levels are singly occupied, so the energy levels involved
the interaction are sufficiently far for the perturbative tre
ment to be valid.

V. TUNNELING PEAK SPECTRUM

Superconducting correlations in ultrasmall grains are a
reflected in their tunneling excitation spectrum. For a norm
grain, the tunneling peak spectrum is simple, consisting
peaks at the single-particle excitation energies of the gr
When the pairing interaction is present, the spectrum is m
more complex, containing peaks at the energies of all
many-body states of the grain with one electron added
removed. However, for a small coupling constant, most
these peaks are small~proportional tol2), and we do not
consider them here. Instead, we consider only the ‘‘prima
21451
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peaks, i.e., those that survive asl→0 and in this limit cor-
respond to the tunneling peaks of the normal grain. A n
zero pairing interaction reduces their strength by a facto
12l2 and shifts their energy. In this section we are co
cerned only with the energy shift of these primary peaks d
to the pairing interaction. We show that this shift, being
decreasing function of energy, causes, fore@d, the mean
spacing between the primary peaks to be smaller than in
equivalent normal grain and therefore introduces a posi
correction to their density.

Consider a grain with equally spaced energy levels hav
an even number (2k) of electrons and a ground stateuf2k

G &,
and consider the tunneling at positive energies into a
eigenstatesuf2k11& with 2k11 electrons. We assume tha
the Coulomb blockade energy is the same for the tunne
to all states with 2k11 electrons, and henceforth neglect
since we are interested here only in energydifferencesbe-
tween tunneling peaks.

To first order in the tunneling Hamiltonian, tunneling wi
occur whenever there is a finite matrix element between
stateuc2k11

s &[cs
†uf2k

G &, wheres is an index labeling single
noninteracting levels and any eigenstateuf2k11& with 2k
11 electrons.

If the grain is normal,l50, then the only relevant eigen
states with 2k11 electrons are those in which all levels u
to EF are filled with two electrons, and one states, above
EF , is occupied by one electron. We defineuf2k11

s & for ei-
ther a superconducting or a normal grain as the lowe
energy many-body eigenstate of 2k11 electrons for which
the states is singly occupied. For a normal grainuc2k11

s & and
uf2k11

s & are identical. The spectrum of tunneling peaks in
normal grain would therefore be identical to the nonintera
ing single-particle energy spectrum of the grain. In a simi
ultrasmall superconducting grain (lÞ0), pair fluctuations
will affect the tunneling spectrum in three ways.~i! The pri-
mary peaks are shifted and~ii ! reduced in magnitude due t
the fact that the overlap of the statesuc2k11

s & anduf2k11
s & is

smaller than one.~iii ! Many small peaks emerge due to th
small overlap~of orderl) betweenuc2k11

s & and all the other
many-body eigenstates with 2k11 electrons that are differ
ent from uf2k11

s &. We will not consider effects~ii ! and ~iii !
here and proceed with the calculation of the mean spac
between the primary peaks in ultrasmall superconduc
grains, as a function of energy.

The tunneling of an electron into thel th level above the
Fermi energy costs a total energy of

E~f2k11
l !2E~f2k

G !5 ld1ld/21l2d ln̂~N,l !/2. ~41!

The first term is the kinetic-energy contribution. The seco
term is the Hartree term, and the factor of1

2 is due to the fact
that the number of pairs withinvD belowEF changes by, on
average,2 1

2 when an electron is added to the grain~because
we have assumed that the band of interacting electron
spaced symmetrically aboutEF , and EF shifts upward by
half a unit ofd when an electron is added to the grain!.

Tunneling an electron into thel th level also affects the
interaction energy, which to second order inl is reduced,
8-9
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due to the blocking of level l, by l2d ln̂(N,l)/2
.l2 ln(N/l)/2. ~This second-order term can be found, usin
e.g., perturbation theory, and calculating the difference in
second-order interaction energy of a Fermi state withk
electrons and the same state up to a single electron add
the l th level.! Both the kinetic energy and the Hartree ter
leave the distance between nearby tunneling energies
changed (d). However, the second-order term becom
smaller with increasing energy, and therefore the dista
between tunneling energies is smaller than that of a sim
normal grain. This reduction manifests itself in the me
spacing of the primary tunneling peaks in an ensemble
ultrasmall superconducting grains. One can obtain the m
primary peak spacing of such an ensemble by a similar p
cedure to the one we used in Secs. III and IV for the s
magnetization and susceptibility. Here we obtain the sa
result in a simpler way. We consider a grain with equa
spaced energy levels as above. The difference between
tunneling energy to stateuf2k11

l & and to stateuf2k11
l 11 &

is approximately d1l2d$ ln@N/(l11)#2ln(N/l)%/2.d@1
2l2/(2l )#. The mean density of primary peaks in an e
semble forl @1,e@d, including spin degeneracy, is therefo
given by

N̄~e!5
2

d
•

1

12l2d/~2e!
. ~42!

The functional behavior of the primary peak density
sembles that of the magnetic susceptibility. In both cases
correction to the leading term reflects the change in inte
tion energy as levels further from the Fermi energy
blocked. Similar considerations for negative energies~tun-
neling electrons out of the grain, going from the ground st
of 2k electrons to states of 2k21 electrons! will result in a
similar shift of the tunneling peaks, and the tunneling sp
trum being symmetric aroundEF .

We now consider shortly the case of the tunneling proc
~at positive energies! changing a grain with an odd numbe
of electrons to a grain with an even number of electrons
the even-to-odd case described above, the change in
number of singly occupied noninteracting levels from zero
one induced an upward shift in the primary tunneling pe
energies. Most primary tunneling peaks in the odd-to-e
case correspond to a change in the number of singly o
pied noninteracting levels from one to two and therefore
upward shift in the tunneling peak energies similar to
even-to-odd case. The only exception is the peak close
the Fermi level, which is a result of tunneling into the sing
occupied level, resulting in the even grain having no sin
occupied levels. This induces a downward shift of this tu
neling peak. The functional behavior of the mean peak sp
ing at e@d will be similar to Eq.~42! above.

We now relax the assumption of the noninteracting
ergy spectrum of the grain being equally spaced and cons
the regime 0,e!d. Due to the positive shift in energy o
the tunneling peaks as a result of the pairing interacti
N̄(e) is smaller for ultrasmall superconducting grains co
pared to its value for similar normal grains~this can also be
obtained by conservation of the number of primary peak!.
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This can be seen as a first sign for the onset of the gap in
density of states in a macroscopic sample.

VI. NUMERICAL ANALYSIS OF RICHARDSON’S
EQUATIONS

In this section we analyze the solutions of Richardso
equations~8! for the ground state of a grain with equal
spaced energy levels. The above equations for the en
parameters can be studied numerically.29 The energy param-
eters are, in principle, complex, and one can show that t
are either real or come in complex-conjugate pairs. If
ground state of the system is considered, it is found29 that for
l!1/lnN all the energy parameters are real, monotonica
decreasing functions of the coupling. TakingN to be even,
we group all the energy parametersEn into pairs labeled by
an indexa, starting from the largest two and counting dow
ward: $EN1222a ,EN1122a%, with a51, . . . ,N/2. ~The case
of oddN can be treated analogously, except thatE1 will then
remain unpaired.! Each pair of energy parameters are re
until, for somela ~Fig. 1 of Ref. 29!, theath pair becomes a
pair of complex-conjugate numbers, which they do in ord
of increasinga ~i.e., la,la11). At the transition pointla ,
the two energy parameters are equal to the value of
lower-energy parameter atl50:

EN1222a5EN1122a52eN1122a . ~43!

Each energy parameter is an analytic function forl,la and
has a branch point atla .

By solving Richardson’s equations~8! for n5N and n
5N21 with the conditions above~43! we find that

l151/~ ln̂ N1a1!, ~44!

where ln̂N5(j51
N 1/j and 0,a1,1.

It would seem that the interaction energy

Eint5(
n

~2en2En! ~45!

would be nonanalytical at this point. However, althou
EN ,EN21 have a branch point atl1, their sum is analytical at
this point, due to the cancellation of the singularities. T
analyticity of the sum, as well as the result in Eq.~44!, are
derived35 in the following way: We first definej and h to
satisfy the equationsEN52eN211j1 ih and EN21
52eN211j2 ih, using the fact thatEN and EN21 are real
~in which caseh is imaginary! or complex conjugates o
each other~in which caseh is real!. We insert the above
definitions in Richardson’s equations forn5N and n5N
21 and obtain equations forj and h2 as a function ofl
~similar equations are given in Refs. 29 and 26!. We then
expandj and h2 in a series indl5(l2l1) and solve the
equations for each order ofdl separately.l1 is obtained by
the solution to the zeroth order and yields Eq.~44!. Solving
for the next orders we find that the coefficients for bothj and
h2 of (dl) i are, up to a factor of order unity, (lnN)2i. This
results inj and h2 being in fact expanded as a series
dl•(ln N)2. This result both reflects a scale of 1/(lnN)2 near
8-10
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FIG. 4. ~a! The singularity point of the complex coupling parameter closest to the origin is plotted for~from top right to bottom left!
N516, 24, 32, 48, 64, 96, 128, and 192. Not plotted is their mirror image across thex axis, with negative imaginary parts.~b! The real~top!
and imaginary~bottom! parts of the complex coupling parameter at the above singularity points are plotted as a function ofN. The dashed
lines are fits, 1/lnN for the real part and 1.33/(lnN)2 for the imaginary part. The error in both graphs is 0.002~not plotted!.
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l51/lnN, which we will return to later, and shows that th
sum EN1EN11 can indeed be expanded perturbatively
dl.

This result also suggests thatEint(l) is analytical on the
positive real axis. The only points at which one can susp
nonanalyticities to occur are the differentla’s. The reason-
able assumption that fora.1 the behavior ofEint nearla is
similar to that nearl1 discussed above, i.e., that the sum
the singular energy parameters is analytical, leads to the
lyticity of Eint on the positive real axis. This is also su
ported by contour integration in the complexl plane, as we
discuss in Appendix C.

However,Eint is not an analytical function in the whol
complex l plane. By numerically analyzing Richardson
equations as a function of complexl, we find that the inter-
action energy has singular points in the complex plane,
closest to the origin occurring at approximately

lsing~N!51/lnN61.33i /~ ln N!2. ~46!

In Fig. 4 we plot the real and imaginary parts of the clos
singular points as a function ofN, with the corresponding
fits.

This numerical result suggests that the radius of conv
gence of the perturbation series for the interaction ene
aroundl50 is roughly 1/lnN, in agreement with our ana
lytical treatment of the perturbation series in Appendixes
and C. It also reflects a convergence radius of the orde
1/(lnN)2 for the sumEN1EN21 aroundl5l1, in agreement
with the 1/(lnN)2 scale mentioned above.

The second part of this section is devoted to establishin
connection between the analytical properties of Richardso
energy parameters and the BCS theory. In particular,
show that in the regime whered!D the BCS result for the
condensation energy~1! is closely related to the singula
contribution of the complex energy parameters to the c
densation energy, and that the points, on the positive
axis of l, at which the energy parameters become comp
are related to the values ofl at which additional states be
come ‘‘condensed’’~i.e., come to lie withinD of EF).
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We separate the energy parameters into two groupsRl

andCl , containing those energy parameters that for a giv
l are real or complex, respectively. We define the contri
tion of the complex energy parameters to the condensa
energy~disregarding the Hartree term!

Econd
comp5(

n

Cl

~2en2l2En! ~47!

and find thatuEcond
comp2(D2/2d1D)u,3d for 8,N,1024 for

all l,0.3. The relative correction decreases withN and l
and is 0.1% forN51024 andl50.3.

For those energy parameters that have already bec
complex at a givenl, we can separate the contribution
E2N1222a1E2N1122a to the condensation energy into tw
parts, one containing the decrease that eachE2N1222a
1E2N1122a underwent asl is increased from 0 tola ~the
perturbative regime!, the other containing its further decrea
for l.la ~the singular regime!.

Defining, for each energy parameterEn , its value at the
branch point asEn

b @by Eq. ~43!, E2l
b 5E2l 21

b 52e2l 21#, we
write Econd

comp5Econd
sing 1Ecomp

pert , where

Econd
sing 5(

n

Cl

~En
b2En!, Ecomp

pert 5(
n

Cl

~2en2l2En
b!.

~48!

Econd
sing is the singular contribution toEcond or Eint . ~Note that

the Hartree term is subtracted inEcomp
pert when calculating the

condensation energy; for the analogous calculation of
interaction energy, this subtraction should be omitted.! Re-
markably, our numerical analysis shows that this singu
contribution is well approximated by the BCS expression
the condensation energy$Econd

sing 5D2/2d@11O(d/D)2# for
64,N,1024 for alll,0.3% as is shown in Fig. 5~a!. This
suggests that the BCS approximation is equivalent to con
ering only the singular contribution to the condensation e
ergy. By taking first the limitN→`, one would indeed ge
the singular point of the interaction energy to be at the ori
~46!, and no contribution from the perturbative terms. In th
8-11
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FIG. 5. The different contributions of the complex energy parameters to the condensation energy are plotted.~a! We show thatEcond
sing is

well approximated by the BCS result by plottingEcond
sing /(2N2d) for N564 ~dashed line! and N5128 ~solid line! and the function

exp(22/l) ~dotted line! for comparison. Plots for largerN are not drawn since they are indistinguishable from exp(22/l) in the resolution
of this figure. ~b! Ecomp

pert /2Nd for N564 ~dashed line, large steps! and N5256 ~solid line, small steps! is plotted and compared to
exp(21/l) ~smooth solid line!, showing thatEcomp

pert .D. Steps occur at pointsla in which pairs of energy parameters become complex
n
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limit the Hartree term in the reduced Hamiltonian~5! van-
ishes, and the condensation energy equals the interactio
ergy.

These results suggest that the 1/N correction to the BCS
result in the largeN limit is at leastD. However, one also ha
to add the contribution of the energy parameters in gro
Rl , which correspond to the levels betweenEF2vD and
EF2D. This contribution would give an additional corre
tion of the orderl2vD . Summing the above three contribu
tions toEcond, we obtain Eq.~24!.

Since Econd
comp.D2/2d1D1O(d) and Econd

sing .D2/2d
1O(d), we find thatEcomp

pert .D @see Fig. 5~b!#. This implies,
since 2en2En

b equals 2d for evenn and 0 for oddn, the
approximate equation

2nC~l!.
D~l!/d

~12l!
, ~49!

whereD(l) is given in Eq.~2!, andnC(l) is the number of
pairs of energy parameters$EN1222a ,EN1122a% that have
already turned complex for the givenl. Remarkably, Eq.
~49! tells us that the associated number of bare lev
eN1222a and eN1122a , namely, 2nC(l) is just the number
of bare levels withind of D ~up to a factor close to unity!,
i.e., the number of what we have called ‘‘condensed level
The reason for this nomenclature now becomes appa
since we have just established that the singular, BCS pa
Econd arises precisely from those energy parameters
have evolved from these 2nC(l) bare levels.

If we solve Eq.~49! for l, the result gives a function, sa
lapprox(nC), that actually depends onN andnC only via the
ratio N/nC and that is plotted as a function of 1/ln(N/nC) in
Fig. 6 ~thick bold line!. This function can be used to approx
mately predict, for givenN and nC , at which value of the
coupling constant thenCth pair of energy parameters wi
become complex. For comparison, we plot in Fig. 6 also
actual value at which this happens, sayl(nC), for several
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values ofN ~regular lines, obtained by numerically solvin
Richardson’s equations!. We find that the difference can b
well fit by

lapprox~nC!2l~nC!.0.055/lnN, ~50!

implying that the approximate prediction becomes very
curate forN→`. Equation~50! represents a one-paramet
fit that can be used for any combination ofN and nC , the
quality of which is illustrated in more detail in the inset o
Fig. 6.

FIG. 6. The bottom four curves are plots ofla as a function of
1/ln(N/a) computed by changinga for fixed ~from bottom up! N
5128, 256, 512, and 1024. The topmost~thick, solid! curve is the
solution to Eq.~49!. In the inset we plotla as a function ofa for
~from top left to bottom right! N564, 128, 256, 512, and 1024. Th
numerical curves~dashed! are each fit with the solution to Eq.~49!
minus 0.055/lnN ~solid lines!. The error inla is 0.0002 and is not
drawn.
8-12
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Expandinglapprox(nC) to first order in ln(N/nC), we find
that

l~nC!51/ln~N/nC!.
1

ln N
1

ln nC

~ ln N!2
. ~51!

This equation shows, once again, that the scale of 1/(lnN)2 is
present also forl.l* , both in BCS theory and in the ana
lytical properties of Richardson’s equations.

VII. CONCLUSIONS

Though many superconducting properties are limited
grains large enough thatd,D, pair correlations exist also in
ultrasmall grains, whered.D. We calculated the effect o
pair correlations on the condensation energy, spin magn
zation, and tunneling spectrum of ultrasmall superconduc
grains. We found that the contribution of pair fluctuations
the condensation energy is much larger than the BCS re
even for grains in whichD.d, and that the condition for the
validity of the BCS approximation for calculating the co
densation energy isD.AvDd. The interaction energy of ul
trasmall grains can, in principle, be experimentally obtain
through measuring their spin magnetization, which was c
culated above. The pair correlations result in a positive c
rection to the differential spin susceptibility which is propo
tional to l2d/(mBH) for mBH@d, and a positive correction
to the mean tunneling peak density which is proportiona
l2d/e for e@d. The differential spin susceptibility atT50
of ultrasmall superconducting grains shows a reentrant
havior as a function ofH, which could serve as a sensitiv
probe for the existence of superconducting correlations
such grains. We argued that the interaction energy is an
lytic function of the coupling parameter, with a convergen
radius of approximately 1/lnN. We showed that the BCS
result for the condensation energy can be obtained from
singular part of Richardson’s energy parameters, and tha
correction to the BCS result in the regime whered!D is at
leastD.

ACKNOWLEDGMENTS

M.S. would like to give special thanks to Boris Laikhtma
and Iddo Ussishkin for enlightening discussions. We wo
also like to thank B. L. Altshuler, F. Braun, A. M
Finkel’stein, U. Gavish, M. Kirson, Z. Ovadyahu, and D
Prober for useful discussions. This work was supported
the Israel Academy of Science, the German-Israeli Foun
tion ~GIF!, and the Albert Einstein Minerva Center for Th
oretical Physics at the Weizmann Institute.

APPENDIX A: ACCURACY OF THE ENERGY
APPROXIMATION

In this appendix we show that the relative accuracy of
approximations in Eqs.~15! and~18! is as stated in Eq.~17!.
In this appendix we taked51.

From Eqs.~16! and ~14!, dan5an2an
0 is given by
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dan52 (
j 51(Þn)

2N
dEn

~2 j 22n1dEn!~2 j 22n!

1 (
m51(Þn)

N
2~dEm2dEn!

~2m22n1dEn2dEm!~2m22n!
.

~A1!

For l,1/lnN2c/(ln N)2, we assume~and later check for
consistency! that 0,dEn,1/c for all n. Separating each
sum in Eq.~A1! into a sum over the levels above and belo
n, one can see that udanu,(1/c)•3•2(s@2s(2s
21)# (21)⇒udanu,6/c ~actually a more careful treatmen
can reduce the numerical factor multiplying 1/c to be of
order unity, but this is of no importance here!.

Therefore, one can write

dEn5
l

12lan
01lbn~l!/c

, ~A2!

whereubn(l)u,6. Manipulating the above equation, we o
tain dEn5dEn

01Rn where

Rn52
l2bn~l!

c•@12lan
01lbn~l!/c#•~12lan

0!
. ~A3!

The relative accuracy is therefore

r n~l![U Rn~l!

dEn~l!
U5 lubn~l!u

c•~12lan
0!

. ~A4!

Consider now l,1/ln̂N2c/(ln̂ N)2, and n5N ~the
highest-energy parameter!. Since aN

0 5(ln̂ N1ln̂ N21)/2

. ln̂ N we see thatr N,6/c2.
One can obtain from Eq.~16! thatan

0 increases monotoni
cally with n, and by differentiating Eq.~A4! with respect to
an

0 , r n increases monotonically withan
0 . We conclude that

r n,6/c2 for all n, and thereforedEn5dEn
0@11O(1/c2)# for

all n. In the same way one finds thatdEn,1/c for all n,
consistent with our assumption above.

By summing over alln, one shows that

Eint5Eint
0 @11O~1/c2!#, ~A5!

whereEint
0 is given in Eq.~18!.

To show that the accuracy of the above expression
1/(lnN)2 in the regimel,1/(2lnN) one has to assume~and
later show consistency! that dEn,1/lnN for all n and pro-
ceed as above.

APPENDIX B: APPROXIMATE FORMULA FOR THE
MTH ORDER TERM OF THE INTERACTION ENERGY

In this appendix we expand Eq.~18! for the approximate
interaction energyEint

0 in powers ofl and analyze the con
vergence properties of the resulting series. We begin
showing that the order-lm contribution toEint

0 has the form
8-13
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Eint
0(m)5d lm(

n51

N

~an
0!m21, ~B1!

5H d lm bmN~m21!! for m, ln N,

d lm bm8 ~ ln N!(m21) for m. ln N,
~B2!

wherebm andbm8 are constants of order unity and then an
lyze the consequences of this result. Since we are not in
ested here in numerical factors of order unity, we will allo
ourselves to make some crude approximations.

The expression obtained~18! for the interaction energy
can be written as

Eint
0 5(

m
Eint

0(m)5d(
m

Flm(
n51

N

~an
0!m21G , ~B3!

wherean
0 is given by Eq.~16!. The first-order term is given

trivially by Eint
0(1)5ldN.

The second-order term of the interaction energy is giv
by

Eint
0(2)5l2d(

i 51

N F (
j 51(Þ i )

2N
1

2~ j 2 i !
2 (

j 51(Þ i )

N
1

j 2 i G
5l2d(

i 51

N F (
j 5N11

2N
1

2~ j 2 i !G . ~B4!

This result can also be obtained by standard second-o
perturbation theory~Ref. 26, and references therein!. For
largeN one obtainsEint

0(2)' ln 2l2dN5ln 2l2vD .
The calculation of the higher-order terms is more difficu

We now make some approximations that enable us to
the mth order within a factor of order unity.

First we manipulate thean
0’s ~16! and obtain

an
05

1

2 F (
k51

n21
1

k
2 (

k51

N2n
1

k
1 (

k5N2n11

2N2n
1

kG . ~B5!

This can be approximated by

an
05

1

2
ln@2~N11!/n21#2 ln@~N11!/n21#. ~B6!

For n!N one obtainsan
0.2 ln(N/n)/2, and for n.N

~meaningN2n!N) one obtainsan
0. ln(N/n).

We now make a crude approximation:

(
n51

N

~an
0!m21.F12S 1

2D m21G(
j 51

N

@ ln~N/ j !#m21. ~B7!

This approximation is proper only for then ’s that are
either small or close toN. However, since thesen ’s contrib-
ute the most to the sum, we expect this approximation to
correct within a numerical factor of order unity. Indeed, f
m52, the last sum in Eq.~B7! approximately equalsN, and
the total result we obtain, 0.5N, is different than the correc
result ln 2•N only by a factor of order unity. Increasingm,
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the approximation becomes better, since the relative con
bution of the levels far fromN decreases. Form.2 we ne-

glect the factor (12 )m in Eq. ~B7!. For m@ ln N only the j
51 term in Eq.~B7! contributes, andEint

0(m) is approximated
by lm

• ln N(m21). For m! ln N one can show that

~m21!!N2 ln N(m21),(
j 51

N

@ ln~N/ j !#m21,~m21!!N

~B8!

and therefore( j 51
N @ ln(N/j)#m21.(m21)!N.

Having thus established Eq.~B1!, let us now examine its
consequences. First, since the low powers in the series
Eint

0 fulfill the relation Eint
0(m11)/Eint

0(m).m•l, whereas the
high powers fulfill the relationEint

0(m11)/Eint
0(m).l• ln N, the

series forEint
0 does not have a single parameter describ

the ratio between consecutive terms in the series.
Second, while the high powers dictate the converge

radius of the series to be roughly 1/lnN, their contribution is
larger than that of the low powers only forl*1/lnN
21/(lnN)2, introducing a scale of 1/(lnN)2 near l51/lnN
~see also Sec. VI!. This can be seen by estimating the part
sum of Eq.~B3! for m> ln N using the result in Eq.~B2!.
Taking bm8 51 for all m we get

(
m5 lnN

`

lm~ ln N!m215
~l ln N! ln N

ln N~12l ln N!
. ~B9!

For l51/lnN2c/(ln N)2 for anyc*1, the above sum equal

~12c/ ln N! ln N

c
'

e2c

c
, ~B10!

which is smaller than one, while the low orders are prop
tional to N.

Third, for l,1/lnN21/(lnN)2, where the low powers
dominate, one readily obtains

Eint
0 5lNd1Eint

0(2)@11O~1/lnN!#. ~B11!

Here the first-order termlNd is the Hartree term, and th
second-order termEint

(2)' ln 2•l2vD is obtained from Eq.
~B4!. The order 1/lnN can be understood as follows. Th
third-order term is smaller than the second-order term b
factor of orderl, which is smaller than 1/lnN. All the higher
orders are smaller than the second-order term by a facto
order 1/(lnN)2 or smaller, and since there are about lnN such
terms, their sum is also approximately 1/lnN smaller than the
second-order term.

The corresponding perturbative result for the conden
tion energyEcond

0 [Econd
pert now immediately follows by in-

serting Eq.~B11! into Eq. ~11! ~with k5N). The result is
given by Eq.~22!, namely,Econd

pert (l). ln 2•l2vD .

APPENDIX C: SERIES EXPANSION
OF THE INTERACTION ENERGY

In Eq. ~18! we obtained an expression for the interacti
energy, whose accuracy for different regimes in the ran
8-14
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l,1/lnN was obtained in Appendix A. We then expand
the result in a series inl. This series converges, in the r
gimel,1/ln̂N, to the approximate result. We were not ab
to find a series that converges to the exact result for
interaction energy in the above regime. However, we
tained results that suggest that the interaction energy is
lytical on the positive real axis of the coupling parameter a
can be expanded in a series inl with a finite convergence
radius that equals 1/(lnˆN1b), whereb is of order unity~Sec.
VI !. As another check of the above statement we solv
numerically, Richardson’s equations~8! for complex values
of l and calculated the integral

E
C
Eint~z!dz, ~C1!

where C is a contour circumventing the positive real ax
~see Fig. 7!.

The integral was calculated for variousN’s in the range
4,N,64 ~a few contours for eachN, each extending to a
different value of Rel, up to Rel50.7). For allN the inte-
grals were zero within the numerical error, which sugge
that there are no singularities on the positive real axis.
s.

ev

l

21451
e
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d

d,

ts

The exact interaction energy is given by Eq.~10!. Ex-
panding the exact expression asEint5d(l51

` amlm, we find
that

am5(
n

S ~an
0!(m21)1 (

s51

m23

bs~an
0!sD . ~C2!

The approximation we make in Eq.~18! is equivalent to
taking only the highest power (m21) in Eq. ~C2! for each
m,n and neglecting the sum in the brackets.

FIG. 7. An integration contour in the complexl plane.
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