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The collective tunneling of a small cluster of spins between two degenerate ground-state configurations
of the kagomi-lattice quantum Heisenberg antiferromagnet is studied. The cluster consists of the six
spins on a hexagon of the lattice. The resulting tunnel-splitting energy 6 is calculated in detail, includ-
ing the prefactor to the exponential exp( —go/A'). This is done by setting up a coherent-spin-state path
integral in imaginary time and evaluating it by the method of steepest descent. The hexagon tunneling
problem is mapped onto a much simpler tunneling problem, involving only one collective degree of free-
dom, which can be treated by known methods. It is found that for half-odd-integer spins, the tunneling
amplitude and the tunnel-splitting energy are exactly zero, because of destructive interference between
symmetry-related (+) instanton and ( —) instanton tunneling paths. This destructive interference is
shown to occur also for certain larger loops of spins on the kagome lattice. For small, integer spins, our
results suggest that tunneling strongly competes with in-plane order-from-disorder selection effects; it
constitutes a disordering mechanism that might drive the system into a partially disordered ground state,
related to a spin nematic.

I. INTRODUCTION

Consider a Heisenberg antiferromagnet (AFM) with
nonrandom but competing exchange interactions. The
classical ground state is often nontrivially nonunique, in
having a continuous manifold of inequivalent (but degen-
erate) ground states. However, if one takes account of
quantum and thermal fluctuations around the classical
ground states, the nontrivial degeneracy may be broken.
The effects of fluctuations can generally be represented by
an effective "selection" Hamiltonian, which is a function
of the classical spin directions and "selects" certain
ground states (sometimes having long-range order) in
favor of others. Since long-range order can thus be in-
duced out of an apparently disordered manifold of
ground states, such selection effects are called "ordering
due to disorder".

An effect that competes with "order-from-disorder"
selection effects is tunneling between different ground-
state configurations. Tunneling tends to drive the system
into a superposition of degenerate states rather than
selecting a particular one. Hence, in the regions of pa-
rameter space in which tunneling events are important,
they could suppress order-from-disorder selection effects.

In this paper we study spin tunneling in a two-
dimensional (2D) quantum Heisenberg antiferromagnet
on a kagome lattice. This is a frustrated spin system
with a very large ground-state degeneracy, in which vari-
ous selection effects have been investigated. We study
tunneling events that involve the rigid simultaneous rota-
tion of small groups of spins (in particular a mode involv-
ing only the six spins on a kagome hexagon). We find,
rather unexpectedly, that the tunneling amplitudes are
zero when the spin s is a half-odd integer, but nonzero
when s is integer. This is due to destructive interference
between two topologically distinct tunneling paths con-

necting the same initial and final states. The interference
occurs when the tunneling amplitudes have different to-
pological phase factors. ' Therefore there should be in-
teresting integer vs half-odd-integer s effects for that
range of s values for which tunneling effects are as strong
as or stronger than se1ection effects: Systems with integer
s would have a greater tendency to be disordered because
tunneling suppresses selection effects, whereas systems
with half-odd-integer s, where tunneling is absent, would
tend to be ordered.

Apart from studying the role of tunneling in the ka-
gome lattice, we hope that this paper wi11 provide an in-
structive example of a rather nontrivial spin-tunneling
calculation. As is customary, the tunneling amplitude of
interest is calculated by setting up a coherent-spin-state
path integral in imaginary time and evaluating it by the
method of steepest descent, " which is an expansion in
powers of 1 ls. Our calculation includes a complete eval-

uation of the prefactor to the exponential e-go/I (go is
the classical action), and a discussion of the integration
ranges of the spin-path integral (these ranges are finite
originally but need to be extended to infinity to allow an
evaluation of the prefactor). Although the calculation of
tunneling rates for spin systems has been of interest in
various different contexts, ' ' we are aware of only one
recent paper where such prefactors are calculated explic-
itly. ' Moreover, we show explicitly how one may give
an exact treatment of the simultaneous collective motion
of all the relevant spin degrees of freedom by reducing
the problem to one involving only a single, collective de-
gree of freedom. The reduced problem can be treated by
methods well known from studying a particle in a
double-well potential.

The results of our calculations suggest that for small,
integer s, the tunneling amplitude is sufficiently large that
tunneling can be regarded as a significant disordering
mechanism, that tends to drive the system into a partially
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II. THE KAGOME ANTIFERROMAGNET

The kagome lattice is a 2D triangular lattice with lat-
tice constant ap where sites have been removed at all
sites of a triangular superlattice, with lattice constant 2ap
(see Fig. 1).' The quantum Heisenberg AFM on this lat-
tice has the Hamiltonian operator

&=J g s s. (J)0),
&i,j)

(2.1)

where s; is the spin vector operator for the ith spin and
the sum runs over all nearest neighbors. Coherent spin
states (see, e.g., Ref. 19) may be used to discuss this sys-
tem in classical terms. Associate the coherent spin state
~q&;, 8; ) with the ith spin, where the spherical coordinates

(y;, 8, ):—0, define a unit vector n; [Fig. 2(a)]. The well-
known property (y;, 8;~s, ~@,, 0, ) =sn, , allows one to in-

terpret n; as a "classical spin vector. " Also, a "classical"
Hamiltonian & may be introduced as the coherent-spin-
state expectation value (%):
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FIG. 1. The &3X&3 ground state of the kagome lattice.
The letters A, B, and C represent the spin directions illustrated
in Fig. 2(b). The symbols P and Q and the labels 0—5 are the
ones used in Appendix A.

disordered state, related to a spin-nematic state. '
This paper is organized as follows: In Sec. II we re-

view ground-state selection effects on the kagome lattice,
and describe the hexagon tunneling event that is to be
studied in later sections. In Secs. III and IV we study a
simple model Lagrangian, chosen such that it will be of
use for the subsequent study of the kagome system.
Specifically, the calculations of the classical action cd
(Sec. III) and the tunnel-splitting energy b, (Sec. IV) are
presented in detail. Section V shows how the full hexa-
gon tunneling problem can be mapped onto the simple
model problem studied in earlier sections, and contains
the main result of this paper, Eq. (5.36). In Sec. VI the
occurrence of destructive interference during the tunnel-
ing of larger sets of spins on the kagome lattice is dis-
cussed. There are four appendixes. In Appendix A an
estimate is made of the size and shape of the coplanarity
potential that we employ in Sec. V to study the hexagon
tunneling problem. Appendix C contains a summary of
results that are well known for a particle tunneling in a
double well and are needed in Sec. IV.

(b)

FIG. 2. (a) The unit vector n=(y, O). (b) Types, A, B, and C
spins on a triangle of the kagome lattice. The common plane of
A, B, and C, i.e., the "reference plane, " defines the y=O and m.

directions in (a).

=s J g n;.n (J)0) .
&, )' ' (2.2)

When referring to the "energy" of a state, we shall al-
ways mean this expectation value &. Likewise, the term
"ground state" will not be used to refer to an actual
eigenstate of the operator &, but to a state that mini-
mizes &. It is this & that is used in discussions of the
classical kagome antiferromagnet.

The energy is minimized by any configuration in which
the total spin on each elementary triangle of the lattice is
zero. ' In such states, the spins of any given triangle of
the kagome lattice lie in one plane, with relative angles of
120 [see Fig. 2(b)], forming a rigid unit in spin space. Be-
cause of the many ways of fitting such triangles together,
the distinct classical ground states form a manifold with a
dimensionality proportional to the system size.

A. Selection effects

It is convenient to describe the classical ground states
with reference to a coplanar ground state, in which all
spins lie in the same "reference plane. " All coplanar
ground states can be constructed by labeling the sites by
letters A, B, and C, such that each triangle has one of
each, and then replacing the three kinds of letters by
spins in three directions differing by 120' angles [Fig.
2(b)]; these states correspond one to one to the ground
states of a three-state Potts AFM on a kagome lattice.

All noncoplanar classical states can be generated by
continuous distortions of coplanar states, henceforth to
be called "Potts states, " without crossing energy bar-
riers. For example, any hexagon of six spins that is la-
beled only by two letters (e.g. , AB ABAB in Fig. 1) can be
rotated as a rigid unit in spin space by an angle cp around
the C direction without any cost in classical energy. We
shall refer to this mode as the "rigid-hexagon mode" (it
has been discussed by Chandra et al. under the name
"weathervane mode"). However, by expanding in spin
waves about any given ground state, it has been shown
that all noncoplanar states have a larger zero-point ener-
gy than the coplanar Potts states. This selection effect
can be characterized by a parameter Js —0(sJ), and en-
sures that the true ground state will be coplanar.

Further study, using a self-consistent approach, yields
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a smaller "in-plane" selection energy, of order
J, —O(s ~ J), which favors among all possible Potts
states a particular state with long-range order, the so-
called &3 Xv'3 ground state, ' ' depicted in Fig. 1. In
this state, every hexagon is labeled by just two letters,
e.g. , BCBCBC. To encode the most important effects of
this in-plane selection, it is convenient to define a "chiral-
ity" variable centered on each triangle, equal to —1 or
+1 depending on whether the sites take values ABC in
the clockwise or counterclockwise sense. In the v'3 X &3
Potts state, the chiralities on neighboring elementary tri-
angles are antiferromagnetically ordered. Another state
with long-range order is the so-called q=o state, in
which the spins around every hexagon are arranged in
the order ABC ABC, so that the chiralities on neighbor-
ing elementary triangles are ferromagnetically ordered.
The selection energy (which is a measure of the energy
difference between the &3 X&3 and the q=0 states, the
former having a lower energy) can be expressed as an
effective antiferromagnetic coupling, of strength J„say,
between the chiralities.

B. Competition between selection eft'ects and tunneling

The above considerations neglected the possibilities of
large-scale Auctuations and tunneling between classical
ground states. Clearly the smallest object that can tunnel
is the rigid-hexagon mode: Consider as initial state ~i ),
the +3X +3 Potts state. If the six spins on an AB AB AB
hexagon rotate by 180' around the C direction (take the
latter to define the z axis), another Potts state,

~f ), with
a BABABA hexagon is reached (Fig. 3). In the absence
of in-plane selection (J, =0), ~i ) and

~f ) would be de-
generate. Tunneling between ~i ) and

~f ) would tend to
drive the system into a superposition ( I/&2)( i )+~f ) ),
with energy Eo+b, (where b, the tunnel-splitting energy,
is proportional to the tunneling amplitude). Now, in the
presence of in-plane selection effects, the energies of ~i )

(0) C A B—C
X/

/g /y
C—A—8—C

X/
C

and f ) differ by 12J„since the chiralities on all six tri-

angles bordering the hexagon of ~i ) are opposite to those
of

~ f ). If 12J, )b„ the tunneling amplitude is very

small, and the system selects ~i ), the &3 X&3 state. If,
on the other hand, 12J, & 6 and the tunneling amplitude
is appreciable, the system can lower its energy by adopt-
ing some superposition of ~i ) and

~f ) [in the limit

J,~0, this superposition would simply be
(I/&2)(~i ) —

If ) )].
Such a hexagon tunneling event can clearly take place

starting from any Potts state ~i ) that contains an
ABABAB type -hexagon, not just from the &3X&3
state. Thus, tunneling constitutes a disordering factor
that competes with in-plane selection. If such hexagon
tunneling events occur with large probability throughout
the kagome lattice, a ground state might conceivably re-
sult that is at most partially ordered (related to a spin
nematic) (see Sec. VII).

C. KS'ective hexagon Hamiltonian

We shall study the hexagon tunneling event described
in the preceding section in the presence of a coplanarity
barrier of size Jb, that tends to keep the spins aligned
with the reference plane. Our aim is to compute the
tunnel-splitting energy 5 in the most direct way possible.
In setting up the calculation, we therefore make two
essential simplifying assumptions.

(i) We assume that the effects of in-plane selection can
be neglected (i.e., take J, =0). At the end of the calcula-
tion, we shall compare the order of magnitude of 4 with
estimated values of J„to check a posteriori whether the
neglect of J, was justified or not (see Sec. VII).

(ii) The initial and final states are assumed to be "local-
ly well-ordered, " namely, precisely AB AB AB and
BABABA hexagons. Thus we neglect the possibility
that, for example, spin waves disorder the ground state so
thoroughly that it is impossible to even define distinct
tunneling processes.

Both assumptions are made mainly for the sake of
simplicity —extending the calculation to more general
situations would be beyond the scope of this paper.

Since Jb -sJ, we have Jb «s J when s &) 1, and conse-
quently we assume that only the six hexagon spins will
move significantly during the hexagon tunneling event.
Hence, we take all other spins in the lattice to stay fixed,
and adopt the following Hamiltonian for the six-spin hex-
agon system:

C—8 A—C
X/ X/

A Q
/X

C—8 -A C4/
C

~hex ~AFM+~cop ~

5

~AFM J 2 [nI +ni+i +ni I+i+
I=O

(2.3)

(2.4)

FIG. 3. The rigid hexagon mode. All six spins on an
ABABAB hexagon rotate collectively, as a rigid unit in spin
space, by 180 around the C direction, and end up forming a
BABABA hexagon. The labels 0—5 correspond to the index l in
Eqs. (2.4) and (2.5).

A„=Jbf(q,„),
5

[y&
—

g& ( initial ) ] .
1=0

(2.5)

The index I labels the six spins around the hexagon and is
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f(mar) =0, f(y)= f( —y)= f(@+mar) (2 6)

for any integer m. At this stage it is not necessary to
specify f(y) in more detail. An estimate of the actual
form of &„ is made in Appendix A, and summarized in
Eq. (A22). The suitability of using such a barrier is fur-
ther discussed in Sec. VII.

Intuitively, the six hexagon spins are expected to rotate
collectively, almost as a rigid unit, maintaining the mutu-
al coplanarity and relative angles of 120' required to min-
imize &AFM. In particular, for each of them cosgi ————,

'

throughout the tunneling event, which is why we have
taken gf'„ to be independent of 8i. Also, the expected
mutual coplanarity of the tunneling spins is the reason
why we have written &„as a function only of g,„[and
not some more general function of the six pi's (Ref. 20)].
These assumptions are found to be justified in Sec. V B.

Evidently, due to reflection symmetry in the reference
plane, two kinds of tunneling events between ~i ) and f )
are possible. They differ from each other only in the
sense of rotation about the z axis (y~ —y), and we shall
call them (+) instantons and (

—
) instantons.

We shall show in Sec. V how the hexagon tunneling
problem defined above can be mapped onto a much
simpler model problem. This involves only a single, col-
lective spin degree of freedom with effective spin 6s. Its

~ ~O~. 7TrZ
F

Flax. 4. A typical shape function f(qr) for the coplanarity po-
tential &, p The function shown here corresponds to the s =1
case of the function calculated in Appendix A, Eq. (A22), and
used in Secs. IV C and V. The arrow shows the position of cp*,
which marks the crossover of f(qv) from quadratic to linear
behavior. However, the general discussion of Secs. III and IV,
up to Eq. (4.13), is independent of the particular shape of f(y),
and only requires the symmetries of Eq. (2.6) to hold.

defined modulo 6 [see Fig. (3)]. All spins are written in
terms of the same coordinate system, in which the z-axis
points in the C direction, the xz plane coincides with the
reference plane, and y is measured from the positive x
direction. &~FM contains simply those terms from Eq.
(2.2) that involve the six hexagon spins and their six C-
type nearest neighbors. A constant has been added to en-
sure that &AFM=O in the initial and final configurations
ti ) and ~f ).

represents the coplanarity barrier that opposes
hexagon tunneling. The function f(y) describes the
shape of the barrier; it is of order unity and is sketched
schematically in Fig. 4. Its argument in Eq. (2.5), p,„, is a
measure of the deviation of the plane of the near-rigid
hexagon from the reference plane [in which
yz(initial) =0, yz (initial) =sr]

Symmetry about the reference plane ensures that f (q&)

has the properties

coordinates, to be denoted by (@o,eo), are formally
defined in Eqs. (5.5) and (5.6) and are suitable averages of
the six individual (y;, 9;) s. The effective Hamiltonian
turns out to be [see Eq. (5.22)]:

gf, =12s J(cose + —,') +J f(@ ) . (2.7)

Rather than proceeding with the mapping of Eq. (2.3)
onto Eq. (2.7) right away, in the next two sections we first
discuss the simple model problem [based on Eq. (2.7)] in
detail, to establish notation and introduce the tools need-
ed to calculate the tunnel-splitting energy A.

III. A SIMPLE MODEL SYSTEM

In this section we introduce a simple model problem,
which will be used to illustrate how a calculation of the
tunnel-splitting energy can be carried through. It is also
the system onto which the kagome tunneling problem
that is studied in Sec. V can be mapped. We set up the
relevant path integral, calculate the classical action and
discuss the equations of motion and the typical form of
the tunneling path.

A. Model Harniltonian

The model system is defined by the following Euclidean
single-spin Lagrangian:

i Ans jr(z——I )+&
where

(3.1)

and
&=a(z —z ) +bf(y) (with b «a), (3.2)

z =—cost9 . (3.3)

This Lagrangian has been written in terms of the imagi-
nary time parameter r =it (hence "Euclidean" ), since this
is convenient for the calculation of tunneling amplitudes.
The spherical coordinates (y, 8)=Q define a unit vector
n and label a coherent spin state ~@,6) for a particle with
spin ns The dot .on y means t), (see Ref. 21 for a discus-
sion of the origin of this term). The integer n is intro-
duced in order to accommodate the possibility of a col-
lective degree of freedom with effective spin ns. For the
purpose of describing a single spin degree of freedom,
take n =1.

The "classical" Hamiltonian is the expectation value
&—:(@,8~&~y, 9) of the quantum operator &. Clearly
& has been chosen to have the same form as &,s of Eq.
(2.7); the constants a and b are taken to be of order s J
and Jb, respectively [see Eq. (5.23)], with b «a. The
dominant term in & is an easy-plane anisotropy, which
would make every angle on the "latitude line" z=z on
the unit sphere be degenerate; it mimics &~PM in Eq.
(2.4) (which forced all six hexagon spins to have
cosOi = —

—,'). In the other term, f(y) is taken to be the
same function as that in Eqs. (2.5) and (2.6); it introduces
a small anisotropy within the degenerate sub space
and mimics &„. There are two degenerate
ground-state configurations, ~i ) = ~2m

iver,

zs ) and

~f ) =~(2m2+1)~, zs), with m, and m2 arbitrary in-
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tegers (the different values of m, and m2 describe the
same physical state, of course). Contours of constant &
are shown in Fig. 5.

B. Tunneling amplitude

A''= fone (3.6)

are usually evaluated only (if at all) to lowest order in the
steepest descent method, by transforming to the Auctua-

The tunnel-splitting energy 6 that arises due to tunnel-
ing of the spin direction between ~i ) and

~f ) is propor-
tional (Ref. 22) to the tunneling amplitude

—(f e &TIA'~&—
) —f cg~ (3.4)

where 4= f T&2drX is the Euclidean action, 2)A is the

path integral measure (discussed in Sec. IV A), and T is a
large time. Such an amplitude can be approximately
evaluated by the method of steepest descent:

vf, =yN~'e ' ' ——Uy . (3.5)
j

Here So ' is the action evaluated along the jth "tunneling
path, "which is a solution to the Lagrangian equations of
motion and for tunneling problems is in general complex.
It will always be denoted by overlined variables, e.g. ,
(g '1', z 'J'). The index j allows for the possibility of
different tunneling paths satisfying boundary conditions
that difFer in the indices m, and m2 (but that all describe
physically the same initial and final states) (Ref. 23). The
prefactors

tion variables (5y'~', 5z'~') = (&p
—g '~', z —z '~') and keep-

ing only the lowest term in the expansion—g2g( j)+g3g( j). . .
In the present case, all tunneling paths connecting ~i )

at r= —T/2 to
~f ) at r = T/2, can be constructed from

two very simple paths, to be denoted by (g —,z —). The
first, for which p+(r)K [0,~], we call a (+) instanton,
the second, for which g = —y +(r) H [0, —m. ], a ( —) in-
stanton. They differ solely in the sense of y rotation and
are sketched in Fig. 6. All other tunneling paths that ap-
proximately satisfy the equations of motion and contrib-
ute to Eq. (3.5) are multiple-instanton paths. They con-
sist of n, (+) instanton and n2 (

—
) instanton events,

with n, + n2 =odd, all assumed widely separated (relative
to their characteristic width) in time, and following each
other in arbitrary order (this is the so-called dilute-gas
approximation, see Coleman [22]). In the following, we
consider only single-instanton events [i.e., j~+ in Eq.
(3.5)]; the effects multiple-instantons are taken into ac-
count in Appendix C.

The symmetry &(y, z ) =&(—y, z ) of the Hamiltonian
allows one to conclude immediately that

~ UP =
~ Uf

This is intuitively obvious, and can be proven to hold ex-
actly to all orders of the steepest descent approximation
(i.e., to all orders in I/s) (see Sec. IVB). Intuitively
speaking, the symmetry of & ensures that the local
neighborhoods of the two tunneling paths (g +,z +) and

(g, z ) are identical for the two paths, so that the local
shapes and sizes of the barriers (which determine
Re[4~~']) and the local fiuctuations around the tunneling
paths (which determine ~JV'J' ), are identical. However,
the amplitudes Uf-+; can differ by a phase, which may lead
to destructive interference between them.

C. Classical action, continuing to complex coordinates

Let us find go, the classical action for single-instanton
events. Since energy is conserved along any path that ex-
tremizes the action, &(g —,z —)=0. Solving for z —as a
function of y, one obtains

iZ —= z ——z =+it/b/a 't/f(y —), (3.7)

-7r/2

tm[z] (R [ ] )

vr/2
with Z —real. The Euclidean action is easily evaluated
along these paths by changing integration variables from
r to g+—and using f(g+)=f(y ):

So = ikns f d—r(B~ —)(z +iZ ——1)+0—T/2

= +iknsvr(zg —I )+Ans&b/a f dp't/f(g +
) . (3.8)

Note that the quantity &b/a plays the role of an

-m./2 7r/2

FICJ. 5. Contours of constant gf'ly, z). In (a), Im[z] =0, and
the contours in the (y, Re[z]) plane depict "valleys" centered at
(y, z)=(0(mod~), z ). In (b), Re[z]=zz, and the contours in
the ly, Im[z]) plane show "ridges" centered at lp, z)
=(+~/2(mode), zg ). The (+) instanton and ( —) instanton
tunneling paths are contours of&=0 around these ridges.

7r -.

FIG. 6. An (+) instanton y +(w) followed by two ( —) instan-
tons y (~), where v is the (imaginary) time parameter.
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effective barrier size for the tunneling process. This is in-
tuitively plausible. The barrier height in the y direction
is measured by b W. hen (z —z ) is real, a measures the
steepness of the valley in the z direction. When (z —z )

becomes purely imaginary [(z —z ) ~—(z —z ) ], the z
valley turns into a ridge (see Fig. 5). The motion occurs
along a constant energy contour around this ridge [see
Fig. 5(b)], and I/a measures the width of the ridge.
Hence, 6/a measures the effective barrier size.

= U+;( I+e ' ')fi (3.9)

where the constant l =2ns—(z —1) is not necessarily an in-
teger. The relative phase of e '"' between the amplitudes
of two tunneling paths that connect the same initial and
final states has a well-known geometrical interpretation.
It is related to the area enclosed on the unit sphere be-
tween the two paths (y+(r), Re[9+(r)]) and
(y (r), Re[8 (r)]). (See [9] for more comments on this
aspect. ) Now, if l is an odd integer, the (+) instanton and
( —) instanton paths interfere destructively and their am-
plitudes add to zero: U&+;+ U&; =0. Note that as long
as the barrier does not violate the symmetry between (+)
instantons and (

—
) instantons, this cancellation does not

depend on the particular shape of the barrier, since the
shape function f(y) only affects the real part of $0,
which cancels out in $0+ —$0 .

D. Possible cancellation due to phase factors

We show in Sec. IV B that JV+ =A' (under some tech-
nical assumptions, explained there). The sum of the two
amplitudes Uf-+; is therefore simply

These represent (+) instanton and (
—) instanton events

and are sketched in Fig. 6. The shape of an instanton
changes quantitatively, but not qualitatively, if a different
barrier shape function is used.

IV. THE TUNNEL-SPLITTING ENERGY 5

For integer s, for which the (+ ) instanton and (
—

) in-
stanton amplitudes have the same sign and interfere con-
structively, the resulting tunnel-splitting energy 6 can be
calculated from the prefactor of Eq. (3.6):

M= fnn. " """. (4.1)

In the steepest descent approximation, this can be accom-
plished via three steps: (i) extending the integration
ranges for y and z in the path integral to infinity, (ii) in-
tegrating out the z degree of freedom, and (iii) using stan-
dard methods to evaluate the resulting y-path integral.

Before proceeding, however, there is one issue that
needs to be addressed: The steepest descent approxima-
tion relies on and exploits the fact that the Lagrangian is
proportional to a large parameter. It gives an expansion
of the prefactors A —in inverse powers of this large pa-
rameter, which, in our case, is the spin s. However, the
Lagrangian of Eq. (3.1) contains terms proportional to
both s and s (since a -s and b -s). Therefore the ques-
tion arises whether the steepest descent approximation
still is a systematic expansion in powers of I/s. The
answer to this question is yes, since, loosely speaking, the
steepest descent method only requires some (not neces-
sarily all) terms in the exponent to be proportional to a
large parameter. By examining an integral of the form

—~[g, (~)+ &/'5 g2(~) j4x e

E. Equations of motion and tunneling path

i hnsiZ =—bf '(g), (3.10)

It was not necessary to solve the equations of motion to
obtain the explicit expression Eq. (3.8) for the classical
action. For future reference, the equations of motion are

for example, it can readily be shown that the standard
manipulations of the steepest descent method give an ex-
pression for the prefactor that is correct at least to the
lowest order in I/s (namely, s '~ ), since subtleties re-
sulting from the I/s g2(x) term affect only higher orders
of I/s

—ihnsjp+2aiZ =0 . (3.11) A. Extending the integration ranges

ij= —,'d f'(g), where d z 4ab

(Ans )
(3.12)

The constant d has the dimensions of inverse time, and
1/d characterizes the width of an instanton. To illustrate
the nature of the solutions of Eq. (3.12), consider a simple
case, namely, f(y)=sin y. Then Eq. (3.12) is just the
sine-Czordon equation, whose solutions, in the limit
T~ oo, are

g+(r)=2arctan(e '),
(r) = —g +(~)=q +( ~)—(3.13)

The prime on f means B/By. Note how the i of iZ and
that originating from ~=it combine to result in con-
sistent equations of motion (this is a direct illustration of
why it is useful to employ imaginary time in tunneling
calculations). Eliminating Z, we get

The path integral expression Eq. (3.4) for the tunneling
amplitude (in real time) can be arrived at by the usual
procedure of discretizing time and inserting completeness
relations in spin space at each time slice (see, e.g. , Refs.
21 and 26). This procedure leads to a formal expression
for the measure (appropriate for any spin problem):

N

fX)Q(t)= lim g f d(p(r, ) f dz(~ ),
1V~ oo 477 .

] 0

(4.2)

where E(%+1)= T. What distinguishes this measure
from the ones usually encountered in particle tunneling
problems is the fact that y and z have finite integration
ranges. In a somewhat cavalier fashicn, we extend these
to [—oo, co ] and [

—~, ~ ] and absorb the change in
normalization by multiplying by an extra overall normali-
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zation factor C (Ref. 27). Thus Eq. (4.2) is replaced by

f2)Q(t)=C 1' P f dq)( )f d ( . ) .
i

(4.3)

B. The relative phase of the prefactors JV+ and JV

Before integrating out z, let us investigate the relative
phase of JV+ and JV, the (+) instanton and ( —) instan-
ton prefactors. The quantity 4—So that appears in the
integrands of the prefactors in Eq. (4.1) can be written in
terms of the fluctuations around the tunneling path
(5y, 5z ) —= (y —g, z —z ) as

S—So= f d~ ikns5j&5z+a5z—

The extension of the range for y from [0,2'] to
[ —oo, ~ ] is very natural —it allows for motion in which
the spin direction rotates around in the same direction
many times. The justification for extending the integra-
tion range [

—r, r ] for z from r = 1 to r = oo is more tenu-
ous. The core of the argument is the following assertion,
proven in Appendix B: In the presence of a z term in
the Hamiltonian, the value of r determines the degree of
non-differentiability of the y paths that result after z has
been integrated out. If r = ~, the y paths are Brownian
motion paths; if r =1, they are much more ill behaved
than Brownian motion paths. Therefore, changing the
integration range for z from r = 1 to r = ~ is equivalent
to restricting attention to Brownian motion cp paths in-
stead of a larger class of paths that are much more ill
behaved. It is argued that this should not have a notice-
able effect, for the following two reasons: If one is in-
terested mainly in the effect of small fluctuations around
the classical path (as, for example, when calculating the
tunnel-splitting energy), physically, one only expects
some smooth paths in the immediate neighborhood of the
classical path to be important. Also, the additional paths
that are formally included in the path integral when the
integration ranges are extended from r =1 to Oo are far
from the tunneling path and therefore only make an ex-
ponentially small contribution to the path integral.

In the course of making a change of variables
(q&, z)~(5y, 5z ) in the path integral in order to evaluate
JV—', the overall constant C will be multiplied by a Jacobi-
an factor J, which may be infinite in the limit X~~.
To obtain finite answers, we stipulate, as is usual, that C
be chosen such that the final path integral for 5qr (after
the 5z dependence has been integrated out), should have
the same normalization as that employed by Coleman in
his discussion of instantons, the results of which we in-
tend to use. This often-used procedure may seem some-
what arbitrary, but the fact that the path integral is
defined as an infinite pmduct of integrals, each of which
may produce finite prefactors when being manipulated,
leaves one no choice but to absorb all infinities in a single
appropriately chosen constant C. This much having been
said, we henceforth pay no attention to normalization
constants or Jacobians.

Evidently, because f(y) = f( —y), the following symme-
try relations hold (the square brackets denote a functional
dependence, "e"denotes complex conjugation):

(4—So)[y, —5q), 5z]=($—$0)*[@+,5y, 5z],
(g —$0)[(p, —

5&p,
—5z]=($—So)[g +,5y, 5z] .

(4.5)

(4.6)

where f"=B f /By, we have

(4—4 )' '[p +, 5@,5z]=($—S )' '[y , 5y, 5z] . (4.8)

C. Calculating 6

We henceforth restrict attention to the lowest order of
the steepest descent approximation, in which
A+=JV—:JV. It is straightforward, starting from Eq.
(4.7), to perform the Gaussian integral over 5z to arrive
at

—jd~s5 /R
JV ~ 2)5y e (4.9)

where

5 X =
—,'bf"(g)(5y) + (5y) (4.10)

Now, after the change of variables (y, z) —+(5y, 5z) in the
path integral (4.1), 5y and 5z are dummy variables that
are integrated over. Since we extended the integration
ranges for y and z to [ —~, ~ ], the integration ranges
for 5y and 5z are symmetric around 6y=O and 6z=0.
Hence the following conclusions follow immediately: (i)
relation (4.5) implies that JV =JV and (ii) relation (4.6)
implies that JV =JV+.

As discussed in Sec. IV A, the extension of the integra-
tion range to [ —0O, ~ ] is on somewhat less firm ground
for z than for y. Hence conclusion (ii), which holds only
if the 6z-integration range is symmetric about 5z =0, is in
a sense "weaker" than conclusion (i). However, even if
the original z-integration range of [

—1, 1] is retained, the
error in the relation A'+ =A' is expected to be exponen-
tially small. For example, for the case z = —

—,', which we
shall use in Sec. V, only paths for which 5z H [ —,', —', ] break
the 6z~ —5z symmetry, and these paths deviate so
strongly from the tunneling path (for which Re[z]=z )

that their contribution to the path integral is exponential-
ly small. (Of course, this argument breaks down when
z =+1.)

Finally, note that within the lowest order of the
steepest descent approximation, in which one keeps only
the n =2 term of the infinite sum in Eq. (4.4) [to be indi-
cated by a superscript (2) in Eq. (4.8) below], the relation
JV+=JV holds, independent of the range of z integra-
tion. The reason is simply that, since

(4—40)' '= f d~[ ifis5y5z+—a5z + ,'bf"((p)5y ], —

(4.7)

Qo
$ Q7f

+b g, f(y) 5p"
2nf

(4 4)
Now note that the 5 X of Eq. (4.10) is also the second
variation of the following effective Euclidean Lagrangian
for y:
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+bf(y) .
1 (Ans) . z

2 2a
(4.11)

Here the constant y„ is to be read off from the asymptot-
ic behavior of the tunneling paths, which, as Coleman
shows, can always be written in the form [compare Eq.
(C5)]:

qr
—(w) =+sr+@„e ', with co =—

&2ab "(0)
Ans

Equation (4.12) is the main result of this section. We
emphasize once again that 5 is strictly zero if
So —So =idler, with / an odd integer, since then {+)in-
stanton and (

—) instanton events interfere destructively.
To find y„explicitly, one needs some knowledge of the

asymptotic behavior of the shape function f(le) of the po-
tential as y —&0. According to Eqs. (A17), (A18), and
(A21) in Appendix D, the form of f(p) that is applicable
to the hexagon tunneling problem to be studied in the
latter parts of this paper is

f(y)=f(V (y',s+y* ) f(le*), —

y,s-—=p mode H ( m/2, vr/2], —. (4.14)

f(y) = sing ~(1+—,
' sin y)'/ —J sin2y, (4.15)

and J=0.42 and y*=0.14s ', as it turns out. In the
limit s))1, y* can be treated as a small parameter,
which characterizes the curvature of the potential at
q&=0, since f"(0)=(I/y* —2J).

"Energy conservation" along the tunneling path im-
plies for the X of Eq. (4.11) that

(A s) bf( )=0 . —
2 2a

Integrating this equation gives, for a (
—) instanton,

(4.16)

(4.17)

The Lagrangian equation of motion resulting from X is
just Eq. (3.12), and hence the $0 corresponding to X will
be equal to the Re[$0] found earlier. Consequently, both
A' and Re[$0] for the original system are equal to those
arising from X . It follows that 6, too, can be calculated
directly using Xm Furthermore, X% is quadratic in 5g
and therefore the methods discussed by Coleman can be
used to calculate the tunnel-splitting energy. Coleman's
methods, which are summarized in Appendix C, readily
lead to the following expression for b, [compare Eqs. (C7)
and (C10)]:

b =2@„(~ns) ' [bf"(0)] (2a)'
—$0 /R —$0 /A'

r)=0.01). In this limit, we anticipate, by Eq. (4.13), that
g will have the form y„e

It is convenient to split the integral into two parts by
writing

ceo{f"(0)) ' =F(~/2) F(g,), (4.18)

where

(4.19)

and the property f(qr)=f(y+m) has been exploited.
Since y « i)y « 1, one may evaluate F(g, ) analytically
by using the asymptotic form of the integrand, namely,

with the result

1 —2Jy'

1/2

(iny —Ini)y*) . (4.20)

wl ere

y„=exp C
1/2

1 —2Jy*
(4.22)

and

C =F(~/2)+—
1 —2Jy*

1/2

lnqy* . (4.23)

The constant C is independent of g, since the g depen-
dence of F(vr/2) cancels that of the second term. More-
over, C is only very weakly dependent on y* and hence
on s, and approaches a constant value as s ~ oo. (Numer-
ically it is found that C changes from 1.1 to 2.1 as s
changes from 1 to oo.) Hence, recalling that
y* =0.14s ', we conclude that in the limit s —+ ~,

5.6s (4.24)

This expression diverges as s —+oo, but in Eq. (4.12) it
premultiplies an expression that tends to zero even faster
as s~ ~ [in Sec. V, we find $0-s'/, see Eqs. (5.36) and
(5.37)].

V. SPIN TUNNELING IN THE KAGOME LATTICE

The stage has now been set for the study of the hexa-
gon tunneling event on the kagome lattice, for which we
adopted the Hamiltonian &h,„defined in Eqs. (2.3) to
(2.5). Rewriting gf~„M in terms of q&l and zl =—cos8i, the
Euclidean Lagrangian to be studied is

5

i A'syl(zl —1)+Jbf(g,„)—
1=0

Using this result in Eq. (4.18) and solving for g, gives

(4.21)

where —m+ y is the angle reached at time z if y =0 at
~=0. This equation is to be solved for cp as a function of
~, in the limit y,—+0. In particular, we take cp &gy,
where il « 1 is an arbitrary small parameter {e.g. ,

5

+s J g [Zl+Zl+1+Zlzl+1
1=0

+Cl cos(V l
—0 i+, )+—', ], (5.1)
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where

Ci —= sin9isin81+, = I(1—zi )(1—zi+, )]' (5.2)

The tunneling event was described in intuitive terms in
Sec. II C. The initial and final states are

~i ): yi( —T/2)=(O, vr, O, rr, O, m), zi( —T/2)=z, (5.3)

~f ): pi(T/2) =(n, O, vr, O, n, O), zI(T/2) =z (5.4)

A. Collective coordinates

We now introduce a coordinate transformation to a set
of collective coordinates, (4&,Z&), which ultimately al-
lows us to map the hexagon tunneling problem exactly
onto the simple model problem of Sec. III, Eqs. (3.1) and
(3.2):

Here zg =cos2~/3= —
—,'. The motion of each of the six

spins will be roughly analogous to the single-spin motion
described in Sec. III E.

values of the old coordinates and can be thought of as the
coordinates of a collective degree of freedom (of spin 6s,
as it turns out). They will be referred to as the tunneling
coordinates, since %0 tunnels from 0 at ~= —T/2 to +m
at ~= T/2, and iZO is its conjugate momentum. The oth-
er coordinates (N&, Z&), l =1, . . . , 5, will be called trans
verse coordinates, since they will be shown to be strictly
zero along the tunneling path, and hence describe Auctua-
tions that are orthogonal to the tunneling path.

In order to calculate the tunnel-splitting energy 5, one
needs the classical action So+ and the prefactor JV—'. In
the following two sections, we show that both these quan-
tities can be obtained from a rather simple e+ectiue La-
grangian Xo, which depends only on the tunneling coor-
dinates (@o,Zo), so that the problem is substantially
simplified. This Lagrangian, defined in Eq. (5.21) and
given explicitly in Eq. (5.22), turns out to have just the
form of the Lagrangian introduced in Sec. IIIA, with
(@o,Zo) corresponding to (q&, z) there.

B. Classical action ( kagome lattice)
5

zi —zi( —T/2)= g e' '" iZk,
k=0

5

k=0

where

(5.5)

(5.6)

The classical action is completely determined by the
tunneling path, for which, as in Sec. III, we again use
overlined variables, (y&, zt ) or (C&&, Z&). This path is
determined by the equations of motion, which, by the
chain rule, can be written in terms of the new coordinates
as

C'I =+'—I Zl =Z —I (5.7)

The conditions (5.7) ensure that p&
—

y&(
—T/2) is purely

real and z&
—

z&(
—T/2) purely imaginary. The reason for

the latter requirement is the same as that encountered in
the discussion of the model tunneling problem (Sec. III):
it would otherwise be impossible to satisfy &=0. Mak-
ing z&

—
z&(

—T/2) imaginary flips the sign of the z
terms, thus turning the z valley into a ridge around which
the tunneling path can proceed along a constant energy
contour.

The new coordinates are essentially discrete Fourier
transforms of the original ones with respect to I. [Indices
such as l and k will be used interchangeably both as "po-
sition" labels (for y and z) and as Fourier labels (for @
and Z).] The zeroth ones, (@o,Zo), are just the average

a,
a~

ac,
a c azI =0,
azi aZk

ax
a+I a&k

(5.8)

(5.9)

(4&,Z&)—= (0,0) for i=1, . . . , 5 . (5.10)

To see that this ansatz works, consider Eqs. (5.8) and (5.9)
term by term:

with boundary conditions N( —T/2) =0 and
Z( —T/2) =0. The parentheses ( ), indicate that the
derivatives are to be evaluated along the tunneling path.
These equations can be solved by the following "tunnel-
ing path ansatz":

ax av'I —i erik /3l Zte (5.11)

a =
I s J[ —Ci sin( FI

—F &
)++ iC& i sin( V'& i

—
0'& ) ]+ 6Jbf'( 0',„)]e-el, k

(5.12)

aL
I k

ac
s J zi+i+zi, +2+ g

m=0
cos(g —y +, ) ibsen&& ie' '"— (5.13)

With

'ac
azI

[z (1 —z +, )5 I +z +,(1 —z )5 +,(] .
m

(5.14)
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Now express (yr, zi), wherever they occur, in terms of
(4&,ZI ). Using the tunneling path ansatz (5.10) repeated-
ly, it readily follows that

the tunneling coordinates, (No, Zo), by the relation

Xo(+o,Zo)—=X(&o,Zo', 0,0;,0;0) . (5.21)

zt =iZo+zs —=Z„pt No+go( T/2)

whence

(5.15)

0'av=+O~ 0'I V'i+& =~
~ (5.16)

ac

0 azl
——2zc (5.17)

This means that Eqs. (5.11)—(5.13) depend on the index l
only through the factors of e —' ' . Since

oe
—' '"~ =65ko, these equations simplify consider-

ably to become

Now, the behavior of the tunneling coordinates No and
Zo can be found directly via the effective Lagrangian Xo,
instead of the full X. This follows because the equations
of motion for Xo are exactly Eqs. (5.18) and (5.19), essen-
tially by definition, since (BL/BZo)„evaluated according
to the tunneling path ansatz Eq. (5.10), is identically
equal to (BXo/BZo)„with similar comments holding for
(aXo/a(a, eo)), and (BXo/B@o),. Furthermore, since lfo

depends solely on the tunneling path, it too can be calcu-
lated directly from Xo. The effective Lagrangian Xo can
be found from Eq. (5.21}to be

Xo(@o,Zo) = —ifi6s(@o)(Z, —1)

ifisiZo5ok = 6Jbf (C&o)5ok (5.18)
+12s J(Z, —zs) +Jqf(@o) . (5.22)

iks@05ok=4s JiZ050~ . (5.19)

where z = —
—,
' has been used. Evidently, the equations of

motion for the transverse coordinates (k&0) trivially
reduce to zero, and only the tunneling coordinates 40 and
Zo have nontrivial behavior.

This allows us to introduce a considerable
simplification. Write X for the function that results
when X is expressed in terms of the new coordinates:

Z(@,Z;. . . ;@,Z ) = X(y„(I&, I ),z„( fZ, I )) . (5.20)

Define an e+ectiUe Lagrangian Xo, that depends only on

I

It is from this expression that &,fr of Eq. (2.7) was ob-
tained. Evidently Xo has just the form of the Lagrangian
of Eq. (3.1), with

n =6, a=12s J, b=Jb, zg= —
—,
' . (5.23}

Consequently, all the results from Sec. III are applicable.
The classical action, from Eq. (3.8), is

So =+9ihsm+fis(/3Jb. /Js f dy'(/f(q&+) .
0

(5.24)

From the above expression for the classical action one
can immediately read off the most striking result of this
paper:

—s+/~
e ' +e

—2exp[ —+3Jb/J f dy'(/f(g+)] if s=integer
0

0 if s =half-odd integer . (5.25)

Thus, if s is a half-odd integer, the (+) instanton and ( —) instanton amplitudes interfere destructively, and the total
tunneling amplitude is zero (for a discussion and extension of this result, see Sec. VI).

C. The prefactor (kagome lattice)

The calculation of the prefactor involves the evaluation of the path integral

d~6 5/R

I=o

where the second variation of the action is

(5.26)

1 BzÃ
~ ~

3 X.
2 'Bz Bz Q+ ()z

a2
5' 5z„+

Vm Zn t

j a'
5y 5z„+— 5y 5y„.

2 ()g c)cp
(5.27)

The deviations around the tunneling path, defined by

(5.28)

5+1 =pl QI =e 5@k (5.29)

are taken to be purely real (it is only the tunneling path itself that has to become complex to minimize the action).
Thus, their Fourier transforms obey the conditions 5@&*=54 I and 5ZI* =5Z

Now, it can be verified that
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= —iks6 „, (5.30)

1 O'X 1= —Js~ 25 „+(5„+]+5 +]„)
L

Z2
C

1 —Zc
(5.31)

1 (3'X 1 1 „— 1 2J]f (+o)sJ(1Z)[255+]+]] (5.32)

5 5

5 „+„5z 5z„=6 g e' '" 5Z]5Z
mn =0 l =0

(5.33)

which is essentially a consequence of the convolution
theorem for discrete Fourier transformations. Using Eqs.
(5.30)—(5.33) in Eq. (5.27), it follows directly that the
variables (540, 5ZO) decouple completely from the others
in t] X. Hence the path integral (5.26) factorizes into a
product, say I,I2, of two independent path integrals. I,
depends only on (540, 5ZO), the variations of the tunnel-
ing coordinates around their tunneling path values:

(5.34)

In writing this equation, another shortcut has been em-
ployed: 6 X0 is the second variation of the simple La-
grangian Xo of Eq. (5.21), namely,

Obtaining the actual numerical coefficients in Eqs.
(5.31) and (5.32) is somewhat tedious; however, the fact
that the m, n dependence enters only via 6 functions of
the form 5 „+&, which is all that is needed for the fol-
lowing argument, can be anticipated directly from. the
fact that the original% of Eqs. (5.1)—(5.2) is "translation-
ally invariant" (i.e., invariant under l ~i+1). Now,
when writing 5~% of Eq. (5.27) in terms of the Fourier
transform variables (M&], 5Z]) of Eqs. (5.28) and (5.29),
one may utilize the relation

its—SC Of Z, +»s'»Z'+ ,'Jbf"-(+o»+o .

(5.35)

This simple form may be used, since (BV/8 Zo)„evalu-
ated according to the tunneling path ansatz (5.10), is
identically equal to (8 XOIB Zo)„with similar comments
holding for the other second derivatives Xo with respect
to the N0 and Z0.

The other path integra1 I2 depends only on
(li@],6Z] )]~0, the variations of the transverse coordinates
around their zero values along the tunneling path. These
fluctuations are exactly harmonic oscillators in the limit
Jb/s J~O, since then all time dependence drops out of
the coefficients in Eqs. ( 5. 3 1 ) —( 5.32 ) (recall that
Z, =iZO+z, with i5Zo o- v'b/a ~ QJb Is J). More
generally, the Auctuations of the transverse coordinates
will shift the ground-state energy by an amount propor-
tional to their characteristic frequencies. However, they
will not make a contribution to the tunnel-splitting ener-

gy h.
Thus, for the calculation of b, , only the path integral I]

is relevant. Since this depends only on XD, the demon-
stration that only Xo is important for the calculation of b,

is complete.
It follows that 6 may be directly obtained from the

effective Lagrangian Xo of Sec. IV, Eq. (5.22), inserted
into the results of Sec. IVC. Substituting the values of
Eqs. (5.23) and (5.24) into Eq. (4.12) gives

4( ,' )' rr ' ]]]]„(Jb—f"(0)) J' exp —+3Jb IJ f dp&f (y)

0 if s =half-odd integer .

if s =integer,
(5.36)

b, ~sJ exp[5. 6s'~ —5.6s' ] for s )) 1 . (5.37)

This is the main result of this paper —an explicit expres-
sion for the tunnel-splitting energy in a nontrivial setting.

Expression (5.36) can be evaluated numerically [see the
last paragraph of Appendix A for the definition of Jb and
f(y), and Eqs. (4.22), (4.23), and (4.20) for y„]. The re-
sults for 6, in units of J, for some values of s are tabulat-
ed in Table I. It should be remarked, though, that strict-
ly speaking and for several reasons, our methods are only
applicable in the limit of s »1. Collecting the s depen-
dencies of y„,f"(0), and Jb gives

VI. DESTRUCTIVE INTERFERENCE

It is quite striking that the tunnel-splitting energy and
the tunneling amplitude [see Eqs. (5.25) and (5.36)] are
exactly zero if s is a half-odd integer. This is a conse-
quence of destructive interference of the (+) instanton
and (

—
) instanton amplitudes in Eq. (5.25). Actually,

this result can be arrived at without the need for a de-
tailed calculation (see also Ref. 9). All that is needed is
the fact that Re[]]'0+]=Re[SO ] and JV+ =JV, which is
guaranteed by symmetry (under some technical assump-
tions, explained in Sec. IV B), and knowledge of the phase



976 JAN von DELFT AND CHRISTOPHER L. HENLEY 48

TABLE I. Numerical values of 6/I as a function of s, as calculated from Eq. (5.36).

10 20

2.3 0.83 0.32 0.13 0.06 0.02 0.001 5X10

of the classical action, Eq. (5.24). In fact, a similar result
holds for a much larger class of tunneling problems on
the kagome lattice.

Consider the simultaneous tunneling of larger sets of
spins on the kagome lattice. Take, for example, any
closed "loop" of spins such that all the spins on the loop
alternate between types 2 and 8 around the loop. It is
proven in Appendix D that all such loops contain 4n+2
spins (with n some integer). Now consider the rigid-
rotation tunneling mode of this loop (a generalization of
the rigid-hexagon mode to loops that are not hexagons),
i.e., tunneling between configurations ~i ) and ~f ) that
differ from each other only through y&~cp&+~ for each
spin on the loop (i.e., in that all 3 and B spins on the
loop are interchanged). This rigid-rotation tunneling
mode does not cost any classical exchange energy, but
selection effects provide a coplanarity barrier that has to
be tunneled through. Under the (admittedly somewhat
tenuous) assumption that during the tunneling motion of
the 4n+2 spins all other spins will remain fixed, the fol-
lowing assertions can be made: The absolute values of
the tunneling amplitudes of the (+) instanton and ( —)

instanton events are equal, and the relative phase between
them is i 2irs(4n +2)( ——,'). Hence, for half-odd integer s,
destructive interference between (+) instantons and (

—)

instantons occurs again.
Only when two loops, with a total number of 4n spins,

tunnel simultaneously and synchronously will there be
constructive interference between all the 4n spins. The
smallest group of spins for which this is conceivable is the
six-spin inner loop of a hexagon, nested inside a larger
loop of 18 spins. These two loops would tend to tunnel
synchronously because of the coplanarity forces between
the triangles connecting them. Thus, the smallest tunnel-
ing event that has a nonzero amplitude involves a double
loop of altogether 24 spins.

The fact that destructive interference happens for
half-odd-integer s is noteworthy, since s is half-odd in-
teger for the two experimental realizations of the kagome
lattice that have been proposed. These are the magneto-
plumbite SrCrs Ga&+„O&9 (s =

—,
'

) (Refs. 30—32) and the
second layer of He atoms on a graphite substrate
(

i
)

33, 342.
VII. DISCUSSION

A. Discussion: Comparison of energy scales

In this paper, the tunneling barrier was taken as a fixed
potential, given by &„ in Eq. (2.5), although the original
Hamiltonian (2.2) had no "coplanarity forces. " In what
follows, we argue that this approach can be justified in
the limit of large s.

Our estimate of &,» in Appendix A is based on the

following strategy: The tunneling hexagon is frozen at a
given point along its tunneling path, at which its plane is
tilted by cp relative to the reference plane. Then the fre-
quencies co&(p) of the zero-point modes of the spins on
neighboring hexagons are calculated as a function of y.
The coplanarity barrier is then taken to be proportional
to yt —,'A(cot(Ip) ~t(0)).

This procedure is reasonable if the tunneling process is
"adiabatically" slow, i.e., if the duration of an instanton,
say r;„, is indeed long compared to the typical oscillation
periods co& '(g) of the zero-point modes on the surround-
ing hexagons. In this case, we are effectively "integrating
out" in a crude way the fast modes of a complicated
many-spin problem. However, if for some zero-point
modes one has cot '(y) )r,„, these modes are slower than
the instanton and do not have time to affect the barrier.
In that case, the effective barrier should be smaller than
the one we used, since the contributions of slow modes to

should not be counted.
Now, in Appendix A, the behavior of the zero-point

modes of the hexagons surrounding the tunneling hexa-
gon is found to be as follows: There are both ordinary
and soft modes (corresponding to pt~3 and pt 3, respec-
tively, in Appendix A). For the ordinary modes, we find
firv&(gr)-sJ, as is usual for antiferromagnets. The soft
modes are rigid-hexagon fluctuations; for cp=O, we find
flcv ft( qr ) —s J, while for large y, one has A'cv, tt( y ) —sJ.
If one were to consider Auctuations on the entire lattice
(instead of only on the neighboring hexagons of the tun-
neling hexagon), these soft modes would translate to an
entire branch of soft modes, for which one would also ex-
pect Ace„«-s J. This, indeed, is the result found by
Chubukov [8], using a method based in Fourier space.

The duration of an instanton event, on the other hand,
scales with s according to i.;„-I/d-fi/(Js' ), accord-
ing to Eqs. (3.12) and (5.23). Thus, in the limit of s ))1,
one has z;„))coI

' for all zero-point modes, both ordinary
and soft. In this limit, the instanton is thus indeed slow
compared to the zero-point fluctuations, justifying the
use of a coplanarity barrier &„ for sufficiently large s.

How does the calculated tunnel-splitting energy
compare to the in-plane selection energy (of order J, )

mentioned in Sec. II A, that tends to lift the degeneracy
between ~i ) and ~f ), and hence to suppress tunneling?
To obtain an estimate of J„we note that Chubukov has
calculated the spin-wave velocities for the 3/3X V'3 and
q=O states (described in Sec. IIA), and found them to
differ by only about 5%. Since J, is a measure of the en-

ergy difference between the 3/3 X V'3 and q=O states, it is
a natural inference from this small difference in spin-
wave velocities that J, is only a small fraction of the
zero-point soft-mode energy, i.e., J, —gJs, with

i) (0.05 [see also Ref. 5, Eq. (52)]. Since we found
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Jb =5/2Js [see Eq. (A22)], neglecting J, relative to Jb
seems justifiable. This is the justification for not adding
an in-plane selection term to &h,„ in Eq. (2.3) in the same
way that we added the coplanarity selection term &„.
However, it should be noted that for small tunneling an-
gles y, for which &„-Js ~, the inclusion of in-plane
selection effects, which are also of order Js, would
probably affect some of our results. For example, our cal-
culation of y„ in Sec. IV C would be affected if
Js+ «J «J&.

Finally, let us compare 6 to J, . From Table I, it fol-
lows that for physically realizable (i.e., small) spin values,
we have 5 J, . This has two implications: First, it is an
a posteriori justification for taking J, =O in our calcula-
tion [compare comment (i) in Sec. IIC] because b, does
turn out to be substantially larger than J, . Second, it im-
plies that tunneling effects are at least as important as in-
plane selection effects in determining the true nature of
the ground state. Unfortunately, these conclusions are at
best qualitatively correct, since in the domain of small s
the steepest descent approximation that we use so exten-
sively ceases to be reliable quantitatively.

For large s, where the steepest descent approximation
is assumed to work well, Table I shows that A~ J, .
Thus, in this limit, the neglect of J, in our calculation be-
comes questionable. A more sophisticated calculation,
that would include from the beginning the effects of in-
plane selection, would be beyond the scope of this paper.
However, a reasonable conclusion would be that tunnel-
ing is suppressed and hence unimportant in this regime.

Because of the abovernentioned problems, our calcula-
tion gives at best an order-of-magnitude estimate of h.
However, this estimate does suggest that for small (in
teger) s, tunneling should be regarded as a significant dis
ordering mechanism competing with order from disorder-
selection effects.

In a quantum Potts model of the entire kagome system,
the Hamiltonian would have matrix elements proportion-
al to 5 between any two pairs of states, which differed by
the exchange A+ B along a single six-spin hexagon loop
(or more generally, there would be matrix elements for
any larger closed loop of alternating AB spins). Then a
superposition of Potts states, which takes advantage of
the resonance between different hexagons (or larger
loops), would have a lower energy (at small s) than the
V3 X &3 state, which is favored by the J, term.

Two possible kinds of such ground states suggest them-
selves: The first is a "totally disordered" Potts state; it
can be idealized by a trial wave function, which is an
equal superposition of all the Potts ground states, which
is known to be disordered (it has only algebraically decay-
ing correlations ). The second kind of ground state is a
"partially disordered" &3 X/3 state; an idealized trial
wave function has, say, all C spins fixed, as in the usual
&3 X&3 state, but each ABABAB hexagon is replaced
by an equal superposition of the AB AB AB and
BABABA configurations (with no correlation between
one hexagon and another). Such a state would still have
long-range order with respect to the C spins but would be
disordered with respect to the A and B spins. We call
this a "ferrimagnetic" ground state, since the expectation

value of n, is +1 on the C sublattice, and —
—,
' on the oth-

er two sublattices.
Both these candidate states have considerably less or-

der than the long-range-ordered &3X&3 state. On the
other hand, they are more ordered than the "spin-
nematic" state, which has been previously proposed for
this system. ' In the "spin nematic, " all spins lie in the
same plane, but all directions in a given plane are equally
likely, i.e., (e'@')=0. The states described by quantum
Potts models have either an A, B, or C spin at each site,
so that ( e ' e")%0

For the half-odd integer s, of course, hexagon tunnel-
ing is absent (the smallest tunneling event with nonzero
amplitude involves the synchronous turning of 24 spins),
as discussed in Sec. VI. Therefore, one would expect the
long-range order of the usual &3 X&3 state to persist, at
least to much smaller values of s than for integer spins.

B. Possible extension and other applications

A more fundamental approach for treating coplanarity
selection effects, that should be trustworthy also for small
s, would be as follows: Write down a functional integral
for the entire ¹pin system, starting from the Heisen-
berg Hamiltonian, Eq. (2.2), without an explicit coplanar-
ity term such as Eq. (2.5). Adopt a tunneling path in
which only the six spins of the tunneling hexagon move.
The tunneling coordinates would be essentially the same
as the collective coordinates (@O,ZO) introduced in Sec.
V. However, one would then have of order N —1 trans-
verse modes, instead of only 5. Integrating these out
would result in an effective potential for (@o,Zo ), which
could, in principle, be nonlocal in time (since it encodes
the effect of changing (@0,Zo ) at time r on the transverse
modes, which, if these modes are slow, will in turn
infiuence the potential felt by (C&0, Zo ) at later times).

We briefly mention a possible application of tunneling
calculations in the context of finite-size systems. Consid-
er some frustrated antiferromagnetic system whose
ground states have spin order with nontrivial discrete
symmetry. For small system sizes, the eigenvalue spec-
trum can be found by exact diagonalization of the Hamil-
tonian. Tunneling calculations could be useful in obtain-
ing better interpretations of such an eigenvalue spectrum.
For example, the J& —J2 square antiferromagnet (for
Jz )0.5J&) has classical ground states in which the even
sublattice has alternating spins of one staggered magneti-
zation and the odd sublattice has an independent, arbi-
trary staggered magnetization. When quantum Auctua-
tions are taken into account, spin-wave theory gives an
effective "collinearity" force [analogous to the coplanari-
ty term in Eq. (2.5) in the present paper]. This lines up
the staggered magnetizations along the same axis, in ei-
ther sense, ' so that classically there are two ground
states related by a discrete symmetry and separated by a
barrier. Consequently, the two lowest eigenstates of a
large system should both be spin singlets, namely, the
symmetric and antisymmetric combinations of the two
classical ground states (which are also spin singlets) that
have been mixed by quantum tunneling. [This behavior
contrasts to that of ordinary antiferromagnets; there the
smallest gap is associated with E=s(s+ I)/2y, where y
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is the susceptibility, so that the first excited state is a trip-
let. ] The classical path expected (in a small system) has
all spins of a given sublattice rotating together during the
tunneling event, so it should be possible to map the
J& —J2 tunneling problem to a four-spin problem, in the
same fashion that we mapped a six-spin problem to a
one-spin problem.

C. Summary

We have presented a detailed calculation of the
tunnel-splitting energy 6 that arises because of the tun-
neling of six hexagon spins between two degenerate
ground-state configurations on a kagome lattice. This
was done by introducing a set of collective coordinates
and thus mapping the problem onto a much simpler mod-
el problem that can be treated by standard methods.
These involve the method of steepest descent to evaluate
a coherent-spin-state path integral in imaginary time and
integrating out the cosj9 degree of freedom to obtain an
effective Lagrangian X, involving only the coordinate y.
The tunnel-splitting energy for X can then be found by
using well-known methods developed for the tunneling of
particles through a double-well barrier.

The most striking aspect of our final result, Eq. (5.36),
is that when s is half-odd integer, the tunneling amplitude
and the tunnel-splitting energy b are strictly zero, due to
destructive interference between (+) instanton and ( —)

instanton paths. This destructive interference is argued
to occur also for larger loops of AB spins tunneling be-
tween two degenerate configurations. For small, integer
s, we find that the tunnel-splitting energy 6 is at least of
the same order of magnitude as the in-plane selection en-
ergy J, found by other authors; this implies that tunnel-
ing constitutes an important mechanism competing with
order-from-disorder selection effects, which might tend to
drive the system into a partially disordered ground state.
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APPENDIX A

In this appendix we obtain an estimate for the form of
the shape-function f(p) and the magnitude Jb of the co-
planarity potential &, introduced in Sec. II C, Eq. (2.5).

1. Estimate of zero-point energy

In principle, gf„has to be calculated as follows: Start
from a +3X V3 coplanar ground state, and for a given
hexagon, say P, turn all six spins (of types A and B, say),
around the C direction (which we take to define the z
axis), by an angle y. This rigid-hexagon rotation has no
cost in classical energy. However, if one allows all spins
in the lattice to execute zero-point fluctuations around
their classical ground-state directions (characterized by a
set of unit vectors In,' ']), and calculates the associated
zero-point energy Eo(y), as a function of y, it is found

n(0) + g o aea
Q=x, y, z

(Al)

while all other spins in the lattice are kept fixed at their
respective n'; '. Here we have introduced a (right-handed)
set of local basis vectors e& (a=x,y, z) for each spin,
with el ——n& '. We consider only small deviation ampli-
tudes o& « I, and require that nI ~

= 1. At the end of the
calculation, we shall estimate the effects of allowing all
six (as opposed to only one) nearest-neighbor hexagons of
P to fluctuate simultaneously.

Given Eq. (Al), perform the standard expansion of the
classical Hamiltonian (2.2) around nI ', to quadratic or-
d

&—&' '=s J g [n; n —n,' 'n' ']
&i,j &

=s Jg o +cr~
l =0

(A2)

a,PE Ix,yI

a p a pll+1 1 l+1 (A3)

No linear terms occur, because the n'; ' directions mini-
mize &; this is true even when P has been turned relative
to Q, since rigid-hexagon twists do not cost any classical
energy.

Now, for each l, the variable ( —Ao
&

) plays the role of
a canonically conjugate momentum to the variable so.yl.

Suppose that it is possible to find a transformation to a
new set of pairs of canonically conjugate variables,
Isp~&, Ap& ], in terms of which &—&' ' is diagonal:

I s (Api)~—~'o'= J g — + k((sp~()—
2 ml

(A4)

This is just another way of writing the usual spin wave
theory —the p&) are magnons. The zero-point energy of
the system can then be written simply as

5

Eo(p) = g —,'A[co((y) —co((0)],
1=0

(A5)

where the frequencies co& and root-mean-square (rms) am-

plitudes of spyl are given, respectively, by

co(=s+kllm( and ((sp~() )' fi

2ml col

1/2

(A6)

In attempting to transform Eq. (A3) into the form Eq.
(A4), we proceed as follows. Make the transformations

that Eo(p) has its minimum at y=0. Hence Eo(y)
acts as a barrier that opposes rigid-hexagon rotations.

To obtain a crude estimate of ED(y), we shall only cal-
culate the effect of turning P on the zero-point energy of
one of its nearest-neighbor hexagons, say Q (see Fig. I),
arguing that the effects of turning P should have an in-

creasingly weak effect on more distant hexagons. Let the
six spins of Q be labeled by l =0, . . . , 5 (where the index
1 is defined modulo 6). Thus, we allow these six spins (in-
cluding the l =0 spin, which is shared by Q and P), to
Auctuate,
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eo=R(eo, —y)R(z, y)ez ~

=
—,'( —1 —sin y, cosipsiny, —&3 cosy),

cQ R(eo, —y)R (z, y)e2

=
—,'( —cosiP sin@, 2 —sin p, i/3 sing),

eo=R(z, iP)ez &= —,'(&3 cosy, &3 sing, —1) .

(A9)

In the definition of eo, the R(z, y) rotation is introduced
to account for the rigid rotation of hexagon P relative to
Q. The additional rotation R(eo, —y) for eo and eo is in-
troduced merely for convenience —it allows one to mini-
mize the effect of e e' cross terms in Eq. (A3).

By straightforward calculations one readily arrives at

(A10)

5

&,„=s J g (1 ,'coslvr/3)~—pi —~

1=0

5

(e ~ / +e ~ /
)p px

k, 1=0

5

&~~=s J g (I+coslvr/3)~p& ~

1=0

(A 1 1)

5

(e
—ivrk/3+ —i~l/3) yy

k, 1=0

5

&„~=
—,', s J sin2p g [coskvr/3 coslvr/3]p„pi . —

k, 1=0

(A12)

(A13)

Evidently, &—&' ' is not yet diagonal. However, one
can obtain an estimate of the zero-point energy Eo(ip) by
adding up the frequencies of the six individual "pure"
modes and neglecting the coupling between different
modes (to obtain a pure 1 mode, take pk =0 for all k ex-
cept for k =l and k= —l). For pure modes, &„~=0,
and the frequency cubi can be found from Eq. (A6). The
smallest frequency is that of the mode p3, which corre-

5
x —~ —1/2 ~ —i ~1k /3 x

Pk ~

k=0
5

y —6
—1/2 ~ imlk/3~01 va

k=0

where p i, =(pk)". Also make the following choices for
the vectors ei [here R (n, y) denotes a rotation by an an-
gle ip around the n direction]:

e& 3 &=(1,0, 0), e& 3 &=(0, 1,0), ef 3 5=(1,0, 1),
(AS)

e2 4= —,'( —1,0, —&3), e~ 4=(0, 1,0),
e~ 4= —,'(&3,0, —1),

fico3=sJ sining~(1+ —,'sin p)' (A15)

Since co3(ip=0)=0, this is a soft mode. The frequencies
for the other five pure modes have the form

A'coi SJ[(c]i+c2isin Ipi )( I +c3isin (pi ) ]' (A16)

where c&1, c21, and c31 are constants that can be obtained
with some more work. It turns out that c»%0 for l&3,
so that, as expected, these modes are not soft. Also, we
find that their joint contribution to Eo(y) [in which
coi(y=O) is subtracted off] can be mimicked, to within
1% accuracy, by the expression —0.21sJ sin y. Using
this result and Eq. (A15) in Eq. (A5), we conclude that
the total zero-point energy of the fluctuations of hexagon
Q when its neighbor, hexagon P, is turned by ip, is
Eo(y) =

—,
' Jsf (ip), where

f (ip) = ~sin~P~(1+ —,'sin y)' —J sin y (A17)

and J=0.42.
Now we have to estimate the zero-point energy when

all six neighboring hexagons of hexagon P are Auctuating
simultaneously. To do an extended version of the above
calculation seems forbiddingly tedious. Roughly, we esti-
mate that the total zero-point energy will be
&„=5EO(y). We have two arguments, both rather
crude, for using a factor 5 and not 6: Firstly, there are 30
(not 36) independent spins in the six hexagons surround-
ing P. Secondly, there exists one particular superposition
of the six soft rigid-hexagon modes (i.e., modes for modes
which only p3&0) of the six neighboring hexagons of P,
which results in a mode that is totally unaffected by turn-
ing hexagon P. (In this mode, only the six spins of hexa-
gon P and the 18 spins on the outer perimeter of the six
neighboring hexagons are Auctuating, at no cost in ener-
gy, while the six spins between the inner and outer loops
of fiuctuating spins remain fixed. )

2. Self-consistency of zero-point Auctuation amplitude

In the above calculation, the zero-point motion of hex-
agon P itself about its orientation at fixed y has been ig-
nored. This is reasonable if cp is not small. However, if
y ~iP*, where ~P* = (iP ) '/ is the rms amplitude of the
zero-point fluctuations of a hexagon around the coplanar
(&p=O) orientation, the zero-point motion of P itself can
no longer be neglected. It has the effect of rounding out
the effective potential f (q&) at the bottom of the well from
a linear to a quadratic cp dependence. Arguing that even
if y=0 for a given hexagon, to its neighbors it will actu-
ally seem to have cp=+y* because of its zero-point Auc-
tuations, we incorporate this effect into f(qr) by using an
effective shape function defined by

(A18)

sponds to rigid-hexagon fiuctuations of the spins of Q,
and costs zero energy when y=O. From Eq. (A10), one
finds

[&—&(0)]i 3=s J[(pi) ( —', +—,'sin ip)+(p3) —,'sin y]

(A14)
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s J[(p3) ( —,'+ —,'sin p*)+(p~3) 6—,'sin y*] . (A19)

(Note that only the "stiffness" [coefficient of (p~~) ] gets a
factor of 6, not the "mass" [coefficient of (p3) ].) Using
expressions (A6) and (A19), one therefore finds the fol-
lowing self-consistency relation:

sp, *=((sp~*)')' '=&s/2
i i /4

3J
2J (A20)

Tracing the transformations from p3 back to y, one finds
that the deviation p3* corresponds to hexagon P being
turned by g*=i/2/3p~3*. Using this in Eq. (A20) and
solving for cp* one readily finds

where f(&p) is given by Eq. (A17). Thus the cusp in the
shape function at y=O is rounded out (see Fig. 4), while
for large y, we essentially have f(g) =f (&p).

The rms amplitude y* has to be determined self-
consistently: Calculate the rms value y' for hexagon P,
fluctuating about the coplanar (@=0) configuration, un-
der the assumption that all its neighbors are turned by
cp=y* from the coplanar configuration, and solve the re-
sulting self-consistency condition for y'. Since y is ex-
pected to be small, in this estimate we take into account
only the rigid-hexagon fluctuations on P, characterized
by p3. Expression (A14) gives the effective Hamiltonian
for the rigid-hexagon mode of P when P is coupled to just
one neighboring hexagon (turned by qr), while the other
five neighbors of P are kept fixed at y=O. When all six
neighbors are turned by roughly y*, the effective Hamil-
tonian for the rigid-hexagon mode of P is therefore
roughly

planarity potential has the form

&„p=5EO(y) =Jbf(y), (A22)

with Jb =
—,'Js. The functions and f(y) and f(y) are

defined in Eqs. (A18) and (A17), respectively, and f(y)
depends on p*-s '~ . f(y) is plotted in Fig. 4 for the
case s=1. Our crude estimates are expected to be reli-
able to within a factor of 2.

APPENDIX B

its—yz+s z +sf(y), (81)

where z =cos8 and f(y) is some function of y. A typical
z integral appearing at the jth time slice in the
discretized-time version of the path integral fdA e

has the form

I=f" dy f" dz. exp—oo —r

—[ i b,@,z,s+ s'z,'+—(E'/s )f(q, ) ], (82)

In this appendix, which is a complement to Sec. IV A,
we investigate the way in which the integration range
[ r, r ] for—z influences the degree of non-differentiability
of the y-paths that result after z has been integrated out,
for a Hamiltonian containing a z term. It is shown that
for r = 1, the resulting y paths are highly
nondifferentiable, much more pathological than Browni-
an motion paths. For r = ~ they are Brownian motion
paths.

To see the difference between r = 1 and r = ~, consider
the simplest Lagrangian that illustrates the point we wish
to make:

y* = ' v'3/2s 'i =0. 14s9 (A21)
where

Note that y'~0 as s~ ao. The s ' dependence here
is in agreement with the work of Chubukov. He has
used a self-consistent theory, which is similar in structure
to our arguments in this appendix but based in Fourier
space [and taking into account cubic terms of the form
o (o ),(o ) ], to calculate zero-point frequencies and
amplitudes of fluctuations.

The various frequencies col(g) scale as follows with s:
For the soft mode (l =3), Eqs. (A18) and (A15) show that
Ace&(y)-sJy /g* as y~O, so that, by Eq. (A21), one has
A'co3-s2~ J for y~y*. For y))y*, one has Rco3(y)-sJ.
For the five nonsoft modes (i&3), Eq. (A16) shows that
Ace&(y)-sJ, for all y.

To summarize the results of this appendix, the co-
I

~, =(v, v, +i)«=~—v, «
E'=s E/A', a=T/(%+1) .

(83)

E'+ z iby z, s+(s'/s)f(—y )
2T

(84)

Performing the Gaussian z integral, one readily obtains

To shed light on the significance of r in Eq. (82), let us re-
place the sharp cutoff at +r by a Gaussian cutoff of width
2r (the resulting change in normalization is not relevant
to our argument). Thus we replace Iby

I'= J' "
dy f dz, exp

' 1/2

I dg exp—
Acp + ( 8'/s )f ( y) )

2(2E'+r )
(85)

(p. +i ~V 2E +r /s (86)

If r = ~, the g paths are Brownian-motion paths, since

The process of integrating out z. has thus generated a
Gaussian cutoff for cp -:

then yj —y. +i ~ &s. However, if r =1, then in the limit
c~O, one has y. —y. —1 js. The coordinates on neigh-
boring time slices therefore can differ by an amount that
is larger than infinitesimal, so that these paths are exceed-
ingly ill behaved.

Instead of using a Gaussian cutoff for the z, integral in
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Eq. (B4), one could also use a sharp window function
w ( r) =8( r —

~zi ~
) as cutoff. Then the new expression

[corresponding to Eq. (B4)] would be exactly equal to the
old Eq. (B2). The z. integral can then be performed by
first writing w(r) as the Fourier integral of sinrq, /mq, .
The calculation is more tedious, but the results are quali-
tatively the same.

1. Single-instanton prefactor

Our starting point is Eq. (4.11) of Sec. IV C:
=

—,'mq) + V(q&),

where

(Cl)

m =(A'ns) /2a, V(y)=bf(y) . (C2)

In the parlance of Rajaraman, "
y is the coordinate of "a

particle on a unit circle, " i.e., all points q)+2am (m is
any integer) are physically indistinguishable. The poten-
tial V(q)) is periodic and symmetric about both q)=0 and
q) =m. /2 [compare Eq. (2.6)]:

V(m~) =0,
V((p) = V( —q)) = V(q)+mar)

(C3)

for any integer m, with minima at q)=em (see Fig. 4). A
"particle" moving in this potential will execute zero-
point motion, with frequency

APPENDIX C

This appendix concerns two points: (i) The
identification of the prefactors of the exponentials in the
amplitude for a single tunneling event between neighbor-
ing minima of a periodic potential. The relevant path in-
tegral (4.9) need not be computed ab initio, since one can
use standard results for a particle tunneling in a double-
well potential, as presented by Coleman. (ii) Perform-
ing a summation over time histories with multiple instan-
tons, to verify that the tunnel splitting is precisely pro-
portional to the single-instanton amplitude.

then ~z) can clearly be reached by either a (+) instanton
or a ( —) instanton. The corresponding tunneling paths
(p

—(T) lead from ~2m')E. ~0) at T= —T/2 to
~(2m+1)rr) H ~z) at T=T/2. Asymptotically, they have
the form

(T—+ T/2) = (2m+1)sr+ q)„e (C5)

1/2
Tci) /2 p+ 0 (C6)

where
1/4

k
(C7)

(Without loss of generality, the phases of the initial and
final states have been chosen such that IC is real. ) For the
Lagrangian (Cl), ()'0+ =Sz),' however, in Secs. III and IV
of this paper, $0 and $0 have different imaginary parts,
hence we keep the distinction between them in Eq. (C6).
The factor K has dimensions of inverse time and can be
interpreted as an attempt frequency. Note that it is not
necessary to make a distinction between K+ and E, be-
cause to lowest order in the steepest descent approxima-
tion, K+ =E (compare Sec. IV B).

The total single-instanton tunneling amplitude from
~0) to ~m. ) or from ~(vr) to ~0) is simply the sum of the
two amplitudes in Eq. (C6):

The value of the constant y„depends on the entire shape
of V(q)), but is usually not too hard to obtain (see Sec.
IV C).

Coleman shows that to lowest order in the steepest des-
cent approximation, the tunneling amplitude for a single
(+ ) instanton event has the following form: '

& (2m+1)gree ~2m+ )

co =')/k /m, where
a'v

2 7

y= me.

(C4) —A'0 /fi

around a minimum of V(y) for most of the time, and will
occasionally tunnel via a single-instanton event to a
neighboring minimum. Since y lives on a circle, V(p)
has only two physically distinguishable minima, namely,
~0)—:f ~2m~) ] and ~z) = [ ~(2m+1)~) ]. They can be
associated with the two minima of a symmetric double
well, since single-instanton tunneling between neighbor-
ing minima of a periodic potential is analogous to single-
instanton tunneling in a symmetric double-well potential.

Consider first the single-instanton tunneling events
from ~0) to ~m). If the initial state is, say, ~2m') E ~0),

I

(C8)

2. Sum of multiple-instanton paths

The total amplitude for tunneling from ~0) to n) can
be written as an infinite series, the nth term of which
represents a string of n single-instanton events, widely
separated in time from each other (the "dilute gas ap-
proximation"). Letting the initial and final states be
separated by a time interval T, with T~ ~, the net am-
plitude is

1/2 —1+/fi
e

—Tco/2 y [Z~( 0 + 0 )]nn!
71 =Odd

1/2
—Tco/2( TA/(2R) —Th/(2')

) (C9)
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where

(C 10)

This gives

E+ =ficol2+b, /2 (C12)

for the energies of the lowest two energy states of the
double-well problem. The first term is obviously the usu-
al zero-point energy.

Substituting Eqs. (C7) and Eq. (C2) into Eq. (C10) gives
Eq. (4.12), as was to be shown.

APPENDIX D

In this appendix we prove a result that is used in Sec.
VI.

Theorem. Consider any coplanar classical ground-state
configuration of the kagome antiferromagnet. Choose
any closed loop of alternating AB spins. The total num-
ber of spins on such a loop is always of the form 4n+2,
where n is an integer.

Proof. The Bravais lattice of the kagome net, which
has one site located at the center of every kagome hexa-
gon (marked X in Fig. 7), forms a triangular "superlat-
tice" (SL). Our proof is formulated in terms of the SL,
and is divided into four steps.

1. Tiling by rhombi

In any coplanar classical ground state, every kagome-
triangle must contain exactly one spin of each of the
types A, B, and C. This can be used to construct a tiling
of the kagome lattice by decorated rhombi, according to
the following scheme: At the center of every "bond"
connecting two SL nearest neighbor sites (i.e. , kagome va-
cancies) there is a kagome spin, and every kagome spin is
at the center of a SL bond. Any SL rhombus made up of'

two neighboring SL triangles thus is decorated by a
bowtie of five spins, one at its center and four at the
centers of its four sides. These five spins form two head-
to-head kagome triangles. It is clear that for any given
classical ground state, the SL can be tiled by decorated
rhombi according to the following matching rules: (a) On

In the limit T~ ~, the lowest energy eigenvalues can
be read oA from the general expression

(Cl 1)

every rhombus, the two head-to-head spin-bowtie-
kagome triangles must each contain exactly one spin of
each of the types A, B, and C (see Fig. 7). (b) The shared
side of any two neighboring rhombi must have matching
spins.

2. Definition of cluster

Associate a connected "cluster" of SL bonds with the
given AB loop by connecting all SL-sites on the inside of
the AB loop to their nearest neighbors (Fig. 8). The
smallest cluster possible is just a single SL site; the associ-
ated AB loop surrounding it is the hexagon of six spins
studied in this paper. The next-smallest cluster consists
of two SL sites connected by a SL bond; the associated
AB loop has ten spins.

A cluster that cannot be separated into two disconnect-
ed clusters by cutting a single SL bond will be called
nonseparable. The smallest nonseparable cluster possible
is just a single SL site. The next-smallest is a SL hexagon
(a SL triangle is not allowed by the tiling rules). A large
cluster may contain many nonseparable clusters, say I,
connected to each other by m —1 single bonds, to be
called "cutting links" (Fig. 8). At the center of each cut-
ting link there will necessarily always be a C spin (be-
cause both sides of the cutting link are lined by AB's).

3. Reducing clusters to nonseparable clusters

To count the number, say M, of AB's of the original
loop that surrounds (and defines) the cluster, we sys-
tematically cut cutting links to break down the cluster
into disconnected nonseparable clusters: Cut a cutting
link, thus separating the mother cluster into two discon-
nected daughter clusters. Close the AB loop around each
daughter cluster by replacing the C spin of the freshly cut
cutting link by an A spin for one daughter and a B spin

X —-C ——X——C —-X

X——B ——X- —C ——X A X

/
C A B A B C

r

X- —C ——X——C ——X

FIG. 7. The centers of kagome hexagons (marked X) form a
triangular superlattice (SL). Connecting these by the dashed
lines divides the plane into (large) rhombi, each with, say, an
A-spin at its center, surrounded by four other sites.

FIG. 8. An AB loop surrounding a cluster of bonds (heavy
lines) on the superlattice. A and B spins on this loop are
represented by heavy dots and squares, respectively. There is
one large nonseparable cluster at the center, whose interior is
divided into the twelve large triangles. Each of the four outside
vertices is a nonseparable cluster consisting of just one SL site
(they are the vertices with just one or three neighbors), and each
of the four outside bonds (which connect these nonseparable
clusters to each other and to the large nonseparable cluster) is a
cutting link. The (perimeter) of the large nonseparable cluster
has eight inward and two outward turns.
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M= g 8;—2(m —1) . (D 1)

4. Perimeter of nonseparable clusters

for the other, whichever is appropriate to maintain the
alternation of A's and 8's around each daughter (the
reason that one can replace one C spin by two different
spins ( A and 8) is that the two daughter clusters are con-
sidered to be separated from each other once the link has
been cut). Then we have M=D, +D2 —2, where M, D,
and D2 are the number of AB spins surrounding the
mother cluster and the two daughter clusters, respective-
ly. By repeating this process until all cutting links have
been cut, we are left with m "disconnected nonseparable
clusters, " each surrounded by an AB loop containing,
say, B, spins, where i = 1, . . . , m. Thus,

such a way that there are only C spins at the centers of
the bonds that form the perimeter of the nonseparable
cluster, because the disconnected nonseparable cluster is
surrounded by a loop of AB spins. Any closed shape
tiled by rhombi always has an even number, say 2S, , of
perimeter bonds, and hence of perimeter SL sites. Any
perimeter SL site can be associated with either one, two,
or three AB spins on its outside, depending on whether
the perimeter turns outward, keeps straight or turns in-
ward at that site (Fig. 8). There are exactly six more
inward-turning than outward-turning turns around the
perimeter of any nonseparable cluster (because at each
turn the direction of the perimeter changes by 60, since
120' turns are not allowed by the tiling rules). Therefore,
the net number of AB spins around a nonseparable clus-
ter always has the form 8; =2(2S; )+6. Inserting this re-
sult into Eq. (D 1), we find

Next we show that B; always has the form B; =4n+2.
The smallest disconnected nonseparable cluster, namely,
the single SL site, has B=6. Any larger disconnected
nonseparable cluster can be tiled by decorated rhombi, in

m

M=4 g S;+1 +2 .
i=1

This proves the theorem.
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