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Analytical calculation of the finite-size crossover spectrum
of the anisotropic two-channel Kondo model
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We present a conceptually simple, analytical calculation of the finite-size crossover spectrum of the aniso-
tropic two-channel Kondo~2CK! model at its Toulouse point. We use Emery and Kivelson’s method, gener-
alized in two ways. First, we construct all boson fields and Klein factors explicitly in terms of the model’s
original fermion operators and, secondly, we clarify explicitly how the Klein factors needed when refermion-
izing act on the original Fock space. This enables us to follow the evolution of the 2CK model’s free-fermion
states to its exact eigenstates for arbitrary magnetic fields and spin-flip coupling strengths. We thus obtain an
analytic description of the crossover of the finite-size spectrum to the non-Fermi-liquid fixed point, where we
recover the conformal field theory results~implying a direct proof of Affleck and Ludwig’s fusion hypothesis!.
From the finite-size spectrum we extract the operator content of the 2CK fixed point and the dimension of
various relevant and irrelevant perturbations. Our method can easily be generalized to include various
symmetry-breaking perturbations, and to study the crossover to other fixed points produced by these. Further-
more, it establishes instructive connections between different renormalization group schemes. We also apply
our method to the single-channel Kondo model.
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I. INTRODUCTION

One of the most intriguing aspects of a non-Fermi liqu
~NFL! is that its elementary excitations are not simply
lated to the bare excitations of the non-interacting Fermi
uid; gaining an understanding of the nature of the elemen
excitations of a NFL is thus an important conceptual ch
lenge. The two-channel Kondo~2CK! model, introduced in
1980 by Nozie`res and Blandin,1 is one of the simplest and
most-studied quantum impurity models with NFL behavi
and offers the rare opportunity to address this question
rectly: it has both a free and a NFL fixed point, and t
crossover between the two, including the change in the
ture of the elementary excitations, can be analyzed exa
using the bosonization approach of Emery and Kivels2

~EK!.
In the 2CK model two channels of spinful conductio

electrons interact with a single spin 1/2 impurity via a loc
antiferromagnetic exchange interaction. In contrast to
single-channel Kondo~1CK! model, which has a stabl
infinite-coupling fixed point at which the conduction ele
trons screen the impurity spin completely, in the two-chan
case the impurity spin isoverscreenedat infinite coupling,
and the 2CK model’s infinite-coupling fixed point is un
stable. A stable NFL fixed point exists at intermediate co
pling, and is characterized by a nonzero residual entropy
nonanalytical behavior for various physical quantities. T
relevance of this model to physical systems is extensiv
reviewed in Ref. 3.

In this paper, we use EK’s method to perform a conc
tually simple, analytic calculation of the finite-size crossov
spectrum of the 2CK model between the free and the N
PRB 610163-1829/2000/61~10!/6918~16!/$15.00
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fixed points, a result first reported in Ref. 4. The calculati
enables us to elucidate the nature of the NFL excitation
the fixed point in great and instructive detail, and to s
explicitly how the symmetries of the NFL fixed point emerg
as it is approached from the crossover region. Furthermo
establishes instructive connections between various pop
renormalization group~RG! schemes, since it allows one t
analytically illustrate their main ideas.

The two-channel Kondo model has of course already b
studied theoretically by an impressive number of differe
methods, which are comprehensively reviewed in Ref.
They include approximate methods such as multiplicative1,5,6

and path-integral7,8 RG approaches and slave-bos
methods;9–11 effective models such as the so-called comp
tified model,12–15 which is partially equivalent to the 2CK
model; the numerical RG~NRG!;16–18 and exact methods
such as the Bethe ansatz,19–21 conformal field theory
~CFT!,18,22–24and Abelian bosonization.2,4,25–30

Among the several exact approaches to solving the 2
model, the one that in our opinion is the most simple a
straightforward, is that introduced by Emery and Kivels
~EK!,2 who employ one-dimensional Abelian bosonizati
~pedagogically reviewed in Ref. 31! and refermionization to
show that along the so-called Emery-Kivelson line~Toulouse
point! the anisotropic 2CK model maps onto aquadratic
resonant-level model. Since spin anisotropy is irrelevant
the 2CK Kondo model18 ~as also shown below!, their work
also yielded new insight into the generic behavior of t
isotropic 2CK model.

Though the approach is constrained to the vicinity of t
EK line, the latter is stable32 and connects the Fermi-liquid
and non-Fermi-liquid regimes, so that EK’s method captu
6918 ©2000 The American Physical Society
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both the model’s NFL behavior and the crossover from
free to the NFL fixed point. EK calculated a number of the
modynamic and impurity properties and also some elec
correlation functions, and explained the NFL behavior by
observation that only ‘‘one half’’ of the impurity’s Majoran
degrees of freedom couples to the electrons. Although at
EK line the properties of the model are somewhat spec
since the leading irrelevant operator vanishes along it,
generic behavior can easily be derived by perturbation the
in its vicinity. The EK method has since been fruitfully a
plied and generalized to several related quantum impu
problems.25–29 Ye in particular showed how to use the E
method and simple scaling arguments27 to identify easily the
fixed points of various bosonizable quantum impurity mo
els, including the k-channel spin anisotropic Kond
model,27~a! and how to calculate electronic correlation fun
tions at these fixed points.

In a recent publication,4 we have shown that the power o
EK-bosonization can actually be increased even more@see
points ~i!–~vi! and ~x!–~xii ! below# by generalizing it tofi-
nite system size L. Though retaining terms of order 1/L natu-
rally requires some additional technical effort, none of t
conceptual simplicity of the EK approach is thereby lost. T
present paper is devoted to presenting the calculations
which the results of Ref. 4 were obtained in explicit deta
and includes discussions of a number of subtleties and re
not mentioned there.

The generalization to finite system size necessitates
important modifications relative to the work of EK.~1!
While they use the field-theoretical approach to bosoniza
in which the bosonization relationca j.Fa je

2 ifa j is used
merely as a formal correspondence, we use the more ca
constructivebosonization procedure of Haldane,33,31 where
both the boson fieldsfa j and Klein factorsFa j are con-
structedexplicitly from the originalca j operators, so that the
bosonization formula becomes an operator identity in F
space.~2! Since EK were interested mainly in impurity prop
erties, they did not need to discuss at all the Klein fact
Fa j @which lower the number ofa j electrons by one and
ensure proper anticommutation relations for theca j ’s#.
However, as has been pointed out by several auth
recently,28,31,34,35these Klein may be extremely important
some situations, and they are essential for quantities like
finite-size spectrum or various electron correlati
functions.33,4 Therefore it is crucial to specify how the ne
Klein factors of the refermionized operators act on the Fo
space. As we shall see, these new Klein factors are only
defined on a suitablyenlargedFock space that also contain
unphysical states, which must be discarded at the end u
certaingluing conditions.

With these modifications, EK’s bosonization approach
ables us by straightforward diagonalization of the quadr
resonant-level model~i! to analytically calculate the cross
over of the 2CK model’s finite-size spectrum from the FL
the NFL fixed point, at which we reproduce the fixed-po
spectrum previously found by CFT using a certain fus
hypothesis~which we thereby prove directly!; ~ii ! to con-
struct the eigenstates of the 2CK model corresponding to
crossover spectrum explicitly, thereby elucidating the nat
of the NFL excitations; and~iii ! to extract the operator con
tent of the NFL fixed point and determine the dimensions
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different relevant and irrelevant operators. We also pro
that the leading irrelevant operator is missing along the
line but is present away from it. Since our method works a
in the presence of an arbitrary magnetic field~unlike CFT!,
we can also~iv! investigate how a finite magnetic field de
stroys the NFL spectrum for the low-energy excitations
the model and restores the FL properties.~v! Furthermore,
our finite-size bosonization approach can easily be relate
various popular RG methods; it therefore not only provide
useful bridge between them, but can potentially be used
pedagogical tool foranalytically illustrating their main ideas.
~vi! For completeness, we also construct the analytical fin
size spectrum of thesingle channel Kondo model, and cal-
culate the crossover between its weak and strong coup
Fermi liquid fixed points.

In a future publication36 we shall show that EK’s method
furthermore allows one~vii ! to construct very easily the sca
tering states of the model;~viii ! to verify explicitly the va-
lidity of the bosonic description of the NFL fixed poin
worked out in Refs. 30 and 27;~ix! to determine the fixed
point boundary conditions at the impurity site for the diffe
ent currents and fields in a very straightforward way,~x! as
well as the leading corrections to these;~xi! to calculate all
correlation functions at and around the NFL fixed point; a
~xii ! to clarify the role of the dynamics of Klein factors i
correlation functions.@Although ~vii ! to ~ix! can also be ob-
tained in a system of infinite size,~x! to ~xii ! turn out to
depend crucially on the finite-size results of the present
per.# This implies that all CFT results can be checked fro
first principles using bosonization.

The paper is organized as follows. In Sec. II we define
2CK model to be studied. For completeness, and since
proper use of Klein factors is essential, Sec. III briefly r
views the ‘‘constructive’’~operator identity-based! approach
to finite-size bosonization used throughout this paper. T
Emery-Kivelson mapping onto a resonant-level model is d
cussed in Sec. IV, using our novel, more explicit formulati
of refermionization within a suitably extended Fock spa
The solution of the resonant level model and the construc
of the NFL spectrum using generalized gluing conditions
presented in Sec. V. In Sec. VI the results of our finite-s
calculations are compared with and interpreted in terms
various RG procedures. In Sec. VII we show the finite-s
spectrum for the 1CK model. Finally, in Sec. VIII we sum
marize our conclusions.

The centerpiece of the main text is our uncommonly ca
ful and detailed finite-size formulation of the EK mappin
Technicalities not related to this mapping are relegated
four Appendixes~see Ref. 37!. Appendix A discusses in
some detail matters related to the choice of an ultravio
cutoff, and also gives the often-used position-space de
tion of the 2CK model, to facilitate comparison with ou
momentum-space version. The construction of the exten
Fock space needed for refermionization is discussed in
pendix B, and the technical details used to diagonalize
resonant-level model and to calculate several of its proper
are given in Appendix C. Finally, in Appendix D we prese
our finite-size bosonization calculation for the one-chan
Kondo model as well.
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II. DEFINITION OF THE MODEL

Throughout the main part of this paper we shall use
standard 2CK Hamiltonian in momentum space. We c
sider a magnetic impurity with spin 1/2 placed at the orig
of a sphere of radiusR5L/2, filled with two species of free
spinful conduction electrons, labeled by a spin indexa
5(↑,↓)5(1,2) and a channel or flavor indexj 5(1,2)5
(1,2). We assume that the interaction between the impu
and the conduction electron is sufficiently short-ranged t
it involves onlys-wave conduction electrons, whose kine
energy can be written as

H05(
ka j

k:cka j
† cka j : ~vF5\51!. ~1!

The operatorcka j
† creates ans-wave conduction electron o

species (a j ) with radial momentumk[p2pF relative to the
Fermi momentumpF , and the dispersion has been lineariz
around the Fermi energy«F : «k2«F'k. The colons in Eq.
~1! denote normal ordering with respect to the free Fermi
or ‘‘vacuum state’’u0W &0:

cka j u0W &0[0 for k.0, ~2a!

cka j
† u0W &0[0 for k<0. ~2b!

The cka j ’s obey standard anticommutation relatio
$cka j ,ck8a8 j 8

† %5dkk8daa8d j j 8 , where due to radial momen
tum quantization the values ofk are quantized:

k5
2p

L
~nk2P0/2!, nkPZ. ~3!

Here P050 or 1, since at zero temperature the chemi
potential~and hencepF) must either coincide with a degen
erate level (P050) or lie midway between two of them
(P051). The level spacing in both cases is

DL52p/L. ~4!

Thes-wave conduction electrons can also be described
a one-dimensional chiral field23~b!

ca j~x![A2p

L (
nkPZ

e2 ikxcka j , S xPF2
L

2
,
L

2G D , ~5!

$ca j~x!,ca8 j 8
†

~x8!%5daa8d j j 82pd~x2x8!. ~6!

In the continuum limitL→`, thex.0 andx,0 portions of
ca j (x) can be associated with the incoming and outgo
scattering states, respectively. Note that forP050 or 1 the
fields ca j (x) have periodic or antiperiodic boundary cond
tions atx56L/2, respectively, henceP0 will be called the
‘‘periodicity parameter.’’

We assume a short-ranged anisotropic exchange inte
tion between the impurity spin and thes-wave conduction
electron spin density at the origin of the form

H int5DL (
m,k,k8
a,a8, j

lmSm :cka j
† S 1

2
saa8

m D ck8a8 j : . ~7!
e
-

y
t

a

l

y

g

c-

Here theSm (m5x,y,z) are the impurity spin operators, wit

Sz eigenvalues (⇑,⇓)5( 1
2 ,2 1

2 ), and thelm’s denote dimen-
sionless couplings:lz generates different phase shifts f
spin-up and spin-down conduction electrons, whilelx[ly
[l' describe spin-flip scattering off the impurity. Finally
we add a magnetic term

Hh5hiSz1heN̂s , ~8!

where hi and he denote the magnetic fields acting on th
impurity and conduction electron spins, respectively, andN̂s
denotes the total spin of the conduction electrons.

Since the constructive bosonization method requires
unbounded spectrum, the fermion bandwidth cutoff is
moved~i.e., taken to be infinite! in the equations above. Thi
ultraviolet cutoff will only be restored when we define th
new Bose fields in Eq.~13! below.

III. BOSONIZATION BASICS

The key to diagonalizing the Hamiltonian is to find th
relevant quantum numbers of the problem and to boson
the Hamiltonian carefully. While bosonization is a wide
used technique, the so-called Klein factors mentioned in
Introduction are often neglected or not treated with suffici
care. In the present section we therefore discuss
bosonization approach in somewhat more detail than us
formulating it as a set ofoperator identities in Fock space,
and emphasizing in particular the proper use of Klein fact
to ladder between states with different particle numbers
Fock space.

A. Bosonization ingredients

As a first step we introduce the operators

N̂a j[(
k

:cka j
† cka j :, ~9!

which count the number of electrons in channel (a j ) with
respect to the free electron reference ground stateu0W &0. The
nonunique eigenstates ofN̂a j will generically be denoted by
uNW &[uN↑1& ^ uN↓1& ^ uN↑2& ^ uN↓2&, where theNa j ’s can be
arbitrary integers, i.e.,NW PZ4.

Next, we define bosonic electron-hole creators by

bqa j
† [

i

Anq
(

nkPZ
ck1qa j

† cka j , ~10!

whereq52pnq /L.0 and thenq are positive integers. The
operatorsbqa j

† create ‘‘density excitations’’ with momentum
q in channela j , satisfy standard bosonic commutation re
tions, and commute with theN̂a j ’s:

@bqa j ,bq8a8 j 8
†

#5dqq8daa8d j j 8 , @bqa j ,N̂a8 j 8#50.
~11!

Among all statesuNW & with givenNW , there is a unique state
to be denoted byuNW &0, that containsno holesand thus has
the defining property



e

m

o

to
a
is

a
fe
in
d
n
.

e

le
r-

h

rd

en
ous

er-

.

tly
te-

f

ant
in-
re-
re

r a

r

c-
e

ved

rs:

d

uc-

PRB 61 6921ANALYTICAL CALCULATION OF THE FINITE-SIZ E . . .
bqa j uNW &050 ~ for any q.0, a, j !. ~12!

We shall call it the ‘‘NW -particle ground state,’’ since in th
absence of interactions nouNW & has a lower energy thanuNW &0;
likewise, no uNW &0 has a lower energy than the ‘‘vacuu
state’’ u0W &0 defined in Eq.~2!. Note, though, that ifP050,
the statesc0a j u0W &0 are degenerate withu0W &0, because then
c0a j removes a zero-energy electron. AnyNW -electron state
uNW & can be written asuNW &5 f (b†)uNW &0, i.e., by acting on the
NW -electron ground state with an appropriate function
electron-hole creation operators.33,31

Next, we define bosonic fields by

fa j~x![ (
q.0

21

Anq

~e2 iqxbqa j1eiqxbqa j
† !e2aq/2. ~13!

Here a;1/pF is a short-distance cutoff; it is introduced
cure any ultraviolet divergences the theory may have
quired by taking the fermion bandwidth to be infinite. It
well known, however, that within thisbosonization cutoff
schemethe coupling constants have different meanings th
for other standard regularization schemes using a finite
mion bandwidth, and that the relations between coupl
constants in different regularization schemes can be foun
requiring that they yield the same phase shifts. This a
other cutoff related matters are discussed in Appendix A37

The fields ]xfa j (x) are canonically conjugate to th
fa j (x)’s

@fa j~x!,]x8fa8 j 8~x8!#52p i „da~x2x8!21/L…daa8d j j 8 ,
~14!

whereda(x)5a/p(x21a2) is the smeared delta function.
As final bosonization ingredient, we need the so-cal

Klein factorsFa j , which ladder between states with diffe
entNa j ’s. By definition, theFa j ’s are required to satisfy the
following relations:

@Fa j ,N̂a8 j 8#5daa8d j j 8Fa j , ~15a!

@Fa j ,bqa8 j 8#5@Fa j ,bqa8 j 8
†

#50, ~15b!

Fa jFa j
† 5Fa j

† Fa j51, ~15c!

$Fa j ,Fa8 j 8
† %52daa8d j j 8 ~15d!

$Fa j ,Fa8 j 8%50 for ~a j !Þ~a8 j 8!. ~15e!

These relations imply thatFa j (Fa j
† ) decreases~increases!

the electron number in channel$a j % by one without creating
particle-hole excitations. As shown in Refs. 33 or 31, t
constructionFa j5a1/2ca j (0)eifa j (0), which explicitly ex-
pressesFa j in terms of the fermion operatorscka j , has all
the desired properties.

B. Bosonization identities

Any expression involving the fermion operatorscka j can
be rewritten in terms of the the Klein factorsFa j and boson
fields fa j defined above. In our notation, the standa
f

c-

n
r-
g
by
d

d

e

bosonization identities33 for the fermion field, density and
kinetic energy take the following forms:31

ca j~x!5Fa ja
21/2e2 i (N̂a j 2P0/2)2px/Le2 ifa j (x), ~16!

1

2p
:ca j

† ~x!ca j~x!:5
1

2p
]xfa j~x!1N̂a j /L, ~17!

H05(
a j

DL

2
N̂a j~N̂a j112P0!1 (

a j
q.0

qbqa j
† bqa j . ~18!

Several comments are in order:~i! in the limit a→0 Eqs.
~16! to ~18! are not mere formal correspondences betwe
the fermionic and bosonic expressions, but hold as rigor
operator identities in Fock space. For aÞ0, they should be
viewed as conveniently regularized redefinitions of the f
mion fields and densities~see37 Appendix A 2!. ~ii ! The
Klein factorsFa j in Eq. ~16! play a twofold role: First, by
Eq. ~15a! they ensure that the right-hand side of Eq.~16!
acting on any state indeed does lower the number ofa j
electrons by one, just asca j does; and secondly, by Eqs
~15d! and ~15e! they ensure that fields with different (a j )’s
do have the proper anticommutation relations~6!. ~iii ! In
Eqs.~18! the firstDL term is just0^NW uH0uNW &0, the energy of
the NW -particle ground stateuNW &0 relative to u0W &0. Since the
Klein factors do not commute with this term, they eviden
cannot be neglected when calculating the full model’s fini
size spectrum, for which all terms of orderDL must be re-
tained. The second term of Eq.~18! describes the energy o
electron-hole excitations relative tou0W &0.

IV. EMERY-KIVELSON MAPPING

In this section, we map the 2CK model onto a reson
level model, using a finite-size version of the strategy
vented by Emery and Kivelson: using bosonization and
fermionization, we make a unitary transformation to a mo
convenient basis, in which the Hamiltonian is quadratic fo
certain choice of parameters.

A. Conserved quantum numbers

The quantum numbersNa j of Eq. ~9! are conserved unde
the action ofH0 , Hh, and Hz ~the lz term of H int[Hz
1H'), but fluctuate under the action of the spin-flip intera
tion H' ~the l' term!. On the other hand, the total charg
and flavor of the conduction electrons is obviously conser
by all terms in the Hamiltonian, includingH' . Therefore it
is natural to introduce the following new quantum numbe

S N̂c

N̂s

N̂f

N̂x

D [
1

2S 1 1 1 1

1 21 1 21

1 1 21 21

1 21 21 1

D S N̂↑1

N̂↓1

N̂↑2

N̂↓2

D , ~19!

where 2N̂c , N̂s , andN̂f denote the total charge, spin, an

flavor of the conduction electrons, andN̂x measures the spin
difference between channels 1 and 2. Clearly, any cond
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6922 PRB 61GERGELY ZARÁND AND JAN von DELFT
tion electron stateuNW & can equally well be labeled by th
corresponding quantum numbersNW [(Nc ,Ns ,Nf ,Nx).
However, whereas theNa j ’s take arbitrary independent inte
ger values, theNW ’s generated by Eq.~19! ~with NW PZ4) can
easily be shown to satisfy the followingfree gluing condi-
tions:

NW P~Z1P/2!4, ~20a!

Nc6Nf5~Ns6Nx!mod 2, ~20b!

where theparity index Pequals 0 or 1 if the total number o
electrons is even or odd, respectively. Equation~20a! formal-
izes the fact that the addition or removal of onea j electron
to or from the system changeseachof theNy’s by 61/2, so
that they are either all integers or all half-integers. Equat
~20b! selects from the set of allNW of the form ~20a! the
physical ones for whichNW PZ4, and eliminates the unphys
cal ones for whichNW P(Z11/2)4.

In the new basis,Nc andNf are conserved; moreover,Ns
fluctuates only ‘‘mildly’’ between the valuesST71/2, since
the total spin

ST[Ns1Sz ~21!

is conserved. In contrast,Nx fluctuates ‘‘wildly,’’ because an
appropriate succession of spin flips can produceanyNx that
satisfies Eq.~20b!, as illustrated in Fig. 1.This wildly fluc-
tuating quantum number will be seen below to be at the he
of the 2CK model’s NFL behavior.In revealing contrast, the
1CK model, which shows no NFL behavior, lacks such
wildly fluctuating quantum number~see Appendix D!.

SinceST , Nc, andNf are conserved, the Fock spaceFphys
of all physical states can evidently be divided as follows in
subspaces invariant under the action ofH:

Fphys5 (
% 8ST ,Nc ,Nf

Sphys~ST ,Nc ,Nf !, ~22!

Sphys~ST ,Nc ,Nf !5 (
% 8Nx

$uNc ,ST21/2,Nf ,Nx ;⇑&

% uNc ,ST11/2,Nf ,Nx11;⇓&%.

~23!

In both equations the prime on the sum indicates a restric
to thoseNy’s that satisfy the free gluing conditions~20!. To

FIG. 1. Under a succession of spin flips,Ns fluctuatesmildly
betweenST71/2 ~hereST51/2); in contrast,Nx fluctuateswildly,
since it can acquireanyvalue consistent with the gluing condition
~20!. The dotted line represents the reference energy 0 up to w
the free Fermi sea is filled forP051, the filled and empty circles
represent filled and empty single-particle states with energyk,
which increases from left to right.
n

rt

n

diagonalize the Hamiltonian for givenST , Nc, and Nf , it
evidently suffices to restrict one’s attention to the cor
sponding subspaceSphys(ST ,Nc ,Nf).

B. Emery-Kivelson transformation

Following Emery and Kivelson, we now introduce,
analogy to Eq.~19!, new electron-hole operators and bos
fields via the transformations

bqy[(
a j

Ry,a j bqa j

wy[(
a j

Ry,a j fa j

J ~y5c,s, f ,x!, ~24!

where Ry,a j is the unitary matrix in Eq.~19!. These obey
relations analogous to Eqs.~11! and~14!, with a j→y. More-
over, we defineuNW &0, theNW -particle vacuum state, to satisf
bqyuNW &050, as in Eq.~12!. If NW and NW are related by Eq.
~19!, then the statesuNW &0 and uNW &0 are equal up to an unim
portant phase~see37 Appendix B!, because both have th

sameN̂a j andN̂y eigenvalues and both are annihilated by
bqa j ’s andbqy’s.

Using the quantum numbersN̂y and the bosonic fields
wy(x), theH0 of Eq. ~18! becomes

H05DLF N̂c~12P0!1(
y

N̂y
2/2G1 (

y, q.0
qbqy

† bqy ,

~25!

while Eqs.~17! and ~16! are used to obtain, respectively,

Hz5lz@]xws~0!1DLN̂s#Sz , ~26!

H'5
l'

2a
@e2 iws(0)S1~F↓1

† F↑1e2 iwx(0)

1F↓2
† F↑2eiwx(0)!1H.c.#. ~27!

Equations~25!–~27! and~8! constitute the bosonized form o
the Hamiltonian for the anisotropic 2CK model,up to and
including terms of orderDL.

Next we simplifyHz . It merely causes a phase shift in th
spin sector, which can be obtained explicitly using a unita
transformation~due to EK! parametrized by a real numberg,
to be determined below:

H→H85UHU†, U[eigSzws(0). ~28!

The impurity spin, spin-diagonal part ofH, spin boson field
and fermion fields then transform as follows~using, e.g., the
identities in Appendix C of Ref. 31!:

S6→US6U†5e6 igws(0)S6 , ~29!

H01Hz→H01~lz2g!]xws~0!Sz1lzDLN̂sSz

1g2@1/~4a!2p/~4L !#, ~30!

ws~x!→ws~x!22gSz arctan~x/a! ~ uxu!L !, ~31!

ca j~x!→ca j~x!eiagSz arctan(x/a) ~ uxu!L !. ~32!

ch
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Equation~30! is most easily derived in the momentum-spa
representation, but for Eq.~31!, the position-space represe
tation is more convenient@first evaluateU]xws(x)U21 using
Eq. ~14!, then integrate#. Equation ~32! follows from Eq.
~31!, sinceca j}e2 iaws/2.

Recalling that]xws(x)/2p contributes to the conductio
electron spin density, we note by differentiating Eq.~31! that
the EK transformation produces a change in the spin den
of 22gSzpda(x)/2p, and thus ties a spin of2gSz from the
conduction band to the impurity spinSz .

To eliminate theSz]xws term in Eq.~30!, we now choose
g[lz ; then the spin-flip-independent part of the Ham
tonian takes the form

H8~l'50!5lzDLN̂sSz1(
y

DLN̂y
2/21 (

y, q.0
qbqy

† bqy

1Hh1const, ~33!

andH'8 contains the factorse6 i (12lz)ws(0). These factors are
simply equal to 1 at theEmery-Kivelson linelz51, where
H'8 simplifies to

H'8 5
l'

2a
@S1~F↓1

† F↑1e2 iwx(0)1F↓2
† F↑2eiwx(0)!1H.c.#.

~34!

We shall henceforth focus on the caselz51, which will
enable us to diagonalize the model exactly by refermion
tion. Deviations from the EK line will be shown in Sec. VI
to be irrelevant, by takingg51 but lz511dlz , and doing
perturbation theory in

dHz85dlz@]xws~0!1DLN̂s#Sz . ~35!

The crucial property of the EK line is that it contains th
NFL intermediate-coupling fixed point. A Heuristic way t
see this it to note that on the EK line, the impurity spin is
fact ‘‘perfectly screened:’’ the spin2gSz from the conduc-
tion band, that is tied to the impurity by the EK transform
tion, is equal to2Sz if g5lz51. It thus precisely ‘‘can-
cels’’ the impurity’s spin Sz , and forms a ‘‘perfectly
screened singlet’’ withzero total spin ~without breaking
channel symmetry!, in agreement with the heuristic argu
ments of Nozie`res and Blandin.1

Of course, there are more rigorous ways of seeing that
NFL fixed point lies on the EK line. First, forlz51 it fol-
lows from Eq. ~32! that the phase shiftd of the outgoing
relative to the incoming fields, defined byca j (0

2)
[ei2dca j (0

1) ~with u06u@a), is udu5p/4, which is just the
value known for the NFL fixed point from othe
approaches.7,18 Secondly, we shall deduce in Sec. VI C fro
an analysis of the finite-size spectrum that the leading ir
evant operators with dimensions 1/2 vanish exclusiv
along this line, but not away from it. Since the presence
absence of the leading irrelevant operators strongly in
ences the low-temperature properties of the model such a
critical exponents,2,26 and since these must stay invariant u
der any RG transformation, one concludes that the Em
Kivelson line must be stable under RG transformations.
ity
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C. Refermionization

1. Definition of new Klein factors

The most nontrivial step in the solution of the model
the proper treatment of Klein factors when refermionizi
the transformed Hamiltonian. In their original treatment E
did not discuss Klein factors at all and simply identifie
e2 iwx(x)/Aa as a new pseudofermion fieldcx(x). Though
this was adequate for their purposes, the proper considera
of the Klein factors and gluing conditions is essential f
solving the model rigorously and obtaining the finite-si
spectrum. Other authors tried to improve the Eme
Kivelson procedure by representing the Klein factors
Fa j;e2 iQa j , whereQa j is a ‘‘phase operator conjugate t
N̂a j , ’’ and added these to the bosonic fieldsfa j before mak-
ing the linear transformation~24!. This procedure is prob-
lematic, however, since thene2 iwy(0) contains factors such a
e2 iQa j /2, which are ill defined~see Appendix D 2 of Ref. 31!.

A rigorous way of dealing with Klein factors when refe
mionizing was presented in Ref. 4~and adapted in Ref. 31 to
treat an impurity in a Luttinger liquid!: We introduce a set of
ladder operatorsF y

† and Fy (y5c,s, f ,x) to raise or lower
the quantum numbersNy by 61, with, by definition, the
following properties:

@Fy ,N̂y8#5dyy8Fy , ~36a!

@Fy ,bqy8#5@Fy ,bqy8
†

#50, ~36b!

FyF y
†5F y

†Fy51, ~36c!

$Fy ,F y8
† %52 dyy8 , ~36d!

$Fy ,Fy8%50 for yÞy8. ~36e!

Now, note that the action of any one of the new Klein facto
Fy or F y

† respects the first of the free gluing condition
~20a!, but not the second, Eq.~20b!. More generally, Eq.
~20b! is respected only by products of anevennumber of
new Klein factors, but violated by products of anodd num-
ber of them. This implies that the physical Fock spaceFphys

of all uNW & satisfying both Eqs.~20a! and ~20b! is closed
under the action of even but not of odd products of n
Klein factors.The action of arbitrary combinations of new
Klein factors thus generates an extended Fock spaceFext,
which containsFphys as a subspace and is spanned by the
of all uNW & satisfying Eq.~20a!, including unphysical states
violating Eq. ~20b!. In Appendix B we show thatFphys can
indeed be embedded inFext by explicitly constructing a se
of basis states forFext.

37

Sinceoddproducts ofFy’s lead out ofFphys, theycannot
be expressed in terms of the original Klein factorsFa j ,
which leaveFphys invariant. However, the Hamiltonian con
tains onlyevenproducts of old Klein factors. Now, any com
binationFa j

† Fa8 j 8 or Fa j
† Fa8 j 8

† of Klein factorsjust changes
two of the Na j quantum numbers.Using Eq.~19! to read off
the corresponding changes inNy , we can thus make the
following identifications betweenpairs of the old and new
Klein factors:
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F x
†F s

†[F↑1
† F↓1 , FxF s

†[F↑2
† F↓2 , ~37a!

F x
†F f

†[F↑1
† F↑2 , F c

†F s
†5F↑1

† F↑2
† . ~37b!

These relations, which each involve an arbitrary choice
sign, can be used to express any product of two old Kl
factors in terms of two new ones, e.g.,F s

†F f
†

52(FxF s
†)(F x

†F f
†)5F↑1

† F↓2. Since relations~37! by con-
struction respect Eq.~19! ~as can be checked by acting o
any uNW &), they, and all similar bilinear relations derived fro
them, also respect both free gluing conditions~20!.

We can thus replace the Klein factor pairs occurring
Eq. ~34! by the ones in Eq.~37a!:

H'8 5
l'

2a
@S1Fs~Fxe

2 iwx(0)1Fx
†eiwx(0)!1H.c.#. ~38!

The only consequence of this change is that we now wor
the extended Fock spaceFext, and will diagonalizeH8 not in
the physical invariant subspaceSphys(ST ,Nc ,Nf) of Eq.
~23!, but in the corresponding extended subspa
Sext(ST ,Nc ,Nf), given by an equation similar to Eq.~23!,
but with the % 8Nx sum now restricted only to satisfy Eq
~20a!, not also Eq.~20b!. At the end of the calculation we
shall then use the gluing condition~20b! to discard unphysi-
cal states. This approach is completely analogous to the
of gluing conditions in AL’s CFT solution of the 2CK
model. It is also somewhat analogous to Abrikoso
pseudofermion technique38 of representing a spin operato
via pseudofermions acting in an enlarged Hilbert space,
projecting out unphysical states at the end.

2. Pseudofermions and refermionized Hamiltonian

We now note thatH'8 of Eq. ~38! can be written in a form
quadratic in fermionic variables

H'8 5
l'

2Aa
@cx~0!1cx

†~0!#~cd2cd
†!, ~39!

by defining a local pseudofermioncd and a pseudofermion
field cx(x) by the following refermionization relations:

cd [Fs
†S2 , cd

†cd5Sz11/2, ~40!

cx~x! [Fxa
21/2e2 i (N̂x21/2)2px/L e2 iwx(x) ~41a!

[A2p

L (
k̄

e2 i k̄xck̄x , ~41b!

where Eq.~41b! defines theck̄x as Fourier coefficients of the
field cx(x). For reasons discussed below, the fieldcx in Eq.
~41a! has been defined in such a way that its boundary c
dition at6L/2 is P dependent, sinceNxPZ1P/2 andwx(x)
is a periodic function. Thus the quantizedk̄ momenta in the
Fourier expansion~41b! must have the form

k̄5DL@nk̄2~12P!/2# ~nk̄PZ!. ~42!

The new pseudofermions were constructed in such a
that they satisfy the following commutation-anticommutati
relations:
f
n

in

e

se

d

n-

y

$ck̄x ,ck̄8x
†

%5d k̄k̄8 , $cd ,cd
†%51, ~43!

$cd ,ck̄x
†

%5$cd ,ck̄x%50, ~44!

@cd ,N̂s#5cd , ~45!

which follow directly from the properties ofwx and Eqs.
~36!. Note thatcd lowers the impurity spin, raises the tota
electron spinN̂s and hence conserves the total spinST ,
whereascx conserves each of the impurity, electron and to
spins.

To relate the number operator for the ne
x-pseudofermions to the quantum numberNx , we must de-
fine a free reference ground state, sayu0&Sext

, in the extended

subspaceSext, with respect to which the number of pseud
fermions are counted. In analogy to Eq.~2!, we define it by

ck̄xu0&Sext
[0 for k̄.0, ~46a!

ck̄x
† u0&Sext

[0 for k̄<0, ~46b!

cdu0&Sext
[0 for «d.0, i.e., nd

(0)[0, ~46c!

cd
†u0&Sext

[0 for «d<0, i.e., nd
(0)[1. ~46d!

Here«d , whose value will be derived below@see Eq.~52!#,
is the energy of thecd pseudofermion, andnd

(0) denotes its
occupation number in the reference ground stateu0&Sext

. Us-
ing colons to henceforth denote normal ordering of t
pseudofermions with respect tou0&Sext

, we have :cd
†cd :

5cd
†cd2nd

(0) . Furthermore, we define the number opera

for the x pseudofermions byN̂̄x[( k̄ :ck̄x
†

ck̄x :. Then

N̂̄x5N̂x2P/2 ~47!

holds as an operator identity. This can be seen intuitively
noting thatcx;Fx;ck̄x @by Eq. ~41!#, hence the application
of cx ~or cx

†) to a state decreases~or increases! bothNx and

N̄x by one. These two numbers can thus differ only by
constant, which must ensure thatN̄x is an integer. Our defi-
nition ~46! of u0&Sext

effectively fixes this constant to beP/2,

by settingN̄x50 for Nx5P/2 ~see Appendix A 3 for a rig-
orous argument37!.

We are now ready to refermionize the HamiltonianH8.
The kinetic energy of thek̄ pseudofermions obeys

(
k̄

k̄:ck̄x
†

ck̄x :5
DL

2
N̂̄x~ N̂̄x1P!1(

q
q bqx

† bqx , ~48!

an operator identity which follows by analogy with Eqs.~1!

and ~18! ~also see37 Appendix A 3!. Now note thatN̂̄x( N̂̄x

1P)5N̂x
22P/4, i.e., Eq.~48! doesnot contain a term linear

in N̂x . Actually, the choice of the phasee2 i (N̂x21/2)2px/L in
our refermionization ansatz~41a! for cx(x) was made spe-
cifically to achieve this. Hence Eq.~48! can be directly used
to represent the kinetic energy of thex sector in Eq.~25! in
terms ofck̄x fermions:



h
he

on
o

l-

a
t

o

u

om

y
ctor
rs
al
t

-

o-

ing:
urns

e
ec-

se

PRB 61 6925ANALYTICAL CALCULATION OF THE FINITE-SIZ E . . .
Hx05DLN̂x
2/21 (

q.0
qbqx

† bqx ~49a!

5(
k̄

k̄:ck̄x
†

ck̄x :1DLP/8. ~49b!

As a check, note that this equation also follows from t
following observations. First, the equation of motion for t
field cx(x), expressed as Eq.~41a! or ~41b!, is the same
when calculated using Eq.~49a! or ~49b!, respectively, and
therefore the latter two expressions can differ only by a c
stant; and secondly, this constant can be determined t
DLP/8, by requiring the free ground state energies foru0&Sext

given by the two expressions to be the same.
Finally, in the subspaceSphys @of Eq. ~23!# and hence also

in Sext, we can use Eqs.~21! and ~40! to expressN̂sSz and

N̂s
2 in terms ofcd

†cd . Thus, the EK-transformed 2CK Hami
tonian of Eqs.~33! and ~34! takes the form

H85Hcs f1Hx1EG1const, ~50!

Hcs f5 (
c,s, f

(
q.0

qbqy
† bqy , ~51!

Hx5«d :cd
†cd :1(

k̄

k̄:ck̄x
†

ck̄x :

1ADLG(
k̄

~ck̄x
†

1ck̄x!~cd2cd
†!, ~52!

EG5DL@Nc~12P0!1~N c
21N f

21ST
221/4!/21P/8#

1«d~nd
(0)21/2!1SThe . ~53!

The charge, spin, and flavor degrees of freedom inHcs f evi-
dently decouple completely.Hx in Eq. ~52! has the form of a
quadratic resonant level model whose ‘‘resonant level’’ h
energy«d and widthG, where«d[hi2he is the energy cos
for an impurity spin-flip, andG[l'

2 /4a, which will be iden-
tified below as the Kondo temperature.

EG is the ‘‘free ground state energy’’ of the subspaceSext
in the presence of magnetic fields. ItsSThe term implies that
the magnetic fields donot enter only in the combinationhi
2he of «d , thus the role of the magnetic fieldhe applied to
the conduction electrons is somewhat different from that
the local fieldhi . Note though, that forhe52nDL ~with n
PZ) the SThe term can formally be absorbed~up to a total
energy shift! by introducing a ‘‘new total spin’’ST85ST

12n, since thenDLST
2/21SThe5DLST8

2/222n2DL . Now,
since the construction of the complete finite-size spectr
involves enumerating all possible values ofST , and since the
generalized gluing condition~69! to be derived below is in-
variant underST→ST12n, the finite-size spectrum forhe
52nDL and a local fieldhi ~so that«d5hi22nDL) will be
identical to that forhe50 and a local field ofhi22nDL ~so
that «d is unchanged!. The origin of this ‘‘periodicity’’ is
that ashe increases, at each value 2nDL a ‘‘level crossing’’
occurs in which the free-electron ground state changes fr
say,uNc ,Ns ,Nf ,Nx&0 to a new one differing from itonly in
e

-
be

s

f

m

,

the spin quantum number, namely,uNc ,Ns22,Nf ,Nx&0, by
flipping the topmost spin-↑ electrons in both channelsj
51,2 to↓.

For general valuesheÞ2nDL , there is no such symmetr
~essentially since electron-hole symmetry in the spin se
is lost!, and the corresponding finite-size spectrum diffe
from that at the periodicity points in that some addition
splittings of states occur.39 For simplicity we henceforth se
he50 and consider only a local magnetic field, with«d
[hi , but the more general caseheÞ0 can be treated com
pletely analogously.

V. FINITE-SIZE SPECTRUM OF 2CK MODEL

A. Diagonalization of H x

SinceHcs f is trivial, we just have to diagonalize the res
nant level partHx in the extended subspaceSext(ST ,Nc ,Nf),
which is straightforward in principle, sinceHx is quadratic.
However, special care is needed regarding normal order
the change in ground state energy due to the interaction t
out to be of order2G, and the subleading~state-dependent!
contributions of orderDL relative to this energy have to b
extracted carefully when constructing the finite-size sp
trum.

As first step, we define new fermionic excitations, who
energies are strictly non-negative,

a k̄[~ck̄x1c
2 k̄x
†

!/A2

b k̄[2 i ~ck̄x2c
2 k̄x
†

!/A2
J for k̄.0, ~54a!

a0[c0x
† for k̄50 if P51, ~54b!

ad[H cd for «d.0,

cd
† for «d<0,

~54c!

where theb k̄’s decouple completely from the impurity:

Hx5 (
k̄>0

k̄a k̄
†
a k̄1 (

k̄.0

k̄b k̄
†
b k̄1u«duad

†ad

1 (
k̄>0

Vk̄~a k̄
†
1a k̄!~ad2ad

†!. ~55!

Here the possiblek̄ values are given by Eq.~42!, and the
hybridization amplitudesVk̄ by

V0[Vk̄Þ0 /A2[eipnd
(0)AGDL. ~56!

Note that in Eq.~54! we purposefully definedan
† and b k̄

†

such that the free reference ground stateu0&Sext
, by Eq.~46!,

containsno an
† or b k̄

† excitations, i.e.,adu0&Sext
5a k̄u0&Sext

5b k̄u0&Sext
50. Note too thatad

†u0&Sext
is degenerate with

u0&Sext
if «d50, as isa0

†u0&Sext
in the odd electron sector,P

51. ~Figure 5 of Appendix C 5 illustrates these facts.!
Since the Hamiltonian Eq.~55! is quadratic, it can be

diagonalized by a Bogoliubov transformation

Hx5 (
k̄.0

k̄b k̄
†
b k̄1 (

«>0
«ã«

†ã«1dEG , ~57!
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ã«
†5 (

nP$k̄,d%
(

n56
B«nn~an

†1nan!/2, ~58!

wheredEG denotes the ground state energy shift of thein-

teracting vacuumu0̃&Sext
, defined as

ã«u0̃&Sext
5b k̄u0̃&Sext

[0. ~59!

The non-negative eigenenergies« and the coefficientsB«nn

are determined from the usual relations

@Hx ,ã«
†#5«ã«

† , $ã«
† ,ã«8%5d««8 . ~60!

These are solved explicitly in Appendix C,37 with the follow-
ing results. The excitation energies« are the non-negative
roots of the transcendental equation

«4pG

«22«d
2 52cotp~«/DL2P/2!, ~61!

and the ground state energy shift is

dEG5
u«du
2

1 (
k̄>0

k̄

2
2 (

«>0

«

2
. ~62!

For «.0, the coefficientsB«nn are given by

B«d15%~«!u«du, B«d25%~«!«, ~63a!

B« k̄15%~«!
2Vk̄ «2

«22 k̄2
, B« k̄25%~«!

2Vk̄« k̄

«22 k̄2
, ~63b!

where the normalization factor%(«) is

%~«!5F 2DLG

1

4
~«22«d

2!21DLG~«21«d
2!14p2G2«2G 1/2

.

~64!

For «50, the coefficientsB0nn must be considered sepa
rately and are given in Appendix C 2 b.37 Equations~51!,
~53!, ~57!, and~61!–~64!, together with the gluing condition
~69! discussed in the next subsection, constitute a comp
analytic solution of the 2CK model along the EK line.

B. Evolution of excitation energies

The eigenvalue equation~61! is a central ingredient of ou
analytical solution, since it yields the exact excitation en
gies« of Hx , and also allows one to explicitly identify th
various crossover scales of the problem. Let the labej
50,1,2,. . . , enumerate, in increasing order, the solutio
« j ,P of Eq. ~61! in a sector with parityP. Their smooth
evolution as functions ofG and u«du can readily be under
stood by a graphical analysis of Eq.~61!, and is shown in
Figs. 2~a! and 2~b! for P50 and 1, respectively. All but the
lowest-lying j 50 solutions can be parametrized as

« j ,P5DLF j 2
1

2
2

P

2
1d j ,PG , j 51,2,3,. . . , ~65a!

where d j ,PP@0,1# is the shift of « j ,P /DL from its G5«d
50 value and is determined self-consistently by
te,

-

s

d j ,P5
1

2
1

1

p
arctan

1

4p F Th

« j ,P
2

« j ,P

G G , ~65b!

with Th[«d
2/G. The lowest-lying modes are given by

«0,0

DL
5H 0 for «d50,

~21/21d0,0!P~0,1/2# for «dÞ0,
~66a!

«0,150 for all G,«d ~66b!

~see also Appendix37 C 2 b!.
Equation~65b! shows very nicely thatG andTh are cross-

over scales: First, in the absence of magnetic fields, i.e.,
u«du5uhi u5Th50, the spectral regimebelow G is strongly
perturbed @d j ,P.1/2 for « j ,P!G], whereasabove G it is
only weakly perturbed@d j ,P.0 for « j ,P@G]. It is thus natu-
ral to identify the crossover scaleG with the Kondo tempera-
ture TK.G.

Secondly, in the presence of a local magnetic field,Th

5hi
2/G.0 furnishes another crossover scale. When con

ering theTh-induced shifts ind j ,P relative to their values for
Th50, several cases can be distinguished:~i! For Th!DL ,
i.e., for uhi u much smaller than a crossover fieldhc;AGDL,
none of the Th-induced shifts are strong.~ii ! For Th
@DL ,G, the crossover scaleTh divides the spectrum into
two parts: theTh-induced shifts are weak for all levels wit
«@Th , but strong for all those with«!Th . ~iii ! For G
@Th@DL one can distinguish three physically different r
gimes: the spectrum is NFL-like~nonuniform level spacings!
in the intermediate regimeTh!«!G, and Fermi-liquid-like
~with uniform level spacing! in the extreme regimes«@G

FIG. 2. Evolution of the excitation energies« j ,P , found by nu-
merically solving the eigenvalue equation~61!. On the left the evo-
lution is shown as function ofG/DLP@0,̀ ) at Th50, and on the
right as function ofTh /DLP@0,̀ ) at fixed G/DL@1, for ~a! P
50 and~b! P51. These excitation energies are combined in Ta
II with excitations in the charge, spin, and flavor sectors to obt
the evolution of the full finite-size spectrum shown in Fig. 3.
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and «!Th . In the last of these regimes~rightmost part of
Fig. 2!, the set of lowest-lying« ’s is identical to that for the
free caseTh50, G50 ~leftmost part of Fig. 2!, except that
the free case has one more«50 mode, reflecting the impu
rity’s twofold degeneracy due to spin reversal symmetry
uhi u50. Since at a finite temperature physical quantities
governed mostly by excitations of energy«;T, they will
show NFL behavior forG@T@Th and Fermi liquid behavior
for T@G or T!Th .2,19,26,40

C. Generalized gluing conditions

Next, we clarify how the exact many-body eigenstates
the full Hamiltonian are to be constructed from the vario
excitations in thec, s, f, andx sectors. A general eigenstate
Hcs f1Hx in Sext has the form

uẼ&})
i 51

Nã

ã« i

† )
j 51

Nb

b k̄ j

† u0̃&Sext
, ~67!

where the proportionality sign indicates that excitations
the c, s, andf sectors are not shown explicitly. However,
emphasized earlier, of all such states only those in the ph
cal subspaceSphys must be retained, and all others discard
as being unphysical. To identify whichuẼ& are physical, we
now derive ageneralized gluing conditionsatisfied by them
that relates the parity of the number ofã«

† andb k̄
† excitations

in uẼ& to its quantum numbersNc , Nf , andST in the c, f,
ands sectors. To this end, we note thatuẼ& can be physical
only if the stateuE&[ limG→0uẼ&, to which it reduces whenG
is adiabatically switched off, satisfies the free gluing con
tions ~20!. The key to the derivation is the fact that althou
the hybridization interactionH'8 of Eq. ~39! does not con-
serve the number ofan

† excitations, itdoes conserve the par
ity of their number.

To be explicit, letPẼ be the the parity of the number o
excitations ofuẼ& relative tou0̃&Sext

:

PẼ[^ẼuF (
«>0

ã«
†ã«1 (

k̄.0

b k̄
†
b k̄Gmod 2uẼ&. ~68!

During the adiabatic switch-off ofG, this quantity of course
remainsfixed, and hence equalsPẼ(G→0). This in turn can
be written as

PẼ~G→0!5^EuF (
n5d,k̄>0

an
†an1 (

k̄.0

b k̄
†
b k̄Gmod 2uE&

5^Eu@ N̂̄x1ad
†ad#mod 2uE&

5^EuF S N̂x2
P

2 D1N̂s2ST2
1

2
1nd

(0)Gmod 2uE&.

The first equation follows because the hybridization inter
tion preserves the parity of the excitation numbers; the s

ond follows because theck̄x
† excitations counted byN̂̄x are

linear combinations ofa k̄ , a k̄
† , b k̄ , and b k̄

† ; and the third

follows from Eq.~47! for N̂̄x and Eqs.~54c!, ~40!, and~21!
r
e

f
s

si-
d

-

-
c-

for ad . Imposing now the condition thatuE& must be inSphys

and hence satisfy Eq.~20b!, we obtain

PẼ5H @Nc1Nf2ST2~P11!/2#mod 2 ~«d.0!,

@Nc1Nf2ST2~P21!/2#mod 2 ~«d<0!.
~69!

This generalized gluing conditionspecifies which of all the
possible states inSext are physical, i.e., are inSphys; it
supplements the free gluing condition~20a!, which stipulates
that ST61/2 must be integer~half-integer! if Nc andNf are
integer~half-integer!.

D. Ground state energy shift

The form of Eq.~62! for the change in ground state en
ergydEG suggests that it can be interpreted asthe dynamical
binding energy of the impurity spin,which results from the
impurity-induced energy shifts of all the states in the fill
Fermi sea.@The factor 1/2 in Eq.~62! reflects the fact2,41 that
only ‘‘half’’ of the x-pseudofermion field, namely,cx1cx

† ,
couples to the impurity in Eq.~39!, while cx2cx

† remains
free.# For «d50, the number of levels strongly shifted by th
interaction is@by Eq. ~65b!# of order G/DL , and each of
these gets shifted roughly byDL/2; we can thus estimate tha
the binding energyudEGu will be of orderG;TK .

However, since the level shiftsDL d j ,P also have a
P-dependence of order;DL

2/G @from Eq. ~65b!#, the total
ground state energy shiftdEG will have aP dependence too
of order;DL . We therefore write

dEG[dEG
0 1P dE G

P , ~70!

where the first term isP independent and hence gives only
overall energy shift. In contrast,dEG

P affects the finite-size
spectrum since it shifts the odd electron states (P51) rela-
tive to even electron states (P50), and hence must be evalu
ated with particular care. This is done in Appendix C 437

where we find, forG/DL@1,

dEG
P5H 2DL /8 ~Th50!,

0 ~Th@DL!,
~71!

dEG
0 'H 22G@ ln~D/4pG!11# ~Th50!,

22G@ ln~D/u«du!11# ~Th@DL ,G!.
~72!

Here D@G,Th is a cutoff needed to regularize the sums
Eq. ~62!. Note that forTh50, Eq.~72! is consistent with the
estimate fordEG above, sinceD.1/a and G5l'

2 /4a. For
Th@G, the magnetic fieldu«du takes over as lower energ
scale in the logarithm instead ofG.

E. Construction of the finite-size spectrum

Now we are finally ready to construct the finite-siz
many-body excitation spectrum of the 2CK model. In doi
so, we shall generally use calligraphicE’s to denote dimen-
sionless energies measured in units ofDL . Specifically, we
shall construct the dimensionless energies

Ẽ~L !5@Ẽ~L !2Ẽmin~L !#/DL, ~73!
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associated with the lowest few exact many-body eigenst
uẼ& of the full HamiltonianH8 of ~50!, measured relative to
its ground state energyẼmin . For the sake of simplicity we
only consider the case with periodicity indexP051 @see Eq.
~3!#, for which theca j ’s have anti-periodic boundary cond
tions. In this case the free ground state in the electronic
tor is unique, namely,u0W &0, which somewhat simplifies the
counting of states.~Of course, one can use the same pro
dure forP050, with similar results.!

The construction proceeds in three steps: we first evo
toward the EK line, second evolve along the EK line, a
third turn on a local magnetic field. The results are summ
rized in Fig. 3 and Table I. For technical details of the co

FIG. 3. Evolution of the many-body finite-size spectrum of t
2CK model, for antiperiodic boundary conditions (P051), from
the free Fermi-liquid fixed point to the NFL fixed point, and th
additional crossover induced by a local magnetic field to a pha
shifted Fermi-liquid fixed point. All eigenstates ofH8 of Eq. ~50!
are shown for whichENFL<1, as well as some higher-lying state
with degeneracies given in brackets~in Ref. 4, the degeneracies fo
ENFL51 were incorrect!. ~a! Whenlz is tuned from 0 to its Emery-
Kivelson valuelz51, with l'5«d50, the free Fermi-liquid spec
trum E free at lz50 evolves smoothly into a simple phase-shift
spectrumEphase at lz51. ~b! When G/DL5l'

2 /(4aDL) is tuned
from 0 to ` along the EK line, i.e., withlz51 and «d50, the
spectrum crosses over fromE phaseto the non-Fermi-liquid spectrum
ENFL at G/DL5`, which agrees with NRG and CFT results.~c!
Turning on a local magnetic field«d5hi ~with he50) by tuning
u«du/G from 0 to` with lz51, G@DL fixed, then induces a furthe
crossover fromENFL to Eph. For the lowest levels this crossove
occurs whenu«du/G*1, since then the crossover parameter used
Fig. 2, namely,Th /DL5(«d /G)2(G/DL), is @1. TheEph spectrum
is identical to the phase-shifted spectrumEphaseof lz51 and l'

5«d50, apart from a degeneracy factor of 2 due to the lack of s
reversal symmetry.

TABLE I. Summary of the finite-size spectrum of Fig. 3 for th
2CK model, at the four pointslz5l'5«d50 (Efree); lz51, l'

5«d50 (Ephase); lz51, G/DL5`, «d50 (ENFL); and lz51,
G/DL5`, Th /DL5` (Eph). We list all energiesE<1 ~in units of
DL) and give their total degeneracies in brackets.

Efree Ephase ENFL Eph

0 ~2! 0 ~2! 0 ~2! 0 ~1!

1/2 ~16! 1/4 ~8! 1/8 ~4! 1/4 ~4!

1 ~54! 1/2 ~12! 1/2 ~10! 1/2 ~6!

3/4 ~16! 5/8 ~12! 3/4 ~8!

1 ~34! 1 ~26! 1 ~17!
es

c-

-

e

-
-

struction, see Fig. 5 and Table II in Appendix C 5.37 Here we
just state the main ideas.

~i! Phase-shifted spectrum.For lzP@0,1# at l'5«d50,
the impurity has no dynamics, thus the spectrum is that o
free-electron Fermi liquid with a Sz-dependent phase shift i
the spin sector, given byH8(l'50) of Eq. ~33!. It evolves
linearly with increasinglz , from Efree at lz50 to Ephaseat
lz51, see Fig. 3~a!.

~ii ! Crossover spectrum.Next we study the spectrum
along the EK line forG/DLP@0,̀ ) at lz51, «d50. To this
end one first has to enumerate the lowest-lying phys
eigenstatesuẼ& of the full HamiltonianH8 in terms of the
excitationsã« j ,P

† , b k̄
† andbqy

† which diagonalize it, andfol-

low the evolution with increasingG/DL of the excitation en-
ergies« j ,P ~shown in Fig. 2!, and of the ground state energ
shift dEG

P @see Eq.~71!#. This yields the crossover shown i
Fig. 3~b! from the phase-shifted to the NFL fixed point spe
trum, consisting of a set of universal, dimensionless ener
defined by

ENFL[ lim
L→`

Ẽ~L;«d50,G!2Ẽmin~L;«d50,G!

DL
. ~74!

Satisfyingly, the spectrum ofENFL energies found in Fig. 3~b!
and Table I~degeneracies are given in brackets! coincides
with the ones obtained in NRG and CF
calculations.16,18,22,23This constitutes a direct and straightfo
ward analytical proof of the soundness of the latter a
proaches. In particular, it proves42 the so-calledfusion hy-
pothesisemployed by Affleck and Ludwig in their CFT
calculation of this spectrum.22,23 As is well-known from
CFT,43 each of the fixed-point valuesENFL can be associated
with the scaling dimension of one of the operators charac
izing the fixed point. The occurrence ofENFL’s that are not
simply integers or half-integers is thus a very direct sign
NFL physics, since these correspond to nonfermionic ope
tors.

Our NFL spectrum demonstrates explicitly that thespin
anisotropy is irrelevant at the NFL fixed point,18 since if we
take the continuum limitDL→0 at fixedG, the fixed point
spectrum is evidently reachedindependentlyof the specific
value ofG. More formally: the symmetry of our anisotropi
starting Hamiltonian with respect to transformations in t
charge, spin and flavor sectors is U(1)c3U(1)s3SU(2)f ,
i.e., in the spin sector it is only invariant under spin rotatio
around thez axis; in contrast, Affleck and Ludwig derive
the NFL fixed point spectrum byassumingit to have the
complete U(1)c3SU(2)s3SU(2)f symmetry of the free
model. The fact that the low-energy part («!TK) of our
NFL fixed point spectrum coincides with theirs beautiful
illustrates how the broken symmetry of the original model
restored in the vicinity of the NFL fixed point, and thu
proves another central assumption of the CFT solution of
2CK model, in agreement with the NRG study of Pang a
Cox.17

The fact that the exact eigenenergies ofH8 interpolate
smoothly between their values forl'50 andl'Þ0 @Fig.
3~b!# may at first seem somewhat surprising, because a c
mon way of heuristically characterizing a NFL is that i
quasiparticles are orthogonal to the bare ones of the co

e-
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sponding free Fermi liquid. This is referred to as the ‘‘brea
down of Landau’s quasiparticle construction,’’ since in La
dau’s picture of a Fermi liquid, the dressed quasipartic
and the corresponding bare ones have finite overlap. Her
fact, one can readily check thatSext̂

0̃ua k̄ã«( k̄)
† u0̃&Sext

is non-

zero@where«( k̄) is the excitation energy that reduces tok̄ as
G/DL→0], implying that in thea-basis the systemis a
Fermi liquid. However, this does not contradict the fact th
in theoriginal cka j basisthe system nevertheless behaves
a NFL, since the bosonization-refermionization relation b
tween states in thea k̄ andcka j bases is very highly nonlin
ear.

~iii ! Crossover due to local magnetic field.Finally, we
turn on a local magnetic field,«d5hiÞ0 at fixedlz51 and
G/DL@1, thus breaking spin reversal symmetry.The further
evolution of the excitation energies« j ,P as functions of in-
creasing Th /DL , shown in Fig. 2~b!, yields the magnetic-
field-induced crossover, shown in Fig. 3~c!, from the NFL
fixed point energiesENFL to a set of energiesEph correspond-
ing to a phase-shifted Fermi liquid fixed point. ForTh /DL
@1, the impurity level evidently becomes empty for all low
lying states,̂ cd

†cd&50, i.e., the impurity spin is frozen in th
stateSz5⇓. Indeed, the spectrumEph which one recovers is
precisely the same phase-shifted spectrum asEphase at the
point lz51 andl'50, apart from a degeneracy factor of
due to the lack of spin reversal symmetry, compare Tabl
This shows nicely how the magnetic field ‘‘erases’’ all trac
of NFL physics for the lowest-lying part of the spectrum
since low-energy electrons cannot overcome the Zeeman
ergy cost for a spin flip in a magnetic field.

F. Finite-size behavior of physical quantities

Let us now briefly discuss the finite-size,T50 behavior
of the entropy, susceptibility, and the fluctuations inNx at
the NFL fixed point. Theentropyof the ground state atT
50, «d50 is evidently simply ln 2 for anyL, since the
ground state is twofold degenerate~see Fig. 3!. This should
be contrasted44 with the famous result1

2 ln 2 that one
obtains23~c! taking the limit L→` beforeT→0. The differ-
ence simply illustrates that the order of limits does not co
mute, since for finiteL the system is always gapped.

Thesusceptibilityat T50 due to a local fieldhi is defined
by x52]2ẼG /]hi

2 . SinceẼG5EG1dEG , we simply have
to evaluate@by Eqs.~53!, ~62!# the sumx5 1

2 («(]2«/]hi
2).

For hi50, the summands can be determined by different
ing Eq. ~61!, giving

x~hi50!5 (
«.0

1

«

4pGDL

$DL4pG1p@~4pG!21«2#%
~75!

'
1

4p2G
ln~4pG/DL! ~ for G@DL!.

~76!

The fact thatx(hi50)→` as L→` is of course a charac
teristic sign of 2CK NFL physics: it illustrates the instabili
of the NFL phase with respect to a local symme
-
-
s
in

t
s
-

I.

n-

-

t-

breaking.40 At finite temperaturesT takes over the role of the
infrared cutoffDL , so that the susceptibility diverges loga
rithmically with T.19,2

The fluctuations inN̂x can be quantified by calculatin

^N̂x
2&2^N̂x&

2. In Appendix C 6 this is done at«d50 for the
physical ground state ofSphys for bothP50 and 1.37 We find

that ^N̂x&50 for arbitrary ratios ofG/DL , showing that the
ground state contains equal amounts of spin from both
vors j 51,2, as expected from the 2CK model’s flavor sym

metry. Furthermore,̂ N̂x
2&5P/4 for G/D→0, as expected

intuitively, since in this limit the considered ground stat
are linear combinations of states withNx56P/2. In con-
trast, in the limitG/DL@1, the fluctuations diverge logarith

mically with system size,̂ N̂x
2&'(1/p2)ln GL, illustrating

how strongly the impurity perturbs the Fermi sea at the N
fixed point.

VI. RELATION TO VARIOUS RG METHODS

In the literature several RG methods have been applie
the multichannel Kondo model. In this section we rela
these to our finite-size bosonization technique, by show
how the strategies employed by them can be implemente
an exact way,within the latter.

A. High-energy cutoff scaling techniques

The most common types of RGs are the ones used
particle physics and in the standard treatment of critical p
nomena. In these RG procedures, one reduces a high-en
cutoff, say D̃, in order to gradually eliminate some high
energy degrees of freedom, arguing that they only sligh
influence the low-energy physics of the system. The cha
in the cutoff must be compensated by rescaling the mod
dimensionless coupling constants and masses in orde
keep the physical properties~different inherent energy scale
and dressed masses! invariant. These kinds of scaling proce
dures, which include Anderson’s poor man’s scaling,45 the
multiplicative RG,6 and the Yuval-Anderson RG,46 have
been widely used in the continuum limit (L→`) to study the
multichannel Kondo model.47,48,1,7,49

In our case the high-energy cutoffD̃ can be identified
with the cutoff 1/a of the boson fieldsfa j , D̃;1/a. Then
the scaling dimensiong of an operator with dimensionles
coupling l can be determined from the scaling equati
d ln l/d ln D̃52d ln l/d ln a5g(l, . . . ), and theoperator is
relevant, marginal or irrelevant forg,0, 50, or .0, re-
spectively.

Now, along the EK line one immediately obtains the sc
ing equations27

dl'

d ln a
5

1

2
l' , lz[1. ~77!

The first, which follows from the requirement of the invar
ance of the Kondo scaleG5l'

2 /4a, shows thatl' is relevant
and grows under bandwidth rescaling, with dimension21/2.
As explained earlier, the second equation follows from
absence of the leading irrelevant operator at the EK li
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Equations~77! exactly coincide with the ones obtained wi
the Yuval-Anderson technique7

dl'

d ln a
5S 4

d

p
28

d2

p2Dl' , ~78a!

4

p

d d

d ln a
5S 12

4d

p Dl'
2 , ~78b!

if in these the phase shiftd5lzp/4 is replaced byp/4, as
appropriate for the EK line.17

In a finite local magnetic field«d5hi , for energies below
the scaleTh5hi

2/G, the magnetic field destroys the no
Fermi-liquid behavior and a Fermi liquid is recovered. B
requiring the invariance ofTh one immediately derives tha
as long as the high-energy cutoff 1/a is much larger than the
Kondo scaleG, the fieldhi must be invariant under the RG
transformation

dhi

d ln a
50 ~1/a@G!. ~79!

However, once the cutoff is reduced sufficiently so th
1/a!G, the role ofG is taken over by 1/a, i.e., Th is now
given byhi

2 a, thus Eq.~79! must be replaced by

dhi

d ln a
52

1

2
hi ~1/a!G!. ~80!

To determine the dimension of the magnetic field one ha
rewrite Eqs.~80! and~79! in terms of thedimensionlessmag-
netic field,h̃[hia. Then it immediately follows that close t
the NFL fixed point the local field has dimension21/2 while
in the regime 1/a@G its dimension is21; it is therefore
relevant in both cases.

Equations~79! and ~80! are in complete agreement wit
those obtained by the Yuval-Anderson technique.7 We re-
mark at this point that perpendicular local magnetic fie
hx,y ~i.e., perturbations of the formhxSx or hySy) are known7

to scale differently fromhi5hz , and at the EK line their
scaling dimension is known to be21/2 even in the region
1/a@G.

B. Connection to numerical renormalization group

In this subsection we show that an analysis of our fin
size spectrum as function ofL in fact represents an analytica
version of Wilson’s NRG.50 In Wilson’s procedure one di
vides the Fermi sea into energy shells using a logarith
mesh characterized by a parameterL.1, and then maps the
model onto an equivalent one in which the impurity
coupled to the end of an infinite conducting chain, where
hopping between the sitesn andn11 scales asL2n/2. The
n’th site in this chain represents an ‘‘onion-skin’’ shell o
conduction electrons, characterized by spatial extent;Ln/2

around the impurity site and energy;L2n. The NRG trans-
formation is then defined by considering truncated chains
lengthN with HamiltonianHN , and consists of~i! adding a
new site to the end of the chainHN→HN11 and~ii ! rescaling
the new Hamiltonian byL: HN11→LHN11. Trivially, step
~i! reduces the mean level spacing by a factor of 1/L, while
step~ii ! is needed to measure all energies in units of the n
t

to

s

-

ic

e

f

w

mean level spacing. This strategy is implemented by num
cally diagonalizingHN11 and retaining only the lowest few
hundred levels. One finds that after a number of iterations
spectrum ofHN converges to a fixed, universal set of ene
gies, characteristic of some fixed point Hamiltonian.17 For
the 2CK model this spectrum16 is identical to the one ob-
tained by boundary CFT.18

The NRG strategy can easily be interpreted in terms
our finite-size calculations. Step~i! corresponds to increasin
the system sizeL→LL ~i.e., reducing the level spacingDL
→DLL5DL /L), while step~ii ! is equivalent to measuring
all energies in units ofDLL . Combining both steps, an ‘‘ana
lytical RG step’’ thus has the form

Hx~L,G,«d!

DL
→ Hx~LL,G,«d!

DLL
5

Hx~L,LG,L«d!

DL
,

~81!

where the last equality follows identically from Eq.~52!. For
«d50 this means that increasing the system size at fixedG is
equivalent to increasingG at fixedL, emphasizing once more
that in this case the spectrum depends only onG/DL . There-
fore the ‘‘spectral flow’’ as function ofG/DL in Fig. 3 can be
viewed as the analytical version of an NRG spectrum a
function of iteration number.

The fact that changing the system size is equivalen
rescaling the couplings has actually been exploited in sev
NRG papers to construct the ‘‘exact’’ scaling trajectories
the space of the bare couplings: this can be done by resca
the couplings after each NRG step in such a way that
NRG spectrum remains invariant, as in the seminal pape
Cragg, Lloyd, and Nozie`res,16 or equivalently in such a way
that the energy-dependent dynamical correlation functi
remain invariant.51

C. Finite-size scaling

It is also straightforward to implement Wilson’
prescription52 for extracting the exact scaling exponent of
perturbation around the fixed point, saydlÔ, from its effect
on the finite-size spectrum: In general, it causes the dim
sionless energyẼ(L) @of Eq. ~73!# ~calculated at a finite,
nonzeroDL!G) to differ from its universal fixed point value
ENFL @of Eq. ~74!# by an amountd Ẽ(L), whose leading
asymptotic behavior forL→` is

d Ẽ~L ![ Ẽ~L !2ENFL;~dl/Lg!n, ~82!

wheren>1 is some integer andg is the scaling dimension
of the operatorÔ. Thus deviations from the universal spe
trum are characteristic of the operator content of the fix
point.

We first consider the situationon the EK line ~i.e., for
lz51), and close to the NFL fixed point, whereDL /G and
Th /DL are both!1 ~at the NFL fixed point they are both 0!.
For j >1, the leading deviations« j ,P /DL2(« j ,P /DL)NFL of
the dimensionless single-particle excitation eigenenerg
from their NFL fixed point values are then given@from Eq.
~65!# by
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d j ,P2~d j ,P!NFL5
1

4p2F Th

DL~ j 2P/2!
2

DL~ j 2P/2!

G G .
~83!

The leading dependence on the local magnetic field
Th /DL is evidently @hiL

1/2#2, which grows asL→`. This
shows that a local magnetic field has dimensionghi

521/2

and is relevant: for an arbitrarily smallhi , there exists a
system sizeL above which the lowest part of the spectru
and the ground state properties of the model are drastic
affected, namely whenDL&Th , or equivalently,uhi u.hc

5AGDL , wherehc denotes the crossover scale of sect
V B.

In the absence of magnetic fields, the leading term in
~83! vanishes with increasingL as (GL)21, implying that the
least irrelevant irrelevant operatoron the EK line has dimen-
sion gEK51. Thus, we conclude that the leading irreleva
operators with dimensiong51/2 that were found in the CFT
treatment23~d! are absenton the EK line, in agreement with
Refs. 2 and 26.

Now let us move away from the EK line by takinglz

511dlz , and do perturbation theory indlz , i.e., indHz8 of
Eq. ~35!. Then the operators with dimensiong51/2 just
mentioned immediately show up: As shown in detail in A
pendix C 7,37 we find that the ‘‘zero mode’’ term

dlzDLN̂sSz of ~35! ~which does not occur in the continuum
limit considered in Ref. 2!, affects the spectrum already i
first order indlz : in the absence of magnetic fields, the fir
excited states~with ENFL51/8) are shifted relative to the
doubly degenerate ground states~with ENFL50) by an
amount

d Ẽ~L !.2
1

4
dlz~114p2G/DL!21/2;L21/2. ~84!

This implies that the leading operator that appears as
moves away from the EK line has dimension 1/2 and
irrelevant. Thus, theEK line is stable against perturbation
away from it.

In the presence of a local magnetic field«d5hi , one finds
in the continuum limitDL!G,hi that the ground state degen
eracy is split by an amount

d Ẽ~L !5H dlz

2p2

uhi u
G

ln
uhi u

4pG
~DL!hi!G!,

dlz

2 S 12
4G

uhi u
D ~DL!G!hi !.

~85!

This shows that the magnetic-field behavioralong the EK
line is not completely generic, since it misses this part of
hi dependence of the magnetic-field-induced crossover. N
that theuhi u/G lnuhiu/G behavior that occurs for a local mag
netic field of intermediate strength is consistent with the c
clusions of the NRG studies of Ref. 18 for thehi-dependence
of a certain phase shift that can be used to characterize
NRG spectra.

Finally, we would like to comment here on the identific
tion of the Kondo scaleTK . In Sec. V B we showed that th
crossover scale below which the finite-size spectrum take
fixed-point form~at hi50) wasG, and hence concluded tha
ia

lly
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TK.G. This differs from the suggestion of Sengupta a
Georges26 that the Kondo scale in the anisotropic 2CK mod
close to the EK line is notG but ratherG/(dlz)

2. This scale
emerged naturally in their calculation of the total susceptib
ity enhancement due to the impurity, which yieldedx imp
;(dlz)

2/G ln(G/T) ~at hi50). However, the factor (dlz)
2

only expresses the fact that the amplitudes of the lead
irrelevant operators vanishon the EK line, so that the char
acteristic logarithmic features appear only in second orde
dlz . The fact that the scale above which these logarithm
features vanish isT.G, not T.G/(dlz)

2, supports our
above conclusion that it is ratherG that should be identified
as the Kondo scale.

VII. SINGLE-CHANNEL KONDO MODEL

The methods used above can also be applied, with m
modifications, to the single-channel Kondo~1CK! model.
This is done in Appendix D. The main difference to the 2C
case is of course that both the weak and strong-coup
fixed points are Fermi liquids, but they are again connec
by a line, called the ‘‘Toulouse point,’’ along which th
model is exactly solvable. The main results of Appendix
are summarized in Fig. 4, which shows the finite-size cro
over spectrum of the 1CK model. It nicely illustrates the fa
first discussed by Wilson,50 that both the two weak- and
strong-coupling fixed-point spectra correspond to free fer
ons, which satisfy, however, different boundary conditio
~antiperiodic or periodic, respectively!.

VIII. DISCUSSION AND CONCLUSIONS

The main general conclusion of our work is that constru
tive finite-size bosonization is an unexpectedly powerful to

FIG. 4. Evolution of the many-body finite-size spectrum of t
1CK model, for antiperiodic boundary conditions (P051), from
the free Fermi-liquid fixed point to the strong-coupling Fermi-liqu
fixed point. All eigenstates ofH8 of Eq. ~D28! are shown for which
EFL<1, as well as some higher-lying states, with degenera
given in brackets.~a! Whenlz is tuned from 0 to its Toulouse-poin
valuelz* 522A2, with l'5«d50, the free Fermi-liquid spectrum
Efree at lz50 evolves smoothly into a simple phase-shifted sp
trum Ephaseat lz5lz* . ~b! WhenG/DL5l'

2 /(4aDL) is tuned from
0 to ` at the Toulouse point, i.e., withlz5lz* and «d50, the
spectrum crosses over fromEphase to the strong-coupling Fermi-
liquid spectrumEFL at G/DL5`. The latter is identical to the free
Fermi-liquid spectrum (lz5l'5«d50) for periodic boundary
conditions (P050), in agreement with Wilson’s NRG result
~Ref. 50!.
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for investigating quantum impurity problems. First, for th
2CK model, it enables one toanalytically calculate by el-
ementary means the crossover along the EK line of the fin
size spectrum~and the corresponding eigenstates! between
the free Fermi liquid and the NFL fixed point. Although th
fixed point spectrum had already been obtained by mean
conformal field theory,23,26 this crossover had hitherto bee
tractable only with the NRG, and has been beyond the re
of all analytical approaches used to study this model. Mo
over, the ability to treat the crossover explicitly allowed us
prove in a direct way the two central assumptions on wh
Affleck and Ludwig’s very elegant CFT solution is base
namely, that spin anisotropy is irrelevant so that the N
fixed point has the same U(1)c3SU(2)s3SU(2)f symmetry
as the free model, and the fusion hypothesis for the oper
content of the NFL fixed point.

Secondly, finite-size bosonizationcan deal without much
additional effort with symmetry-breaking perturbations, such
as a finite magnetic field~or channel symmetry breaking,13

which was not discussed here, but can be included b
straightforward extension of our methods!. Indeed, it is to be
expected that the methods developed here can fruitfully
applied to a number of related quantum impurity problem
For example, an adaption of our finite-size refermionizat
approach was very recently used to rigorously resolve a
cent controversy regarding the tunneling density of state
the site of an impurity in a Luttinger liquid.31 Other potential
applications would be to the generalized Kondo models s
ied by Ye,27 or by Moustakas and Fisher,25,53 or by Kotliar
and Si.28

Thirdly, finite-size bosonization allows oneto mimic in an
exact way the strategy of standard RG approachessuch as
poor man’s bandwidth rescaling and finite-size scaling; t
it should be useful also as a pedagogical tool for teach
and analytically illustrating RG ideas.

Coleman and co-workers12,13have proposed a ‘‘pedestria
solution’’ of the 2CK model, in which it is argued that man
of its properties can be calculated using a so-called ‘‘co
pactified model’’ involving only a single channel of spinfu
conduction electrons. This model was argued to repre
that part of the 2CK model that is left over when one ‘‘fa
torizes out’’ the charge and flavor degrees of freedom.
deed, using field-theoretic bosonization, Schofield show
that there is a formal correspondence between the comp
fied model and ourH' of Eq. ~27! ~which involves onlyws
andwx), and that it yields the same results as the 2CK mo
for the impurity contributionto thermodynamical properties
In this sense, the compactified model can be viewed as
effective model for calculating impurity properties. How
ever, as first emphasized by Ye,27 it is not equivalent to the
original 2CK model, since Schofield’s arguments ignored
e-
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fact that there are gluing conditions such as Eq.~20! between
the c, f sectors and thes,x sectors. As long as these a
ignored, the compactified model cannot be used to calculate
conduction electron properties, since that requires add
back the contributions from the charge and flavor channe

Our constructive bosonization approach allowed us
clarify this issue completely: it makes precise in what se
thec andf sectors can be ‘‘factorized out,’’ rigorously yield
an appropriate model for the remainings andx sectors, em-
phasizes the gluing conditions between thec, f ands,x sec-
tors, and shows how they can be used at the NFL fixed p
to combine the contributions from all four sectors to obta
the NFL fixed point spectrum.@An alternative way of doing
this explicitly was found by Bradley, Bulla, Hewson, an
Zhang,15 using the equivalence of the compactified model
a certain O~3! symmetric Anderson model.#

Maldacena and Ludwig30 have used CFT to show tha
Affleck and Ludwig’s CFT solution can be reformulated
terms of free boson fieldswy(x) satisfying certain asymptotic
boundary conditions. Ye27 reproduced this result using field
theoretic bosonization at the EK line~in the continuum limit!
invoking scaling arguments. We have shown in Ref. 4~and
will elaborate this in a future publication36! that these results
can be reproduced with great ease by simply taking the c
tinuum limit L→` of our above finite-size calculation. In
fact, this allows us to check explicitly Affleck and Ludwig’
results for electronic correlations functions.

In summary, using finite-size bosonization we have cal
lated analytically and from first principles, but in a conce
tually straightforward way, the crossover of the finite-si
spectrum of the 2CK model from the free to the NFL fixe
point. This enabled us to elucidate the nature of the N
excitations and to perform a detailed finite-size scal
analysis of the NFL fixed point.
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