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Superconductivity in ultrasmall metallic grains
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~Received 16 January 1998; revised manuscript received 27 April 1998!

Several recent papers have predicted parity effects, based on even-odd ground state energy differences, in
ultrasmall~nm scale! superconductors having a discrete electronic eigenspectrum with mean level spacingd

.D̃ ~bulk gap!. The motivation for the present paper is to analyze themeasurabilityof these and related parity
effects in the present generation of experiments@e.g., those of Ralph, Black, and Tinkham~RBT!#. To this end
we develop a general theory of superconductivity in ultrasmall metallic grains, based on calculating the
eigenspectrum using a generalized BCS variational approach. We discuss how conventional mean field theory
breaks down with decreasing sample size, how the so-called blocking effect weakens pairing correlations in
states with nonzero total spin, and how this affects the discrete eigenspectrum’s behavior in a magnetic field,
which favors nonzero total spin. Our calculations qualitatively reproduce the magnetic-field-dependent tunnel-
ing spectra for individual aluminum grains measured by RBT. Our main results regarding parity effects are~i!
the conclusion that those based on even-odd ground state energy differences are currently not measurable and
~ii ! the proposal of a parity effect for the pair-breaking energy, which should be measurable provided that the
grain size can be controlled sufficiently well.@S0163-1829~99!07613-4#
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I. INTRODUCTION

What happens to superconductivity when the sample
made very very small? Anderson1 addressed this questio
already in 1959: he argued that if the sample is so small
its electronic eigenspectrum becomes discrete, with a m
level spacing d51/N(«F);1/Vol, ‘‘superconductivity
would no longer be possible’’ whend becomes larger than
the bulk gapD̃. Heuristically, this is obvious~see Fig. 1
below!: D̃/d is the number of free-electron states that p
correlate ~those with energies withinD̃ of «F), i.e., the
‘‘number of Cooper pairs’’ in the system; when this becom
&1, it clearly no longer makes sense to call the system ‘‘
perconducting.’’

Giaever and Zeller2,3 were among the first to prob
Anderson’s criterion experimentally: studying tunnelin
through granular thin films containing electrically insulat
Sn grains, they demonstrated the existence of an energy
for grain sizes right down to the critical size estimated
Anderson~radii of 25 Å in this case!, but were unable to
prove that smaller particles are always normal. Their c
cluding comments are remarkably perspicuous:3 ‘‘There can
be no doubt, however, that in this size region the bulk the
of superconductivity loses its meaning. As a matter of fa
perhaps we should not even regard the particles as me
because the energy-level spacing is large compared tokT
and because there are very few electrons at the Fermi
face. The question of the lower size limit for supercondu
tivity is, therefore, strongly correlated with the definition
superconductivity itself.’’

These remarks indicate succinctly why the study of sup
conductivity near its lower size limit is of fundamental inte
est: the conventional bulk BCS approach is not directly
plicable, and some basic elements of the theory need t
rethought, with the role of level discreteness demanding s
cial attention.

First steps in this direction were taken by Stronginet al.4

and by Mühlschlegelet al.,5 who calculated the thermody
PRB 590163-1829/99/59~14!/9527~18!/$15.00
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namic properties of small superconducting grains. Howev
since experiments at the time were limited to studying
sembles of small grains~e.g., granular films!, there was no
experimental incentive to develop a more detailed theory
an individual ultrasmall superconducting grain, whos
eigenspectrum, for example, would be expected to rev
very directly the interplay between level discreteness a
pairing correlations.

This changed dramatically in 1995, when Ralph, Blac
and Tinkham~RBT! ~Ref. 6! succeeded in constructing
single-electron transistor~SET! whose island was an ultra
small metallic grain: by studying the tunneling curre
through the device, they achieved the first measuremen
the discrete eigenspectrum of a single grain. This enab
them to probe the effects of spin-orbit scattering,7,8 nonequi-
librium excitations,9 and superconductivity,7,9 which mani-
fests itself through the presence~absence! of a substantial
spectral gap in grains with an even~odd! number of elec-
trons.

RBT’s work stimulated several theoretical investigation
Besides discussing nonequilibrium effects,10,11 these focused
mainly on superconductivity,12–16 and revealed that the
breakdown of pairing correlations with decreasing grain s
predicted by Anderson harbors some surprises when sc
nized in more detail: von Delftet al.12 showed that this
breakdown is affected by theparity ~p! of the number of
electrons on the grain: using parity-projected mean-fi
theory17,18 and variational methods and assuming uniform
spaced electron levels, they solved the parity-dependent
equation for the even or odd ground state pairing parame
De or Do as function ofd ~using methods adapted from
Stronginet al.4!, and found thatDo(d),De(d), i.e., ground
state pairing correlations break down sooner with increas
d in an odd grain than in an even grain~the difference be-

coming significant ford.D̃). This is due to the so-called
blocking effect:19 the odd grain always has one unpair
electron, which blocks pair scattering of other pairs a
9527 ©1999 The American Physical Society
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9528 PRB 59FABIAN BRAUN AND JAN von DELFT
thereby weakens pairing correlations. Smith a
Ambegaokar13 showed that this parity effect holds also for
random distribution of level spacings~as also anticipated by
Blanter20!, and Matveev and Larkin14 investigated a ground
state parity effect occurring in the limitd@D̃. Though
stimulated by experiments neither of the theoretical works
parity effects did analyze their measurability in detail.

The Do,De parity effect has an obvious generalizatio
studied by Braunet al.15 using a generalized BCS variation
approach due to Soloviev:19 any state with nonzero spins
~not just the odd ground state! experiences a significant re
duction in pairing correlations, since at least 2s electrons are
unpaired, leading to an enhanced blocking effect (Ds,Ds8 if
s.s8). The latter’s consequences can be observed in
magnetic-field dependence of SET tunneling spectra, sin
magnetic field favors states with nonzero spin and con
quent enhanced blocking effect. In ultrasmall grains, s
magnetism dominates orbital magnetism, just as in thin fi
in a parallel field;21 but whereas in the latter the magneti
field induced transition to a normal state is known to be fi
order, Braunet al. showed that in ultrasmall grains the tra
sition is softened due to finite size effects. Moreover, th
argued that some of RBT’s grains fall in a region of ‘‘min
mal superconductivity,’’ in which pairing correlations me
surably exist atH50, but are so weak that they may b
destroyed by the breaking of a single pair~since the number
of electron pairs that take part in the formation of a cor
lated state becomes of order one ford.D̃).

In the present paper we elaborate the methods used
results found by Braunet al. in Ref. 15 and present a detaile
theory of superconductivity in ultrasmall grains. Our discu
sion can be divided into two parts: in the first~Secs. II and
III !, we consider an isolated ultrasmall grain and~a! define
when and in what sense it can be called ‘‘superconductin
~b! use a generalized BCS variational approach to calcu
the eigenenergies of various variational eigenstates of g
eral spinus&, which illustrates the breakdown of mean-fie
theory, and~c! discuss how an increasing magnetic field
duces a transition to a normal paramagnetic state. In the
ond part~Sec. IV!, we consider the grain coupled to leads
in RBT’s SET experiments and discuss observable qua
ties: ~a! We calculate theoretical tunneling spectra of t
RBT type, finding qualitative agreement with RBT’s me
surements,~b! show that the above-mentioned ground st
energy parity effects can presently not be observed, and
pose an analogous pair-breaking energy parity effect t
should be observable in experiments of the present kind. In
three appendixes we discuss various analytical limits of
theory, the generalI -V characteristics expected for an u
trasmall NSN SET, and explain how RBT’s experimen
give direct evidence for the dominance of time-reversed p
ing, at least for small fields~implying that the sufficiency of
using only a reduced BCS Hamiltonian, well established
bulk systems and dirty superconductors, holds for ultrasm
grains, too!.

II. PAIRING CORRELATIONS AT FIXED
PARTICLE NUMBER

The discrete energies measured in RBT’s experiments
sentially correspond to the eigenspectrum of a grain w
d
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fixed electron number N~for reasons explained in detail i
Sec. IV A!. In this and the next section, we therefore co
sider an ultrasmall graincompletely isolatedfrom the rest of
the world, e.g., by infinitely thick oxide barriers.

When considering a truly isolated superconductor~an-
other example would be a superconductor levitating in
magnetic field due to the Meissner effect! one needs to ad
dress the question: How is one to incorporate the fixedN
condition into BCS theory, and how important is it to do s
Although this issue is well understood and was discusse
length in the early days of BCS theory, in particular in
application to pairing correlations in nuclei~see Ref. 22, p.
439!, for pedagogical reasons the arguments are worth re
pitulating in the present context. We shall first recall that t
notion of pair mixing12 that lies at the heart of BCS theory
by no means inherently grand canonical and can easily
formulated in canonical language, then summarize what
been learned in nuclear physics about fixed-N projection
techniques, and finally conclude that for present purpo
standard grand-canonical BCS theory should be suffici
Readers familiar with the relevant arguments may prefe
skip this section.

A. Canonical description of pair mixing

Conventional BCS theory gives a grand-canonical
scription of the pairing correlations induced by the prese
of an attractive pairing interaction such as the reduced B
interaction

H red52(
j j 8

Vcj 1
† cj 2

† cj 82cj 81 ~with V.0!. ~1!

~The cj 6 are electron destruction operators for the sing
particle statesu j ,6&, taken to be time-reversed copies
each other, with energies« j 6 .) The theory employs a grand
canonical ensemble, formulated on a Fock space of state
which the total particle numberN is not fixed, as illustrated
by BCS’s variational ground stateAnsatz

uBCS&5)
j

~uj1v j cj 1
† cj 2

† !uVac& ~uj
21v j

251!. ~2!

This is not an eigenstate of the number operatorN̂
5( j scj s

† cj s and its particle number is fixed only on th

average by the condition̂BCSuN̂uBCS&5N, which deter-
mines the grand-canonical chemical potentialm. Likewise,
the commonly used definition

DBCS5V(
j

^cj 1cj 2& ~3!

for the superconducting order parameter only makes sens
a grand-canonical ensemble, since it would trivially gi
zero when evaluated in a canonical ensemble, formulated
a strictly fixed-N Hilbert space of states.

A theory of strictly fixed-N superconductivity must there
fore entail modifications of conventional BCS theory. In pa
ticular, a construction different fromDBCS is needed for the
order parameter, which we shall henceforth call ‘‘pairing p
rameter,’’ since ‘‘order parameter’’ carries the connotati
of a phase transition, which would require the thermod
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namic limit N→`. The pairing parameter should capture
a canonical framework BCS’s essential insight about the
ture of the superconducting ground state: an attractive p
ing interaction such asH red will induce pairing correlations
in the ground state that involvepair mixing across«F ~see
also Ref. 12!, i.e., a nonzero amplitude to find a pair
time-reversed states occupied above«F or empty below«F .
BCS chose to express this insight through theAnsatz~2!,
which allows v jÞ0 for « j.«F and ujÞ0 for « j,«F . It
should be appreciated, however~and is made clear on p
1180 of their original paper23!, that they chose agrand-
canonicalconstruction purely for calculational convenien
~the trick of using commuting products in Eq.~2! makes it
brilliantly easy to determine the variational paramet
uj ,v j ), and proposed themselves to use its projection
fixed N, uBCS&N , as the actual ground state.

Since@H red,N̂#50, one would expect that the essence
BCS theory, namely, the presence of pair mixing and
reason why it occurs, can also be formulated in a canonic
meaningful way. Indeed, this is easy: pair mixing is pres
if the amplitude v̄ j[^cj 1

† cj 2
† cj 2cj 1&1/2 to find a pair of

states occupied is nonzero also for« j.«F , and the ampli-
tude ū j[^cj 2cj 1cj 1

† cj 2
† &1/2 to find a pair of states empty i

nonzero also for« j,«F ~the bars indicate that theū j and v̄ j
defined here differ in general from theuj and v j used by
BCS; note, though, that the former reduce to the latte
evaluated usinguBCS&!. The intuitive reason whyH red in-
duces pair mixing in the exact ground statesuG& despite the
kinetic energy cost incurred by shifting pairing amplitu
from below to above«F , is that this frees up phase space f
pair-scattering, thus lowering the ground state expecta
value of H red: in ^GuH reduG&, the j j 8 term can be nonzero
only if both cj 1

† cj 2
† cj 82cj 81uG&Þ0, implying (v̄ j 8)GÞ0 and

(ū j )GÞ0, and also^Gucj 1
† cj 2

† cj 82cj 81Þ0, implying (v̄ j )G

Þ0 and (ū j 8)GÞ0. By pair mixing, the system can arrang
for a significant number of states to simultaneously ha
both (v̄ j )GÞ0 and (ū j )GÞ0; this turns out to lower the
ground state energy sufficiently through^GuH reduG& that the
kinetic energy cost of pair mixing is more than compensat
Furthermore, an excitation that disrupts pairing correlatio
in the ground state by ‘‘breaking up a pair’’ will cost a finit
amount of energy byblockingpair scattering involving tha
pair. For example, the energy cost of havingu j 1& definitely
occupied (ū j50) andu j 2& definitely empty (v̄ j50) is

« j S 12^Gu(
s

cj s
† cj suG& D 1V^Gucj 1

† cj 2
† (

j 8Þ j

cj 82cj 81uG&,

in which the restricted sum reflects the blocking of scatter
involving the jth pair. When evaluated usinguBCS&, this
quantity reduces to« j (122v j

2)1ujv jDBCS5@« j
21DBCS

2 #1/2,
which is the well-known quasiparticle energy of the sta
g j 1

† uBCS&.
The above simple arguments illustrate that there is no

ing inherently grand canonical about pair mixing. Indeed
least two natural ways suggest themselves to measur
strength in a canonically meaningful way, using, for i
stance, the pairing parameterD̄[V( j ū j v̄ j proposed in Ref.
12, or one proposed by Ralph24:
a-
ir-

s
o

f
e
ly
t

if

r
n

e

d.
s

g

-
t
its

D̄8[V(
j

@^cj 1
† cj 1cj 2

† cj 2&2^cj 1
† cj 1&^cj 2

† cj 2&#1/2.

~4!

Both D̄ andD̄8 were constructed such that they reduce, a
desirable, to the same result asDBCS when each is evaluate
using uBCS& ~with real coefficientsuj ,v j ), namely, to
V( jujv j . An appealing feature ofD̄8 is that by subtracting
out ^cj 1

† cj 1&^cj 2
† cj 2&, it transparently emphasizes thepair-

ing nature of superconducting correlations, i.e., the fact t
if u j 1& is empty~or filled!, so isu j 2&:D̄8 will be very small
if the occupation ofu j 1& is uncorrelated with that ofu j 2&,
as it is in a normal Fermi liquid. The overall behavior~as
function of energy« j ) of the summands in bothD̄ and D̄8
will be similar to that ofujv j ~though not identical toujv j or
to each other; a quantitative evaluation of the differenc
which increase with increasingd/D̃, requires an honest ca
nonical calculation25!. The quantityujv j is shown in Fig.
1~a!, which illustrates that pair-mixing correlations are stro
gest within a region of widthDBCS.

B. On the breaking of gauge symmetry

In some discussions of conventional BCS theory the
fining feature of superconductivity is taken to be the bre
ing of gauge symmetry by the order parameter. This conc
is illustrated by the BCS order parameterDBCS of Eq. ~3!: if
nonzero, it has a definite phase and is not gauge invar
~undercj s→eifcj s , it changes toei2fDBCS). Note, though,
that this point of view cannot be carried over to fixed-N
systems. First, these trivially haveDBCS50, and secondly

FIG. 1. An illustration of why ‘‘superconductivity break
down’’ when the sample becomes sufficiently small. Each verti
line represents a pair of single-particle stateu j 6& with energy« j ,
for three different mean level spacingsd, corresponding to~a! a

‘‘large’’ grain (d!D̃), ~b! a ‘‘small’’ grain (d.0.25D̃), ~c! an

‘‘ultrasmall’’ grain (d.D̃). In all three plots, the height of eac

vertical line equals the functionuj
2v j

25
1
4 @D̃2/(« j

21D̃2)# of standard

bulk BCS theory, illustrating the energy regime~of rangeD̃ around
«F) within which electrons are affected by pairing correlation

Loosely speaking, the number of single-electron statesD̃/d in this
regime corresponds to ‘‘the number of Cooper pairs’’ of the syste

Evidently, whend/D̃*1 as in~c!, ‘‘the number of Cooper pairs’’
becomes less than one and it no longer makes sense to ca
system ‘‘superconducting.’’
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and more fundamentally, the breaking of gauge symme
necessarily presupposes a grand-canonical ensemble:
phase and particle number are quantum-mechanically co
gate variables, formal considerations dictate that the o
parameter can acquire a definite phase only if the part
number is allowed to fluctuate, i.e., in a grand-canonical
semble.

Of course, in certain experimental situations whereN
manifestlydoesfluctuate, such as the celebrated Joseph
effect of two superconductors connected by a tunnel ju
tion, their order parametersdo acquire definite phases, an
their phase difference is a measurable quantity. However
a truly isolated superconductor with fixedN the ‘‘phase of
the order parameter’’ isnot observable, and the concept
gauge symmetry breaking through an order parameter w
definite phase ceases to be useful. Indeed, the canoni
meaningful pairing parametersD̄ and D̄8 defined above are
manifestly gauge invariant.

C. Fixed-N projections

It is easy to construct a variational ground state exhibit
pair-mixing and having definite particle number, by simpl
projecting uBCS& to fixed N, as suggested by BCS.23 This
can be achieved by the projection integral

uBCS&N[E
0

2p

df e2 ifN)
j

~uj1e2ifv j cj 1
† cj 2

† !uVac&,

~5!

whose randomization of the phases of thev j ’s illustrates,
incidentally, why gauge invariance is not broken at fixedN.

This and related fixed-N projections were studied in grea
detail in nuclear physics, with the aim of variationally calc
lating nuclear excitation spectra for finite nuclei (N<240)
exhibiting pairing correlations~Ring and Schuck provide a
excellent review of the extensive literature, see chapter 1
Ref. 22; Ref. 26 is a recent reference!. The simplest approach
is called ‘‘projection after variation’’: the unprojected expe
tation valuê BCSuHuBCS& is minimized with respect to the
variational parameters$v j%, which thus have their standar
BCS valuesv j

25 1
2 @12« j /(« j

21DBCS
2 )1/2#, but then these are

inserted intouBCS&N and expectation values evaluated w
the latter instead ofuBCS&. This elimination of ‘‘wrong-N’’
states after variation turns out to lower the ground state
ergy relative to the unprojected case~by a few percent in
nuclei! and thus improves the trial wave function. Furth
improvements are possible using the more sophistica
‘‘projection before variation’’ strategy, where the projecte
expectation valueN^BCSuHuBCS&N is minimized with re-
spect to the$v j%. However, these then no longer have t
simple BCS form, but instead are determined through a se
coupledrelations, each involving all the otherv j8s, that have
to be solved numerically.25 The correctionsdv j to the BCS
pair-occupation amplitudes so produced further lower
ground state energy relative to projection after variation.

Extensive applications of such and related approache
nuclear physics have led to the following conclusions: F
reasonably smallN, as in nuclei, the explicit implementatio
of projection techniques is tractable, though cumberso
For very largeN they become intractable, but also unnec
ry
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sary, since their corrections can be shown to vanish asN21/2.
However, even in nuclei the corrections to unprojected B
theory are small~a few percent! in most cases, the only ex
ception being very large couplingsV>d. Thus, in most
cases fixed-N systems can perfectly adequately be describ
by BCS’s grand-canonical wave function. ItsN indefinite-
ness~and the associated breaking of gauge symmetry! then
simply has the status of a clever calculational trick: it allo
the use of a wave function so simple that the pair-occupa
amplitudesv j can be found with a minimum of effort. The
trick’s justification is that the correctionsdv j ’s produced by
more careful approaches usually are small.~The device of
using symmetry-breaking wave functions purely for t
sake of calculational convenience is widespread in nuc
physics, and lucidly discussed in Ring and Schuck’s boo22

in a chapter entitled ‘‘Restoration of Broken Symmetries.!
The above conclusions imply that the following strate

should suffice for aqualitative description~more is not at-
tempted here! of pairing correlations in isolated ultrasma
grains: although strictly speaking a fixed-N technique would
be appropriate, we shall adopt BCS’s grand-canonical
proach throughout, usinguj ,v j as grand-canonical approx
mations toū j ,v̄ j . Quantitatively, this strategy is expected
become unreliable in the limit of large level spacingd/D̃
.1 ~corresponding to ‘‘strong coupling’’ in nuclear applica
tions!. However, the corrections due to a fixed-N calculation
~currently under investigation applying projection25 and ex-
act diagonalization27 methods!, which should become sig
nificant in this regime, are not expected to be more sev
than, for example, corrections arising from a nonequidist
level spectrum, which qualitatively are insignificant.13

III. GENERALIZED VARIATIONAL BCS APPROACH

Since in RBT’s experimentsT550 mK!d,D̃, we setT
50. Our goal in this section is to calculate the discre
eigenenergies of an isolated, nm-scale metallic grain w
pairing correlations, and understand their evolution in a m
netic field. To this end, we study the simplest conceiva
pairing model within a generalized variational BCS a
proach. The results will be used in the next section as in
into the calculation of the SET tunneling spectrum of suc
grain ~see Fig. 6 below!.

A. The model

The only symmetry expected to hold in realistic, irreg
larly shaped ultrasmall grains at zero magnetic field is tim
reversal symmetry. We therefore adopt a single-particle b
of pairs of time-reversed statesu j 6&, whose discrete ener
gies « j are assumed to already incorporate the effects
impurity scattering and the average of electron-electron
teractions, etc. As simplest conceivable model describin
pairing interaction and a Zeeman coupling to a magne
field, we adopt the following ~reduced! BCS
Hamiltonian:12,15

Ĥ5 (
j ,s56

~« j2m1sh!cj s
† cj s2ld(

j , j 8
cj 1

† cj 2
† cj 82cj 81 .

~6!
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Due to level repulsion the« j ’s will be approximately uni-
formly spaced. For simplicity, we take a completely unifor
spectrum withlevel spacing d, « j5 jd1«0 . Fluctuations in
the level spacings have been studied with methods of ran
matrix theory,13 with qualitatively similar results. For a sys
tem with a total ofN52m1p electrons, where theelectron
number parity pis 0 for evenN and 1 for oddN, we use the
label j 50 for the first level whose occupation in theT50
Fermi sea is not 2 butp.

The pairing interaction is taken to include only states w
ud j u,vc . Experimental evidence for the sufficiency of n
glecting couplings between non-time-reversed pairs of sta
i.e., of using only areducedBCS Hamiltonian, are given in
Appendix C. For convenience we wrote the pair-coupli
constant in Eq.~1! as V5ld, wherel is a dimensionless
parameter. Thed→0 ‘‘bulk gap’’ of the model thus isD̃
5vc /sinh(1/l).

An applied magnetic field will completely penetrate
ultrasmall grain, since its radius~typically r .5 nm! is much
smaller than the penetration length of 50 nm for bulk Al. T
Zeeman term in Eq.~6!, with 6h[6 1

2 mBgH, models the
fact that the measured tunnel spectra of RBT~Refs. 7,9!
~shown in Fig. 6 in Sec. IV B! evolve approximately linearly
as a function of magnetic field, withg factors between 1.95
and 2 ~determined from the differences between measu
slopes of up- and down-moving lines!. Deviations fromg
52 probably result from spin-orbit scattering, known to
small but nonzero in thin Al films,21 but neglected below
~whereg52 is used!. Furthermore, orbital diamagnetism
also negligible, just as for thin films in a parallel magne
field21 but in marked contrast to bulk samples where it cau
the Meissner effect: the grains are so small that even a
field produces a flux through the grain of only about 5% o
flux quantumf0 , which is too small to significantly affec
the orbital motion of the electrons between subsequent
flections off the grain boundary. Some larger grains do sh
slight deviations fromH-linearity,7 which probably reflect
the onset of orbital magnetism@which gives corrections16 to
the eigenenergies of the order of\vFr 3(H/f0)2]; however,
these effects are much smaller than Zeeman energies in
grains of present interest, and will be neglected here. Th
our model assumes that Pauli paramagnetism due to the
man energy completely dominates orbital diamagneti
similarly to the case of thin films in parallel magnet
fields.21

B. The variational ansatz

The Zeeman term favors states with a nonzero totaz
component of the total spins5( j sj

z ~henceforth simply
called ‘‘spin’’!, so that increasingh will eventually lead to a
series of ground state changes to states with success
larger spins. Therefore, we are interested in general in
related states with nonzero spin, and in particular in th
eigenenergies. We calculate these variationally, using
following generalAnsatzfor a stateus,a& with a definite
total spin s ~introduced by Soloviev for application in
nuclei19!:

us,a&5)
j 51

2s

ca~ j !1
† )

i
8 ~ui

~s,a!1v i
~s,a!ci 1

† ci 2
† !uVac&. ~7!
m

s,

d

s
T

e-
w

the
s,
ee-
,

ely
r-
ir
e

The nonzero spin is achieved by placing 2s unpaired spin-up
electrons in a set of 2s single particle states, say with labe
j 5a(1),a(2), . . . ,a(2s) ~see Fig. 2!, while the remaining
single-particle pairs of states have BCS-like amplitudes to
either filled (v i

(s,a)) or empty (ui
(s,a)), with (ui

(s,a))2

1(v i
(s,a))251. The prime over products~and over sums be

low! indicates exclusion of the singly occupied stat
a(1),a(2), . . . ,a(2s) ~for which u(s,a),v (s,a) are not de-
fined!.

A short standard calculation reveals that the construc
wave functions are orthogonal:̂s,aus8,a8&5dss8daa8 .
Therefore, the variational parametersv j

(s,a) and uj
(s,a) must

be found independentlyfor each (s,a) ~hence the super
script!. This is done by minimizing the variational ‘‘eigenen
ergies’’

Es,a~h,d![^s,auHus,a&522sh1(
j 51

2s

«a~ j !

12(
j

8 « j~v j
~s,a!!22ldS (

j
8 uj

~s,a!v j
~s,a!D 2

1ld(
j

8 ~v j
~s,a!!4, ~8!

which we use to approximate the model’s exact eigenen
giesEs,a(h,d). Note that singly occupied states are exclud
from all primed sums involvinguj ’s andv j ’s. The last term,
proportional tov4, is not extensive and hence neglected
the bulk case where only effects proportional to the syst
volume are of interest. Here we retain it, since in ultrasm
systems it is non-negligible~but not dominant either!.

Solving the energy-minimization conditions

]Es,a /]v j
~s,a!50 ~9!

in standard BCS fashion yields

~v j
~s,a!!25~12j j /@j j

21Ds,a
2 #1/2!/2, ~10!

where the ‘‘pairing parameter’’Ds,a is determined by the
generalized ‘‘gap equation’’

Ds,a5ld(
j

8 uj
~s,a!v j

~s,a! or ~11!

FIG. 2. Two examples of states in the spin-3
2 sector of Hilbert

space:~a! the ground stateu 3
2 & and~b! the excited stateu 3

2 ,2&. The
single-particle levels are drawn ath50, and we indicated schemat
cally how states are paired according to (ui1v ici 1

† ci 2
† ) in the BCS-

like Ansätze ~15! and ~17! for u 3
2 & and u 3

2 ,2&, with solid or dashed
ellipses connecting states that would be completely filled or em
in the absence of pairing correlations.
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1

l
5d(

j
8

1

2Aj j
21Ds,a

2
, ~12!

and j j[« j2m2ld(v j
(s,a))2. Note that we retain the

ld(v j
(s,a))2 shift in j j , usually neglected because it simp

renormalizes the bare energies, since for larged it somewhat
increases the effective level spacing near«F @and its neglect
turns out to produce a significant upward shift in t
Es,a(h,d)’s, which one is trying to minimize#. The chemical
potentialm is fixed by requiring that

2m1p5^s,auN̂us,a&52s12(
j

8~v j
~s,a!!2. ~13!

Generally Eqs.~10!, ~12!, and~13! have to be solved simul
taneously numerically. In the limitd/D̃→0 ~investigated
analytically in Appendix A 1!, Eq. ~12! reduces to the stan
dard bulkT50 gap equation.

In contrast to conventional BCS theory, the pairing p
rameterDs,a can in general not be interpreted as an ene
gap and isnot an observable. It should be viewed simply
a mathematical auxiliary quantity which was introduced
conveniently solve Eq.~9!. However, by parametrizing th
variational quantitiesv j

(s,a) anduj
(s,a) , Ds,a does serve as a

measure of the pairing correlations present in a stateus,a&,
since for vanishingDs,a the latter reduces to an uncorrelat
paramagnetic state with spins, namely,

us,a&0[)
j 51

2s

ca~ j !1
† )

i ,0
8ci 1

† ci 2
† u0&. ~14!

We shall denote the energy of this uncorrelated state
E s,a

0 50^s,auHus,a&0 , and define the ‘‘correlation energy’
of us,a& as the energy differenceE s,a

corr[Es,a2E s,a
0 .

C. Qualitative discussion

Before launching into numerical results, let us anticip
by qualitative arguments what is to be expected.

First, the gap equation forDs,a(d) is h independent. The
reason is that only thosej levels contribute in the gap equa
tion that involve correlatedpairs of states, each of which
have spin 0 and hence no Zeeman energy. Consequently
22sh-dependence ofEs,a in Eq. ~8! is simply that of the 2s
unpaired electrons.

Secondly, the discreteness of the sum in the gap equa
~12! will causeDs,a to decrease with increasingd. To see
this, inspect Fig. 1, in which the height of each vertical li
represents the value ofujv j for a time-reversed pairu j 6&.
Figures 1~a!–1~c! illustrate that an increase in level spacin
implies a decrease in the number of pairs with signific
pair-mixing, i.e., those withinD̃ of «F which have nonzero
ujv j . This number can roughly speaking be called t
‘‘number of Cooper pairs’’ of the system. Since ford@D̃ no

pairs lie in the correlated regimeu« j2«Fu,D̃ where pair
mixing occurs,Ds,a will be zero in this limit, so that in
generalDs,a(d) will be a decreasing function ofd, dropping
to zero at aboutd.D̃.

Thirdly, the (s,a)-dependent restriction on the prime
sum in the gap equation implies thatDs,a(d) at fixedd will
-
y

y

e

the

on

t

e

decrease with increasings: larger s means more unpaired
electrons, more terms missing from the primed sum, l
correlated pairs and hence smallerDs,a . The physics behind
this has been called theblocking effect19 in nuclear physics:
Singly occupied states cannot take part in the pair scatte
caused by the BCS-like interaction~6! and hence decreas
the phase space for pair scattering, as explained in Sec.
~Their absence in the primed sum simply reflects this fa!
The blocking effect becomes stronger with increasingd,
since then the relative weight of each term missing in
primed sum increases. It also is stronger the closer
blocked state lies to«F , since the excludeduj

(s,a)v j
(s,a) con-

tribution to the primed sum is largest near«F , as is evident
from Fig. 1. On the other hand, an unpaired electron w
have almost no blocking effect ifu« j2«Fu@D̃, since
uj

(s,a)v j
(s,a) vanishes there anyway.

Finally, note that the (s,a) dependence ofDs,a for d

.D̃ illustrates why in this regime a conventional mean-fie
treatment is no longer sufficient: the system cannot be c
acterized by a single pairing parameter, since the amoun
pairing correlations vary from state to state, each of which
characterized by its own pairing parameter.

D. General numerical solution

It is possible to solve the modified gap equation analy
cally in two limits, d!D̃ andd@Ds ~see Appendix A!, but
generally the gap equation and Eq.~13! have to be solved
numerically. In doing so, some assumptions are neces
about parameter values~though using slightly different val-
ues would not change the results qualitatively!. We measure
all energies in units of the bulk gapD̃5vc sinh(1/l) of the
model. However, its experimental value differs from that o
truly bulk system, since it is known from work with Al thin
films4,28 that the effective dimensionless pairing-interacti
strengthl is larger in Al samples of reduced dimensionali
than in truly bulk three-dimensional systems.~Though true
for Al, this is not a universal property of small sample
though, for Nb,D̃ is larger in the bulk than in thin films.24!
Since thin films in a parallel magnetic field are analogous
many ways to ultrasmall grains, we shall assume that
effective coupling constantl is the same in both. Adopting
therefore, the valueD̃50.38 meV found for thin Al films in
Ref. 29, and taking the cutoff to be the Debye frequen
vc534 meV of Al, we usel5@sinh21(vc /D̃)#2150.194 for
the dimensionless pairing-interaction strength. Furtherm
we smeared the cutoff of the BCS interaction over tw
single-electron levels, to ensure that discontinuities do
occur in d-dependent quantities each time the ene
u« j5d j1«0u of some large-u j u level moves beyond the cut
off vc asd is increased.

Solving Eqs.~10!, ~12!, and~13! is a straightforward nu-
merical exercise which we performed, for the sake of ‘‘n
merical consistency,’’ without further approximation
~Since some minor approximations were made in Ref.
e.g., dropping theldv j

2 term in j j , and slightly different
parameter values were used, the numerical results t
sometimes differ slightly from the present ones; see, e
Fig. 3.! It should be understood, though, that only qualitati
significance can be attached to our numerical results, s
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our model is very crude: it neglects, for instance, fluctuatio
in level spacing and in pair-coupling constants, and we
not carry out a fixed-N projection, all of which presumably
would somewhat influence the results quantitatively.

1. Spin-s ground states

In a given spin-s sector of Hilbert space~with p
52s mod 2), lets& be the variational state with the lowe
energy, i.e., the ‘‘variational spin-s ground state.’’ It is ob-
tained by placing the 2s unpaired electrons as close as po
sible to «F @Fig. 2~a!#, because this minimizes the kinet
energy cost of having more spin ups than downs:

us&5 )
j 52s1p/2

s211p/2

cj 1
† )

i
8 ~ui

s1v i
sci 1

† ci 2
† !uVac&. ~15!

@The particular choice ofa in the generalAnsatz~7! to which
us& corresponds isa(n)5n2@s#21 for n51•••2s, where
@s# is the largest integer<s.] The numerical results for the
corresponding pairing parametersDs(d), shown in Fig. 3~a!
for some several smalls, confirm the properties anticipate
in the previous subsection’s qualitative discussion.

First, eachDs decreases withd, vanishing at a critical
level spacingdc,s beyond which no pair-mixing correlation
exist in this level of approximation. In Appendix A 2 it i
shown that neardc,s , Ds(d) has the standard mean-fie
form A12d/dc,s; this was to be expected, since the var
tional approach to findingus& is equivalent to doing standar

FIG. 3. Properties of spin-s ground statesus& @compare Eq.

~15!#: ~a! The pairing parametersDs(d)/D̃ for some spin-s ground

statesus&, as a function ofd/D̃. The critical level spacingsdc,s at
which Ds(dc,s)50 are found to be 2.36,0.77,0.44,0.31, . . . , for s
50,1/2,1,3/2,. . . , respectively. ~b! The energy densities (Es

2E p/2
0 )d/D̃2 ~solid lines!, plotted as functions ofd/D̃ for h50, of

some pair-correlated spin-s ground statesus& relative to the uncor-
related spin-p/2 Fermi seaup/2&0 , and for comparision the relative

energy densities (E s
02E p/2

0 )d/D̃2 ~dashed lines! of the correspond-
ing uncorrelated paramagnetic statesus&0 ~obtained fromus& by
settingDs50). We call the plotted quantities energy densities sin

the normalization factord/D̃2 containsd;Vol21. The solid and
dashed spin-s lines meet at the critical level spacingdc,s , above
which no pairing correlations survive„so that the relative energ

densities equal@s22p/41(s2p/2)l#d2/D̃2 there….
s
o

-

-

mean-field theory within the spin-s sector of Hilbert space
~Note that one should not attach too much significance to
precise numerical values of thedc,s reported in Fig. 3, since
they depend sensitively on model assumptions: for exam
the values fordc,0 and dc,1/2 differ somewhat from those
reported in Refs. 12 and 15, due to their use of a sligh
different l and minor numerical approximations not us
here, as mentioned above. Moreover, Smith a
Ambegaokar13 showed that the precise distribution of leve
used influencesdc,s significantly.!

Secondly,Ds decreases rapidly with increasings at fixed
d ~anddc,s,dc,s8 if s.s8), illustrating the blocking effect.
This result, which is expected to be independent of mo
details, is a generalization of the parity effect discussed
von Delft et al.12 @They studied only ground state pairin
correlations and found that these are weaker in odds
51/2) grains than in even (s50) grains,Dodd5D1/2,Deven
5D0 .] The blocking effect is most dramatic in the regim
d/D̃P@0.77,2.36# in which D0Þ0 but DsÞ050. This is a
regime of ‘‘minimal superconductivity,’’15 in the sense tha
all pairing correlations that still exist in the even ground st
~sinceD0Þ0) are completely destroyed by the addition of
single electron or the flipping of a single spin~sinceDsÞ0
50).

Figure 3~b! shows the eigenenergiesEs ~solid lines! of us&
and the energiesE s

0 ~dotted lines! of the corresponding un
correlated paramagnetic states

us&05 )
j 52s1p/2

s211p/2

cj 1
† )

i ,2s1p/2
ci 1

† ci 2
† uVac&. ~16!

The solid and dashed spin-s lines meet at the critical leve
spacingdc,s , above which no pairing correlations survive.

2. Spin-s excited states

Among all possible excited states with definites, we con-
sider here only those created fromus& by exiting one electron
from the topmost occupied levels211p/2 of s& to some
higher levelj 1s211p/2:

us, j &5c~ j 1s211p/2!1
† )

j̄ 52s1p/2

s221p/2

cj̄ 1

†
~17!

3)
i

8 ~ui
s1v i

sci 1
† ci 2

† !uVac&. ~18!

@This reduces tous& if j 50; the particular choice ofa in
Ansatz~7! to which us, j & corresponds isa(n)5n2@s#21
for n51 . . . 2s21 anda(2s)5@s#211 j .]

Interestingly, one finds that the largerj, the longer the
pairing correlations survive with increasingd. This is illus-
trated by the simple examples51/2: Fig. 4~a! shows that the
critical spacingsdc,1/2,j @at which the pairing parameter
D1/2,j (d) vanish# increase withj, approaching the valuedc,0
of the spin-0 case asj→`. This result is reflected in the
excitation energies of Fig. 4~b!: the excited states of the
spin-1/2 sector have nonzero correlation energies~difference
between solid and dashed lines! at d values for which the
spin-1/2 ground state correlation energy of Fig. 3~b! is al-
ready zero. The intuitive reason why more highly excit

e
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states have more pairing correlations than the correspon
spin-1/2 ground stateu1/2& is of course quite simple: The
larger j, i.e., the further the unpaired electron sits from t
Fermi surface where pairing correlations are strongest,
less it disrupts pair mixing~sinceujv j becomes very smal

for large j , see Fig. 1!. In fact, for very largej, the stateu 1
2 , j &

will have just about the same amount of pairing correlatio
as the even ground stateu0& (D1/2,j.D0), since the unpaired
electron sits so far from«F that the pairing correlations ar
effectively identical to those ofu0&.

Similar effects are seen for excited states in other s
sectorssÞ 1

2 . The higher the excitation, the larger the pairi
parameterDs,a . Nevertheless the energy of the excited sta
is always higher than that of the corresponding spin-s ground
state, since the kinetic-energy cost of having an unpa
electron far from«F can be shown to always outweigh th
interaction-energy gain due to having less blocking a
hence a largerDs,a .

E. Magnetic field behavior

In a magnetic field, the Zeeman energy favors states w
nonzero spin. However, since such states have smaller
relation energy due to the blocking effect a competiti
arises between Zeeman energy and correlation energy.
manifestations of the blocking effect can thus be probed
turning on a magnetic field; if it becomes large enough
enforce a large spin, excessive blocking will destroy all pa
ing correlations.

The situation is analogous to ultrathin films in a paral
magnetic field,21 where orbital diamagnetism is negligib
for geometrical reasons and superconductivity is destroye

FIG. 4. Properties of excited spin-1
2 statesu 1

2 , j & @compare Eq.
~17!#: ~a! The pairing parameterD1/2,j for some spin-12 states

u 1
2 , j & ( j 50, . . . ,4), together withD0 of the spin-0 ground state

u0& ~the outermost curve!. The largerj, the closerD1/2,j approaches
the spin-0 valueD0 . ~b! The relative energy densities (E1/2,j

2E 1/2,0
0 )d/D̃2 ~solid lines! of u 1

2 , j & relative tou 1
2 ,0&05u 1

2 &0 , and for

comparison the relative energy densities (E 1/2,j
0 2E 1/2,0

0 )d/D̃2

~dashed lines! of the corresponding uncorrelated stateu 1
2 , j &0 . For

excited states the solid and dashed lines meet at a largerd than for
the ground state, i.e., in excited states pairing correlations sur
down to smaller grain sizes than in the corresponding ground s
ng
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sufficiently largeh by Pauli paramagnetism. This occurs v
a first order transition to a paramagnetic state, as predi
by Clogston and Chandrasekhar~CC! ~Refs. 30,31! by the
following argument~for bulk systems!: A pure Pauli para-
magnet has ground state energy2h2N(«F) and spin s
5hN(«F) @since it chooses its spin such that the sum of
kinetic and Zeeman energies at spins, s2N(«F)22hs, is
minimized#. When this energy drops below the bulk correl
tion energy 2 1

2 D̃2N(«F) of the superconducting groun
state, which happens at the critical fieldhCC5D̃/A2, a tran-
sition will occur from the superconducting to the parama
netic ground state. The transition is first order, since
change in spin, from 0 tosCC5hCCN(«F)5D̃/(dA2), is
macroscopically large@N(«F)51/d.Vol#. In tunneling ex-
periments into ultrathin~5 nm! Al films ( D̃50.38 meV and
HCC54.7 T! this transition has been observed29 as a jump in
the tunneling threshold~from D̃2hCC to zero! at hCC.

In isolated ultrasmall grains, the above picture of the tra
sition needs to be rethought in two respects due to the
creteness of the electronic spectrum: First, the spin mus
treated as a discrete~instead of continuous! variable, whose
changes with increasingh can only take on~parity conserv-
ing! integer values. Secondly, one needs to consider m
carefully the possibility ofh-induced transitions to nonzer
spin states that are stillpair correlated ~instead of being
purely paramagnetic!, such as the variational statesus,a& dis-
cussed above.~In the bulk case, it is obvious that such stat
play no role: the lowest pair-correlated state with nonz
spin obtainable from the ground state by spin flips is a tw
quasiparticle state, costing energy 2D̃22h; when h is in-
creased from 0, the paramagnetic transition athCC5D̃/A2
thus occurs before a transition to this state, which wo
requireh5D̃, can occur.!

Within our variational approach, the effect of increasingh
from 0 can be analyzed as follows: At givend and h, the
grain’s ground state is the lowest-energy state among all p
sible spin-s ground statesus& having the correct parity
2smod 25p. SinceEs(h,d)5Es(0,d)22hs, level crossings
occur with increasingh, with Es8 dropping belowEs at the
level crossing field

hs,s8~d!5
Es8~0,d!2Es~0,d!

2~s82s!
. ~19!

Therefore, ash is slowly turned on from zero with initial
ground stateus05p/2&, a cascade of successive ground-st
changes~GSC’s! to new ground statesus1&,us2&, . . . , will
occur at the fieldshs0 ,s1

,hs1 ,s2
, . . . . Wedenote this cascad

by (s0 ,s1);(s1 ,s2); . . . , and for each of its ground state
changes the corresponding level-crossing fieldshs,s8(d) is
shown in Fig. 5. Generalizing CC’s critical field to nonze
d, we denote the~parity-dependent! field at which thefirst
transition (s0 ,s1) occurs by hCC(d,p)[hs0 ,s1

(d), which
simply is the lower envelope of the level-crossing fiel
hs0 ,s1

in Fig. 5. In the limitd→0 we find numerically that it
correctly reduces to the Clogston-Chandrasekhar va
hCC(0,p)5D̃/A2.

ve
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In general, the order in which the GSC’s occur with i
creasingh depends sensitively ond and an infinite number o
distinct regimes~cascades! I,II,III , . . . , can bedistinguished:
Starting at larged we find the typical normal behavio
(0,1);(1,2);(2,3);. . . , for even grains and

( 1
2 , 3

2 );( 3
2 , 5

2 ); . . . , for oddgrains, withh0,1, ~or .) h1/2,3/2

in regimes I ~or II!. In regimes III and IV of somewha
smaller d, the order of GSC’s is (0,2);(2,3); . . . , and

( 1
2 , 3

2 );( 3
2 , 5

2 ); . . . , etc., i.e., the spins1 attained after the firs
GSC (s0 ,s1) has increased to 2 in the even case. This ill
trates a general trend: the spins1(d) after the first transition
increases with decreasingd and becomes macroscopical
large in thed→0 limit, wheres15hCC/d5D̃/(d&), as ex-
plained in recounting CC’s argument above.

Furthermore, it turns out thatDs1
(d)50 for all d, imply-

ing that after the first GSC the new ground stateus1& is
always~not only in CC’s bulk limit! an uncorrelated, purely
paramagnetic state. In this regard, CC’s picture of the tr
sition remains valid throughout asd is increased: at
hCC(d,p), a transition occurs from the superconducti
ground state to a paramagnetic, uncorrelated stateus1&0 , the
transition being first-order in the sense thatDs1

(d)50; how-
ever, the first-order transition is ‘‘softened’’ with increasin
d, in the sense that the size of the spin changes12s0 de-
creases from being macroscopically large in the bulk to
ing equal 1 atd@D̃ ~regimes I and II!.

F. Deficiencies of the variational ansatz

Though the variational method we used to calculate
systems ‘‘eigenenergies’’ is expected to yield qualitative
correct results, it does have some deficiencies. First, a va
tional approach by construction only gives an upper bou

FIG. 5. The level-crossing fieldshs,s8(d)/D̃ @see Eq.~19!# for
the cascade of ground state changes~GSCs! (s0 ,s1);(s1 ,s2); . . . ,
that occurs ash increases from 0 at givend. Some lines are labeled
by the associated GSC (s,s8) ~whereEs8 drops belowEs as h in-
creases pasths,s8). ~Level crossing fieldsnot associated with a GSC
are not shown.! The order in which GSCs can occur within a ca
cade~i.e., the order ofhs,s8 lines encountered when moving vert
cally upward in the figure! depends sensitively ond, and an infinite
number of distinct regimes~cascades! I,II,III , . . . , can bedistin-
guished. The lower curves show the first jump in the lowest line
a tunneling spectrum that occurs at the level-crossing fi
hCC(p,d)5hs0 ,s1

. The size of this jumpuDEs1 , f 82DEs0 , f u differs
for e→o ~solid line! ando→e ~dashed line! tunneling spectra bu
in both cases approaches the CC value 121/A250.29 asd→0.
The nonmonotonic behavior is due to the discreteness of the l
spacing.
-

-

-

e

ia-
d

on the exact eigenenergiesEs,a . The variational energies
Es,a could be lowered further by choosing better trial wa
functions that sample larger parts of a given spin-s Hilbert
space, i.e., by including ‘‘fluctuations’’ about the chos
states.

Secondly, the abrupt vanishing of the pairing paramet
Ds,a(d).A12d/dc,s at a critical level spacingds,a @see Ap-
pendix and Fig. 3~a!# is unphysical: in a finite system, an
nonzero pair-interaction constant will always induce a no
zero amount of pairing correlations, i.e., the canonicalD̄s8(d)
of Eq. ~4! will always be nonzero, though it could becom
arbitrarily small for sufficiently larged. ~This statement is
analogous to stating that ‘‘in a finite system no abrupt ph
transition between a zero and nonzero order parameter
curs.’’!. The abrupt, mean-field-like vanishing ofDs,a(d) is
of course an artifact, that occurs since the grand-canon
variationalAnsatzis equivalent~at least for the spin-s ground
statesus&) to doing mean-field theory in a fixed-s Hilbert
space.

Thirdly, the variational states of course are notN̂ eigen-
states~though they do have definite parity!, and Eq.~13!
only fixes themeanelectron number. Our reasons for neve
theless adopting them to describe an isolated grain w
given in Sec. II C: a large body of experience in nucle
physics showed that fixed-N projections generally produc
only minor corrections to the grand-canonical BCS resu
Nonetheless, note that we expect a fixed-N projection~cur-
rently under investigation25! to somewhat ameliorate the firs
two of the abovementioned deficiencies of the variatio
approach: projection after variation ofus& to fixed N will
lower the energyEs a bit, and presumably projection befor
variation will in addition result in a canonical pairing param
eterD̄s(d) that decays smoothly with increasingd from finite
to arbitrarily small but nonzero values. Note, though, th
this is not expected to change the eigenenergies very m
since the correlation energies rapidly approach zero any
when the correlations become weak. In other words, we
pect the variational scheme for calculating eigenenergie
break down only whenDs becomes so small that it has n
experimental relevance any more~to check this in detail,
strictly canonical calculations are needed25,27!.

IV. OBSERVABLE QUANTITIES

In this section, we consider the grain coupled to leads
in RBT’s SET experiments. After explaining what kind o
information can and can not be extracted from their data,
turn to the calculation of observable quantities.~a! We cal-
culate theoretical tunneling spectra and compare thes
RBT’s measurements and~b! address the question of th
observability of various parity effects, proposing to sear
for one involving the pair-breaking energy.

A. Experimental details

In RBT’s experiments,6,7,9an ultrasmall grain was used a
central island in a SET: it was connected via tunnel barri
to external leads and capacitively coupled to a gate, and
electronic spectrum determined by measuring the tunnel
rent through the grain as a function of transport voltage (V),
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9536 PRB 59FABIAN BRAUN AND JAN von DELFT
gate voltage (Vg) and magnetic field (H5h/mB , with mB
50.0571 meV/T! at a fixed temperature of 50 mK.

The particular grain@Ref. 9, Figs. 1~b!,2,3# with which we
shall compare our theory had the following parameters:
radius was estimated asr .4.5 nm by assuming the grain t
be hemispherical, implying a volume.(5.7 nm)3 and a to-
tal number of conduction electronsN of about 33104. The
crude order-of-magnitude free-electron estimated
52p2\2/(mkFVol) for the mean level spacing near«F
yieldsd.0.45 meV. The SET had lead-to-grain capacitan
C153.5 aF, C259.4 aF, gate-to-grain capacitanceCg
50.09 aF, and charging energyEC5e2/2Ctotal546 meV.
The tunnel current is on the order of 10210 A, implying an
average time of 231029 sec between subsequent tunneli
processes.

Since the charging energyEC was very much larger than
all other energy scales, such as the bulk gap (D̃.0.38 meV!,
typical values of the transport voltage (V&1 mV! and the
temperature, fluctuations in electron number on the grain
strongly suppressed, so that coherent superpositions bet
states with differentN need not be considered. The energ
balance condition that determines through which eigenst
of the grain electrons can tunnel for given values of transp
and gate voltage thus involve differences between
eigenenergies of a grain withfixed particle number Nor N
61,

DEi f [~Ef
N1EC

N!2~Ei
N611EC

N61!, ~20!

corresponding to the energy cost needed for some r
limiting electron tunneling processu i &N61→u f &N off or onto
the grain. Hereu f &N denotes a discrete eigenstate of t
N-electron grain with eigenenergyEf

N1EC
N . Following the

‘‘orthodox model’’ of SET charging, we takeEC
N , the grain’s

electrostatic energy~relative to a neutral grain withN0 elec-
trons! as EC

N5EC(N2N02Qg /e)2, where Qg5CgVg

1const is the gate charge, and assume the Coulo
interaction to be screened sufficiently well that its sole eff
is to shift all fixed-N eigenstates by the same consta
amountEC

N . ~The latter assumption is somewhat precario
it becomes worse with decreasing grain size, and was sh
to break down in grains half the present size.10!

RBT were able to extract the energy differencesDEi f
from their data: the differential conductancedI/dV as func-
tion of V at fixedVg has a peak whenevereV times a known
capacitance ratio is equal to one of theDEi f ’s, at which point
another channel for carrying tunneling current through
grain opens up~the inclusion of the capacitance ratio tak
into account that the voltage drop across each of the
tunnel junctions can be different if their capacitances are
identical9!. Plotting the position of each conductance peak
function of h gives the so-called experimental tunnelin
spectrum shown in Fig. 6, in which each line reflects theH
dependence of one of the energy differencesDE(h).

It is important to note that the experimental threshold
ergy ath50 for the lowest-energy tunneling process (y in-
tercept of the lowest line, the so-called ‘‘tunneling thres
old’’ ! yields no significant information, since it depends
the grain’s change in overall charging energy due to tunn
ing,
s
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dEC5EC
N2EC

N615ECFQg /e2S N2N06
1

2D G , ~21!

which depends~via Qg) in an imprecisely known way on the
adjustable gate voltageVg . This Vg dependence can usuall
~e.g., in SET’s with much smaller charging energies th
here! be quantified precisely by studying the Coulomb osc
lations that occur as function ofVg at fixedV. Unfortunately,
in the present case a complication arises24 due to the small-
ness of the gate capacitance: to sweepQg through one period
of 2e, the gate voltageVg must be swept through a range s
large (2e/Cg.3.5 V! that during the sweep, RBT routinel
observed small ‘‘rigid’’ shifts of the entire tunneling spe
trum at random values ofVg . They presumably are due t
single-electron changes in the charge contained in o
metal grains in the neighborhood of the grain of intere
these changes produce sudden shifts in the electrostatic
tential of the grain, and thus spoil the exact 2e periodicity
that would otherwise have been expected for the spectra

In contrast to the threshold energy, however, the sep
tions between lines,

DEi f 82DEi f 5Ef 8
N

2Ef
N , ~22!

are independent of gate voltage and hence known absolut
they simply correspond to the differences between eigen

FIG. 6. Experimental tunneling spectra measured by RBT~Fig.
3 of Ref. 9!. The distances between lines give the fixed-N excitation
spectra of~a! an even and~b! an odd grain, as explained in Se
IV A. The vertical dashed lines indicate the first four level-crossi
fields Hs,s8 ~assigned by comparison with Fig. 7, see Sec. IV B!,
namely H0,154T, H1/2,3/254.25T, H1,255.25T, and H3/2,5/2

56.5T with uncertainty60.13T ~half theH resolution of 0.25T!.
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ergies of afixed-N grain, i.e., give its fixed-N excitation
spectrum, and these are the quantities that we shall focu
calculating below.

The most notable feature of RBT’s measured tunnel
spectra is the presence~absence! of a clear spectroscopic ga
2Ve.d between the lowest two lines of the odd-to-ev
~even-to-odd! measured spectra in Figs. 6~a! and 6~b!. This
reveals the presence of pairing correlations: in even gra
all excited states involve at least two BCS quasiparticles
hence lie significantly above the ground state, whereas
grainsalwayshave at least one quasiparticle and excitatio
need not overcome an extra gap.

Since theDEi f ’s in Eq. ~20! are constructed fromfixed-N
and fixed-N61 eigenenergies, we shall approximate the
using the variational energiesEsa discussed in previous sec
tions for a completelyisolatedgrain. ~We thereby make the
implicit assumption that the grain’s coupling to the leads
sufficiently weak that this does not affect its eigenenerg
i.e., that the leads act as ‘‘ideal’’ probes of the grain.! The
Esa will be used as a starting point to discuss various obse
able quantities; in particular, we shall make contact w
RBT’s experimental results by constructing the theoreti
tunnel spectrum~as function ofh and d) predicted by our
model.

B. The tunneling spectrum in a magnetic field

The kind of tunneling spectrum that results depends i
distinct way on the specific choice of level spacingd and
final-state parityp ~i.e., the parity of the grain after the rate
limiting tunneling process has occurred!. To calculate the
spectrum for givend andp, we proceed as follows below: w
first analyze at each magnetic fieldh which tunneling pro-
cessesu i &N61→u f &N are possible, then calculate the corr
sponding energy costsDEi f (h) of Eq. ~20! and plot
DEi f (h)2DEmin(0) as functions ofh for various combina-
tions of i , f , each of which gives a line in the spectrum. W
subtractDEmin(0), the h50 threshold energy cost for th
lowest-lying transition, since in experiment it depends onVg
and hence yields no significant information, as explain
above. Figure 7 shows four typical examples of such th
retical tunneling spectra, with some lines labeled by the c
respondingu i &→u f & transition.

When taking the data for Fig. 6, RBT took care to adju
the gate voltageVg such as to minimize nonequilibrium e
fects, which we shall therefore neglect. For givenh, we thus
consider only those tunneling processes for which the in
stateu i & corresponds to the grain’s ground stateusi& at thath
~andd,p), whose spinsi can be inferred from Fig. 5. Sinc
the grain’s large charging energy ensures that only one e
tron can tunnel at a time, the set$u f &% of possible final states
satisfies the ‘‘spin selection rule’’usf2si u5

1
2 and includes,

besides the spin-sf ground state usf&, also excited spin-sf
states.

Wheneverh passes through one of the level-crossi
fieldshsi ,si 8

of Eq. ~19!, the grain experiences a ground sta

change (si ,si 8). After this GSC,usi 8& is the new initial state
for a new set of allowed tunneling transitionsusi 8&→$usf 8&%
~satisfyingusf 82si 8u51/2). Since this new set in general di
fers from the previous set of transitionsusi&→$u f &% allowed
before the GSC, athsi ,si 8

one set of lines in the tunnelin
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spectrum ends and another begins. A line from the form
connects continuously to one from the latter only if its fin
stateu f & can be reached from bothusi& and usi 8& @i.e., if sf
2si52(sf2si 8)]; in this case, the two linesusi&→u f & and
usi 8&→u f & join at hsi ,s

i8
via a kink, sinceDEi f (h) and

DEi f 8(h) have slopes of opposite sign. However, for mo
lines this is not the case~since usuallyusf2si 8uÞ1/2), so
that athsi ,s

i8
the line usi&→u f & simply endswhile new lines

usi 8&→u f 8& begin. This results in discontinuitie
~or ‘‘jumps’’ ! in the spectrum athsi ,s

i8
of size (DEi 8 f 8

2DEi f )(hsi ,s
i8
), unless by chance some other final stateu f 8&

happens to exist for which this difference equals zero.
Since the order in which the GSC’s (si ,si 8) occur as

functions of increasingh depend ond andp, as indicated by
the distinct regimes I,II,III, . . . , inFig. 5, one finds a distinc
kind of tunneling spectrum for each regime, differing fro
the others in the positions of its jumps and kinks. In regim
I, where the order of occurrence of GSC’s with increasingh

is (0,1);(1
2 , 3

2 );(1,2);(3
2 , 5

2 ); . . . , there are no discontinuitie
in the evolution of the lowest line@see Fig. 7~a!#. For ex-
ample, for thee→o spectrum, the lowestu0&→u1/2& line
changescontinuouslyto u1&→u1/2& at h0,1, since usf2si8u
51/2. However, in all other regimes the first change
ground state spin~at h0,s1

from 0 to s1) is .1, implying a

jump ~though possibly small! in all e→o lines, as illustrated
by Fig. 7~b!.

The jump’s magnitude for the tunneling thresholds, i.
the loweste→o ando→e lines, is shown as function ofd in
the lower part of Fig. 5. It starts atd50 from the CC value
D̃(121/A2) measured for thin Al films,21 and with increas-
ing d decreases to 0~nonmonotonically, due to the discret
spectrum!. This decrease of the size of the jump in the tu

FIG. 7. The theoretical odd-to-even and even-to-odd tunne

spectra@DEi f 2DEmin(0)#/D̃ predicted for an ultrasmall supercon
ducting grain as a function of magnetic fieldh, for two different

level spacings:~a! d50.67D̃ and ~b! d50.34D̃ ~corresponding to
regimes I and III of Fig. 5, respectively!. Some lines are labeled b
the correspondingsi→si8 tunneling transition. Not all possible
higher lines~corresponding to excited final statesus, j &) are shown.
Vertical dashed lines indicate those level-crossing fieldshs,s8 @see
Eq. ~19!# at which kinks or jumps occur, withh0,1,h1/2,3/2,h1,2

,h3/2,5/2 in ~a! andh1/2,3/2,h0,2,h2,3 in ~b!.
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neling thresholdreflects the fact, discussed in Sec. III E, th
the change in spin at the first ground state change (s0 ,s1)
decreases with increasingd ~ass12s0;hCC/d), and signals
the softening of the first-order superconducting-
paramagnetic transition.

The fact that the measured tunneling thresholds in Fig
show no jumps at all~which might at first seem surprisin
when contrasted to the threshold jumps seen athCC in thin
films in a parallel field29!, can therefore naturally be
explained15 by assuming the grain to lie in the ‘‘minima
superconductivity’’ regime I of Fig. 5~where the jump size
predicted in Fig. 5 is zero!. Indeed, the overall evolution
~i.e., order and position of kinks, etc.! of the lowest lines of
Fig. 6 qualitatively agrees with those of a regime I tunneli
spectrum, Fig. 7~a!. This allows us to deduce the followin
values for the level-crossing fieldsHsi ,s

i8
~indicated by ver-

tical dashed lines in Figs. 6 and 7!: H0,154T, H1/2,3/2

54.25T, H1,255.25T, and H3/2,5/256.5T. As correspond-
ing uncertainties we takeDHsi ,s

i8
50.13T, which is half the

H resolution of 0.25T used in experiment.
By combining the aboveHsi ,s

i8
values with Fig. 5, some

of the grain’s less-well-known parameters can be determi
somewhat more precisely: First, the grain’s ‘‘bulkHCC’’
field can be estimated by noting from Fig. 5 thath0,1/hCC

.0.95, so thatHCC5H0,1/0.95.4.2T. This is in rough
agreement with the valueHCC.4.7T found experimentally21

in thin films in a parallel field, confirming our expectatio
that these correspond to the ‘‘bulk limit’’ of ultrasmall grain
as far as paramagnetism is concerned.~Recall that our nu-
merical choice ofl50.194 in Sec. III D was based on th
correspondence.! Secondly, the grain’s corresponding bu
gap is D̃5A2mBHCC.0.34 meV. Thirdly, to estimate the
level spacingd, note that sinceH1/2,3/2/H0,1.1.06, this grain
lies just to the right of the boundary between regions II a
I in Fig. 5 whered/D̃.0.63, i.e.,d.0.21 meV.~The crude
volume-based valued.0.45 meV of Sec. IV A thus seem
to have been an overestimate.! It would be useful if the
above determination ofd could be checked via an indepe
dent accurate experimental determination ofd directly from
the spacing of lines in the tunnel spectrum; unfortunate
this is not possible: the measured levels are shifted toge
by interactions, implying that their spacing does not refl
the meanindependent-electronlevel spacingd.

The higher lines plotted in Fig. 7 correspond to sta
where the electron tunnels into an excited spin-sf state. For
simplicity we considered only excited statesusf , j & involving
a single electron-hole excitation relative tousf&, such as the
example discussed in Sec. III D 2 or as sketched in Fig. 2~b!,
though in general others are expected to occur too.
jumps in these lines@e.g., in Fig. 7~a! at h1,2] occur when-
ever the two final excited statesusf , j f& and usf 8 , j f 8& before
and after the GSC athsi ,s

i8
have different correlation ener

gies. ~Recall that the correlation energy of an excited st
usf ,af& can be nonzero even if that of the correspond
ground stateusf& is zero, since the former’s unpaired ele
trons are further away from«F , so thatDsf ,af

.Dsf
, see Sec.

III D 2.! Experimentally, these jumps have not been o
served. This may be because up-moving resonances lose
t
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plitude and are difficult to follow9 with increasingh, or be-
cause the widths of the excited resonances (.0.13D̃) limit
energy resolution.10

For somewhat larger grains, the present theory pred
jumps even in the lowest line. It remains to be investigat
though, whether orbital effects, which rapidly increase w
the grain size, would not smooth out such jumps.

Finally, note that more than qualitative agreement b
tween theory and experiment can not be expected: in a
tion to the caveats mentioned in the second paragraph of
III D, we furthermore neglected nonequilibrium effects in th
tunneling process and assumed equal tunneling matrix
ments for all processes. In reality, though, random variati
of tunneling matrix elements could suppress some tunne
processes which would otherwise be expected theoretica

C. Parity effects

As mentioned in the Introduction, several authors12–15

have discussed the occurrence of a parity effect in ultrasm
grains: ‘‘superconductivity’’~more precisely, ground stat
pairing correlations! disappears sooner with decreasing gra
size in an odd than an even grain (D1/2,D0 , and dc,1/2
,dc,0). This is a consequence of the blocking effect, whi
is always stronger in the presence of an odd, unpaired e
tron than without it. This section is devoted to discussing
what extent this and related parity effects are measura
Since pairing parameters such asD1/2,D0 are not observable
quantities, measurable consequences of parity effects m
be sought in differences between eigenenergies, which
principle are measurable.

1. In ultrasmall grains, E1/22E0 is currently not measurable

One might expect that the odd-even ground state ene
differenceEG

o/e[(E1/22E0) should reveal traces of the pa
ity effect. Regrettably,in ultrasmall grains this quantity not
directly measurable in the current generation of experime
by RBT, for the following reasons.

If the transport voltageV is varied at fixed gate voltage
Vg , the energy cost of changing the grain’s electron num
by 1 ~theh50 threshold tunneling energy! depends@see Eq.
~20!# not only on EG

o/e but also on the changedEC in the
grain’s charging energy due to tunneling. However, as
plained in Sec. IV A,dEC depends~in an imprecisely known
way! on the actual value ofVg . Therefore only the grain’s
fixed-N excitation spectrum~distance between lines of tun
neling spectrum! can be measured accurately in this way, b
not EG

o/e .
If the gate voltageVg is varied at a fixed transport voltag

in the linear response regimeV.0, i.e., Coulomb oscilla-
tions are studied, one expects to find a 2e periodicity in the
so-called gate chargeQg5CgVg1const, withEG

o/e determin-
ing the amount of deviation from thee periodicity ~see Ap-
pendix B for details!. Analyzing these deviations thus i
principle allows one to experimentally determineEG

o/e , as
has been demonstrated convincingly inmm-scale
devices.32,33

However, the parity effects discussed in the present pa
are only expected to occur in devices very much smaller t
those of Refs. 32 and 33, namely, in nm-scale devices s
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as those of RBT. Regrettably, for these it is at present
possible to study ~as suggested in Ref. 14! e- or
2e-dependent features with sufficient accuracy to ca
through the procedure described above: due to the extrem
small size of nm-scale grains, their charging energy is
large that the predicted pairing-induced deviation frome pe-
riodicity is a very small effect~a fractional change of orde
EG

o/e/EC,0.01). Moreover, even if observable in principl
in present experiments this small effect would be obscu
by deviations from periodicity of a different origin: as e
plained in Sec. IV A, RBT routinely observed sudd
Vg-dependent shifts in background charge24 near the transis-
tor when they sweepVg through the large range necessary
cover more than one period, and according to RBT,24 the
resulting random deviations from periodicity make it impo
sible to analyzee vs 2e effects with the accuracy required t
extract EG

o/e-induced effects. Thus we conclude that
presentEG

o/e is not directly measurable.

2. Parity effect in pair-breaking energies

Since the quantities that RBT can measure accurately
fixed-N excitationspectra, let us investigate what parity e
fects can be extracted from these. Since any parity effect
consequence of the blocking effect, we begin by discuss
the latter’s most obvious manifestation: it is simply the fa
that breaking a pair costs correlation energy, since the re
ing two unpaired electrons disrupt pairing correlations. Th
of course, is already incorporated in mean-field BCS the
via the excitation energy of at least 2D̃ involved in creating
two quasiparticles. It directly manifests itself in the qualit
tive difference between RBT’s even and an odd excitat
spectra~explained in Sec. IV A!, namely, that the forme
shows a large spectral gap 2Ve.d between its lowest two
lines that is absent for the latter~Fig. 6!.

The parity effect discussed by von Delftet al.12 and Smith
and Ambegaokar13 referred to a more subtle consequence
the blocking effect that goes beyond conventional B
theory, namely, that the pairing parametersDs have a signifi-
cants dependence onced/D̃ becomes sufficiently large. Al
though these authors only considered the ground state p
effect D1/2,D0 , the same blocking physics will of cours
also be manifest in generalizations tos. 1

2 . In fact, the prob-
lems with measuring the odd-even ground state energy
ferenceEG

o/e discussed above leave us no choice but to t
to s. 1

2 cases when looking for a measurable parity effe
Specifically, we shall now show that a parity effect resulti
from D3/2,D1 should in principle be observable in prese
experiments.

To this end, let us compare theh50 pair-breaking ener-
gies in an even and an odd grain, defined as the energy
electron needed to break a single pair ath50 by flipping a
single spin: for an even grain, it isVe[

1
2 (E12E0)h50 , i.e.,

simply half the spectral gap discussed above; for an
grain, it isVo[ 1

2 (E3/22E1/2)h50 .
Within mean-field BCS theory, one would evaluate the

using the same pairing parameterD̃ for all states and@(« j

2mp)21D̃2#1/2 for the quasiparticle excitation energies a
sociated with having the single-particle stateu j ,6& definitely
occupied or empty, with parity-dependent chemic
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potential12 mp5«02pd/2. This would giveVe
BCS5@(d/2)2

1D̃2#1/2 and Vo
BCS5@d21D̃2#1/2, implying that the differ-

enceVo
BCS2Ve

BCS is strictly .0 ~Fig. 8, dotted lines!. For

d/D̃→` this difference reduces tod, which is simply the
difference in the kinetic energy cost required to flip a sing

spin when turningu 1
2 &0 into u 3

2 &0 ~namely, 2d), relative to
that when turningu0&0 into u1&0 ~namely,d).

In contrast, using the present theory to go beyond me
field BCS theory, one finds numerically thatVo.Ve only
for sufficiently large level spacings (d/D̃.0.6, see Fig. 8,
dotted lines!; for smallerd one hasVo,Ve , implying that it
costs less energy to break a pair in an odd grain than an e
grain, even though the kinetic-energy cost is larger (2d vs
d). This happens sinceD3/2,D1 , which reflects a parity
effect caused by pair blocking by the extra unpaired elect
in u3/2& relative to u1&. The theoretical result thatVo /Ve

,1 for sufficiently small d/D̃ can be viewed as a ‘‘pair-
breaking energy parity effect’’ which is analogous to th
‘‘ground state parity effect’’D1/2,D0 , but which, in con-
trast to the latter, should be observable in the experimenta
available fixed-N eigenspectra.

What areVe and Vo in RBT’s experiments? Unfortu-
nately, the present data do not give an unambiguous ans
on the one hand, theh50 data allow the determination o
Ve50.25 meV@half theh50 energy difference between th
two lowest lines of Fig. 6~a!#, but not ofVo , since breaking
a pair is not the lowest-lying excitation of an odd system
h50 @which is why Fig. 6~b! has no spectral gap#. On the
other hand, bothVe and Vo can be found fromhÞ0 data,
since by Eq.~19! they are equal to the level-crossing field
h0,15Ve andh1/2,3/25Vo , whose values were deduced fro
the experimental tunneling spectra in Sec. IV B. This yie
Ve50.2360.01 meV andVo50.2460.01 meV, i.e., aVe
value somewhatsmallerthan the above-mentioned 0.25 me
determined ath50. The reasons for this difference are pr
sumably~i! that the actualg factors are not precisely 2~as
assumed!, and~ii ! that the experimental spectral lines are n
perfectly linear inh ~having a smallh2 contribution due to
orbital diamagnetism, neglected in our model!.

Nevertheless, if we assume that these two complicati
will not significantly affect the ratioh1/2,3/2/h0,1 ~sinceh1/2,3/2
andh0,1 presumably are influenced by similar amounts!, we

FIG. 8. Parity effect for the pair-breaking energiesVe[
1
2 (E1

2E0)h50 and Vo[ 1
2 (E3/22E1/2)h50 ~see Sec. IV C 2!: when cal-

culated naively using conventional mean-field theory~dashed lines!,

the pair-breaking energies obeyVo.Ve for all d/D̃; in contrast,
when calculated within generalized variational BCS theory~solid

lines!, Vo,Ve for d/D̃,0.6; this reflects a parity effect, namel
that D3/2,D1 , which is caused by the extra unpaired electron
u3/2& relative tou1&.
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may use it to estimate the ratioVo /Ve54.25/451.06
60.1. This ratio is slightly smaller than that expected fro
the mean-field BCS ratioVo

BCS/Ve
BCS.1.1 at d/D̃.0.63,

i.e., consistent with the pair-breaking energy parity effe
However, the difference between 1.06 and 1.1 is proba
too small to regard this effect as having been conclusiv
observed.

We suggest that it should be possible to conclusively
serve the pair-breaking energy parity effect in a somew
larger grain with h1/2,3/2,h0,1 ~implying Vo /Ve,1), i.e., in
regime II of Fig. 5.~This suggestion assumes that in regim
II the complicating effect of orbital diamagnetism is st
nondominant, despite its increase with grain size.! To look
for this effect experimentally would thus require good co

trol of the ratio d/D̃, i.e., grain size. We suggest that this
might be achievable if a recently reported new fabricat
method, which allows systematic control of grain sizes
using colloidal chemistry techniques,34 could be applied to
Al grains.

3. Parity effect in the limit d/D̃@1

Since the parity effects discussed above are based on
observation that the amount of pairing correlations, as m
sured byDs , have a significants dependence, they by defi
nition vanish for d.dc,0 , because thenDs50 for all s.
Matveev and Larkin~ML ! ~Ref. 14! have pointed out, how-
ever, that there is a kind of parity effect that persists even
the limit d/D̃@1, which in the present theory we would ca
the ‘‘uncorrelated regime’’@since there theD̄8 defined in Eq.
~4! would be!D̃]: when one extra electron is added to
even grain, it does not participate at all in the pairing int
action, simply because this actsonly between pairs; but when
another electron is added so that now an extra pair is pre
relative to the initial even state, it does feel the pairing int
action and makes a self-interaction contribution2ld to the
ground state energy. To characterize this effect, they in
duced the pairing parameter

DP
ML5E1/2

N112
1

2
~E0

N1E0
N12!, ~23!

with N5even. In first order perturbation theory inl, i.e.,
using Ep/2

N1p[0^puHup&0 ~where up&0 is the uncorrelated
Fermi ground state withN1p electrons!, one obtains
DP

ML,pert5 1
2 ld. This illustrates that this parity effect exis

even in the complete absence of correlations, and incre
with d.

Since our variational ground statesup& reduce to the un-
correlated Fermi statesup&0 whenDP50, the above pertur-
bative result ford/D̃ can of course also be retrieved from o
variational approach: we approximateE0

N and E1/2
N11 by

E0(d) and E1/2(d), respectively, both of which were calcu
lated above, andE0

N12 by E0(d)2ld, since it differs from
E0(d) only by an extra electron pair at the band’s botto
whose interaction contribution in Eq.~8! is 2ld(v j

(s))4.
Thus the variational result for ML’s parity parameter is

DP
ML,var5E1/2~d!2E0~d!1ld/2, ~24!
t.
ly
ly

b-
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~see Fig. 9!, which reduces to the perturbative resultDP
ML,pert

for d.dc,0 . The reason why this parity effect did not surfa
in the discussions of previous sections in spite of its lin
increase withd is simply that there we were interested
correlation energies of the formE2E 0 in which effects as-
sociated with ‘‘uncorrelated’’ states were subtracted out@see,
e.g., Figs. 3~b! and 4~b!#.

The perturbative resultDP
ML,pert5 1

2 ld is in a sense trivial.
However, ML showed that a more careful calculation in t
regimed/D̃@1 leads to a nontrivial upward renormalizatio
l̃ of the bare interaction constantl, given with logarithmic
accuracy by

l̃;
l

12l ln~vC /d!
. ~25!

To obtainDP
ML , l in DP

ML,pert is replaced by this renormal

ized l̃, with the result

DP
ML;d/~2 lnd/D̃ !. ~26!

This logarithmic renormalization, which is beyond the rea
of our variational method~but was confirmed using exac
diagonalization in Ref. 27!, can be regarded as the ‘‘firs
signs of pairing correlations’’ in what we in this paper ha
called the ‘‘uncorrelated regime’’@in particular sinceuDP

MLu
increasesupon renormalization only if the interaction is a
tractive, whereas it decreases for a repulsive interaction,
Eq. ~25!#. Unfortunately,DP

ML is at present not measurable
for the same experimental reasons as apply to EG

e/o , see Sec.
IV C 1.

V. CONCLUSIONS

Citing the extensive literature in nuclear physics on fixe
N projections of BCS theory, we argued that a reasona
description of ultrasmall grains is possible using gran
canonical BCS theory, despite the fact that such gra
would strictly speaking require a canonical description. U
ing a generalized variational approach to calculate vari
eigenenergies of the grain, we demonstrated the importa
of the blocking effect~the reduction of pair-mixing correla
tions by unpaired electrons! and showed that it become
stronger with decreasing grain size. The blocking effec
revealed in the magnetic-field dependence of the tunne
spectra of ultrasmall grains, in which pairing correlations c

FIG. 9. The parity parameterDP
ML discussed by Matveev an

Larkin ~Ref. 14!, calculated perturbatively for the uncorrelate
Fermi sea (DP

ML,pert5
1
2 ld, dashed line!, and using our generalized

variational BCS approach@DP
ML,var of Eq. ~24!, solid line#. The

renormalized resultDP
ML;d/@2 ln(ad/D̃)# given by ML is shown

~dashed-dotted line! in its range of validityd/D̃@1. The parameter
a51.35 is chosen to ensure quantitative agreement with exac
agonalization results for extremely small grains~Ref. 27!.
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be sufficiently weak that they are destroyed by flipping
single spin ~implying ‘‘minimal superconductivity’’!. Our
theory qualitatively reproduces the behavior of the tunnel
thresholds of the spectra measured by Ralph, Black,
Tinkham as a function of magnetic field. In particular,
explains why the first order transition from a supercondu
ing to a paramagnetic ground state seen in thin films i
parallel field is softened by decreasing grain size. Finally,
argued that a pair-breaking energy parity effect~that is
analogous to the presently unobservable ground state en
parity effect discussed previously! should be observable in
experiments of the present kind, provided the grain size
be better controlled than in RBT’s experiments.
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APPENDIX A: ANALYTICAL LIMITS

1. d˜0 and Euler-MacLaurin expansion

When the level spacingd tends to zero the theory reduce
to the conventional BCS variational and mean field a
proach. We can calculate the properties of a superconduc
system to first order ind by expanding the BCS solutio
aroundd50. In doing so, we focus on the ground statesus&
of each spin-s sector of Hilbert space.

While in the bulk limit (d50) the shift2ld(v j
(s))2 in the

single-electron energiesj j just after Eq.~12! is unimportant,
it influences the behavior of an ultrasmall grain by effe
tively increasing the level-spacing near the Fermi surface
effect is largest fors50, since forsÞ0 the states at the
Fermi surface, where the deviation ofv j

(s,a) from 0 or 1 is
largest, are blocked. For simplicity we neglect thev j

(s,a) de-
pendence inj j in the following calculation, usingj j5« j
2m2ldu@2(« j2m)#, and therefore good agreement wi
numerics can only be expected ford!D̃ and sÞ0. Within
this approximation forj j , m lies halfway between the top
most double occupied and lowest completely empty leve
us&0 : m5«02d(dp,01l)/2. Note thatm does not lie ex-
actly on one of the levels in the odd case (p51) as one
might have expected at first sight, but halfway between
topmost doubly occupied and lowest completely empty lev

We shall calculate the pairing parameterDs(d) in the
small-d limit by calculating the first terms of its Taylor se
ries:

Ds~d!.S 11d]d1
d2

2
]d

2DDs~0!. ~A1!

To this end, it suffices to solve the gap equation~12!, as well
its first and second derivatives with respect tod, for d50.
g
d

t-
a
e

rgy

n

.

o

o
.
ol-
-

-
ng

-
ts

n

e
l.

This can be done by rewriting Eq.~12! using the Euler-
MacLaurin summation formula

1/l5d (
j 5 j 0

j 1

f ~ jd !.E
j 0d

j 1d

dj f ~j!1
d

2
@ f ~ j 0d!1 f ~ j 1d!#

1
d2

12
@ f 8~ j 0d!1 f 8~ j 1d!#, ~A2!

with f ( jd)5@( jd)21Ds
2#21/2, j 05s1(11l)/2, and j 1

5vc /d. The s dependence has now been absorbed in
lower boundj 0 of the sum. The negative branch of the su
is identical to the positive sincem lies halfway between the
topmost doubly occupied and lowest completely empty lev
It therefore suffices to calculate the positive branch tim
two. Settingd50 in Eq. ~A2! yields the well-known BCS
bulk gap equation, whose solution is, by definition,Ds(0)
5D̃. The first and second total derivatives with respect td
of Eq. ~A2! yield ]dDs(d50)52s and ]d

2Ds(d50)5

2s2/D̃, so that the desired result from Eq.~A1! is

Ds~d!.D̃2~s1l/2!d2
~s1l/2!2d2

2D̃
. ~A3!

We next calculate the eigenenergiesEs by evaluating Eq.
~8! up to first order ind, where the sums again are evaluat
with the help of the Euler-MacLaurin formula. Since we a
interested in the effects of pairing correlations we subtr
the energyE p

0 of the uncorrelated Fermi seaup&0 :

~even! Es2E 0
0.2

D̃2

2d
1S 11

p

4 DlD̃12sD̃

2S s22
1

12
1

p16

4
lsDd, ~A4a!

~odd! Es2E 1
2

0
.2

D̃2

2d
1

p

4
lD̃12sD̃

2S s21
1

6
1

p16

4
ls1

l

2Dd. ~A4b!

Thed21 term is the bulk correlation energy, which is slight
renormalized by the intensive (11p/4)lD̃ term, which in
turn stems from thev4 terms of Eq.~8!. 2sD̃ is the bulk
excitation energy for 2s quasiparticles. Thed1 term is the
first-order correction for discrete level-spacing.

2. d near dc and the small delta expansion

The other analytically tractable limit isd@Ds , which
holds ford near the critical spacingdc,s whereDs vanishes.
First, we derive an expression for the criticaldc,s by solving
the gap equation with vanishing pairing parameterDs for d:

1

l
5 (

j 5 j 0

vc /dc,s 1

j
5C~vc /dc,s11!2C~ j 0!. ~A5!
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C(x) denotes the digamma function andj 0 equalss1(1
1l)/2 again. Remembering thatl51/ln(2vc /D̃) and
exp@C(x)#;x21

2 for largex this equation reduces to

lnS 2dc,s

D̃
D 52CS s1

11l

2 D ~A6!

dc,s5
D̃

2
expF2CS s1

11l

2 D G . ~A7!

For s>1 this can be simplified to

dc,s.
D̃

2s1l
. ~A8!

Numerical values ofdc,s /D̃(l50.194) are 2.36,0.77,0.44

0.31, . . . , for s50,1
2 ,1,32 , . . . , respectively. Neardc,s the

pairing parameter vanishes as

Ds.D̃A12
d

dc,s
for d@Ds ands.0, ~A9!

which we shall now show.
Since for the spin-s ground states with vanishing pairin

parameter electron and hole pairs are symmetrically dist
uted around the Fermi surface, Eq.~13! again yieldsm5«0
2d(dp,01l/2). We turn to the gap equation~12!. The spin
dependence has been absorbed inj 0 . The positive and nega
tive branches of the restricted sum are identical~because of
the special symmetric value ofm), with uju ranging from
d@s1(11l)/2#5d j0 to vc . It therefore suffices to calculat
the positive branch times 2:

1

l
5 (

j 5 j 0

vc /d

~ j 21Ds
2/d2!21/2. (

j 5s1~11l!/2

vc /d S 1

j
2

Ds
2

2d2 j 3D ,

~A10!

(
j 5s1~11l!/2

vc /dc,s 1

j
. (

j 5s1~11l!/2

vc /d S 1

j
2

Ds
2

2d2 j 3D .

To obtain Eq.~A10!, the square root was expanded usi
Ds!d. The remaining sums can be expressed by the p
gamma functionsC (n) using the identity

(
k51

n
1

km
5z~m!2~21!m

C~m21!~n11!

~m21!!
. ~A11!

Replacing the sums by the polygamma functions and coll
ing terms leads to

CS vc

dc,s
11D2CS vc

d
11D

52
Ds

2

4d2FC9S vc

d
11D2C9S s1

11l

2 D G .
~A12!

Now assume thatd is close todc,s : d5dc,s2dd and dd
!dc,s . Expand the left hand side indd and use the asymp
totics for C8 ~on the left hand side! and C9 ~on the right
-

y-

t-

hand side! for the largevc /d argument. Also theC9(s
1 1

2 ) term is approximated by its asymptotic form2s22:

dd

dc,s
52

Ds
2

4d2
C9~s1 1

2 !, ~A13!

Ds
254d2s2

dc,s2d

dc,s
, ~A14!

Ds5D̃A12
d

dc,s
. ~A15!

The last step was performed by remembering that 4d2s2

54dc,s
2 s2.D̃2 for sÞ0.

Although Eq.~A9! was derived ford neardc,s , it turns
out to have a surprisingly large range of validity: its smalld

expansion in powers ofd/D̃ agrees~at least! up to second
order with Eq.~A3!, and fors>1 it in fact excellently re-
produces the numerical results forDs(d) for all d. For s
50 the asymptotic expansion ofC9 breaks down. Therefore
directly from Eq.~A13! we deduce

D0.A4d2

12.1

dc,s2d

dc,s
, ~A16!

where we usedC9@(11l)/2#.212.1. This result gives
good agreement with numerics neardc,s50 , but obviously
has the wrongd→0 limit.

APPENDIX B: I -V CHARACTERISTICS
OF AN ULTRASMALL NSN SET

In this appendix we discuss how theI -V characteristics of
a SET in principle allow one to deduce even-odd grou
state energy differences as mentioned in Sec. IV C 1. Ti
and von Delft35 examined theI -V characteristics of a SET
with an ultrasmall superconducting grain as island, i.e.,
ultrasmall NSN SET. They described the discrete pa
correlated eigenstates of the grain using the parity-projec
mean-field BCS theory of Ref. 12. Although this approach
too crude to correctly treat pairing correlations of excit
states@since for all even~or odd! ones thesameD0 ~or D1/2)
is used#, it does treat the even and odd ground states c
rectly. It therefore enables one to understand how the o
even ground state energy differenceEG

o/e[(E1/22E0) should
influence the SET’sI -V characteristics.

Using tunneling rates given by Fermi’s golden rule a
solving an appropriate master equation, Tichy calculated
tunnel current through the SET as a function of transp
voltageV and gate voltageVg at zero magnetic field. In an
ideal sample, theI -V characteristics are 2e periodic in the
gate chargeQg5VgCg1const; one such period is shown
Fig. 10. The usual Coulomb-blockade ‘‘humps’’ center
roughly around the degeneracy pointsQg /e52m6 1

2 are
decorated by discrete steps, due to the grain’s disc
eigenspectrum. In RBT’s experimentsVg was fixed near a
degeneracy point and the current measured as functionV
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~for a set of differentH values!. When following a line par-
allel to theV axis in Fig. 10, the positions of the steps in t
current thus correspond to theH50 eigenenergies of RBT’s
tunneling spectra in Fig. 6.

The reason for 2e instead ofe periodicity are pairing
correlations: First, the grain’s odd-even ground state ene
differenceEG

o/e causes a shift in the degeneracy-point valu

for Qg /e from 2m6 1
2 to 2m6( 1

2 1EG
o/e/EC). Secondly, tun-

neling spectra measured in theV direction in Fig. 10 show a
plateau after the first step if the final state after tunneling
even~i.e., for 1

2 1EG
o/e/EC<Qg /e< 3

2 2EG
o/e/EC), but not if

it is odd, corresponding to the presence or absence of a l
spectral gap in the tunneling spectra of Figs. 6~a! or 6~b!; this
is due to the energy cost to break a pair, and the plate
width is simply twice the even pair-breaking energy 2Ve
~see Sec. IV C 2!.

By analyzing the derivation frome periodicity along the
Qg axis ateV50, one can in principle experimentally dete
mine EG

o/e . Unfortunately in present devices this is not po
sible in practice for reasons explained in Sec. IV C 1.

APPENDIX C: TIME REVERSAL SYMMETRY

When defining our model in Eq.~6!, we adopted are-
ducedBCS Hamiltonian, in analogy to that conventional
used for macroscopic systems. In doing so, we negle
interaction terms of the form

2d (
i j i 8 j 8

l~ i , j ,i 8, j 8!ci 1
† cj 2

† ci 82cj 81 ~C1!

between non-time-reversed pairsci 1
† cj 2

† , following Ander-
son’s argument1 that for a short-ranged interaction, the m
trix elements involving time-reversed statescj 1

† cj 2
† are

much larger than all others, since their orbital wave functio
interfere constructively.36 Interestingly, the experimental re

FIG. 10. I -V characteristics for a SET with an ultrasmall supe
conducting grain as island~from Ref. 35!. The current is plotted as
a function of gate charge (Qg /e) and transport voltage (eV/EC).
Pairing correlations shift the degeneracy-point values ofQg /e away
from their e-periodic values of 2m6

1
2 by 6EG

o/e/EC ~see text!. To
better reveal the figure’s characteristic features, it was plotted u
a ratio EG

o/e/EC.0.1, very much larger than the typical values
,0.01.
y
s

s

ge

’s

-

d

s

sults of RBT provide strikingly direct support for the correc
ness of neglecting interactions between non-time-rever
pairs of the form ~C1! at h50: Suppose the opposite
namely, that the matrix elementsl( j 1k, j , j 81k, j 8) were
all roughly equal tol for a finite range ofk values~instead
of being negligible forkÞ0, as assumed inH red). Then for
2s,k, one could construct a spin-s state us&8 with mani-
festly lower energy (E8) than that (E) of the stateus& of Eq.
~15!:

us&85 )
j 52m

2m12s21

cj 1
† )

i 52m

`

~ui
~s!1v i

~s!c~ i 12s!1
† ci 2

† !uVac&.

~C2!

Whereas in us& pair mixing occurs only between time
reversed partners, inus&8 we have allowed pair mixing be
tweennon-time-reversed partners, while choosing the 2s un-
paired spin-up electrons that occupy their levels with u
amplitude to sit at the band’sbottom ~see Fig. 11!. To see
that us&8 has lower energy thanus&,

Es85E8s
corr1E8s

0,E s
corr1E s

05Es , ~C3!

we argue as follows: First,E8s
05E s

0 , since the corresponding
uncorrelated statesus&08 and us&0 are identical@and given by
Eq. ~16!#. Secondly, Ds85D0(.Ds), and henceE8s

corr

5E 0
corr(,E s

corr<0), because the 2s unpaired electrons in
us&8 sit at the band’s bottom, i.e., so far away from«F that
their blocking effect is negligible~whereas the 2s unpaired
electrons inus& sit around«F and cause significant blocking!.
Thus Eq.~C3! holds, implying thatus8& would be a better
variational ground state for the interaction~C1! than us&.

Now, the fact thatE8s
corr5E 0

corr is independentof s means
that flipping spins inus&8 does not cost correlation energ
Thus, the energy cost for turningu0&8 into u1&8 by flipping
one spin is simply the kinetic energy costd, implying a
threshold fieldh0,18 5d/2 @see Eq.~19!#; in contrast, the cost
for turning u0& into u1&, namely, 2Ve , implies a threshold
field h0,15Ve , which ~in the regimed&D̃) is rather larger

ng

FIG. 11. Schematic representations of the non-time-revers
pairing stateu3/2&8 defined in Eq.~C2!. The energies« j7h of the
single-particle statesu j ,6& are drawn~a! for h50 and~b! for 2h
53d. We indicated schematically how non-time-reversed states
paired according to (ui1v ic( i 13)1

† ci 2
† ) in the BCS-like Ansatz

~C2!, with solid or dashed ellipses encircling states that would
completely filled or empty in the absence of pairing correlations
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thand/2. The fact that RBT’s experiments@Fig. 7~b!# clearly
show a threshold fieldh0,1 significantly larger thand/2
shows that the actual spin-1 ground state chosen by natu
better approximated byu1& than byu1&8, in spite of the fact
ow

.

s.

ev
is

that E18,E1 . Thus the premise of the argument was wron
and we can conclude that those terms in Eq.~C1! not con-
tained inH red can indeed be neglected, as done in the bulk
this paper.
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