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Destructive Quantum Interference in Spin Tunneling Problems
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In some spin tunneling problems there are several diferent but symmetry-related tunneling paths
that connect the same initial and final configurations. The topological phase factors of the corre-
sponding tunneling amplitudes can lead to destructive interference between the diferent paths, so
that the total tunneling amplitude is zero. In the study of tunneling between different ground-state
configurations of the kagome-lattice quantum Heisenberg antiferromagnet, this occurs when the spin
8 is half odd integer.

PACS numbers: 75.10.Jm, 73,40.Gk, 75.50.Lk

The problem of calculating the rate at which a quan-

tum spin system tunnels between its different low-energy
states has been of interest in various different contexts
[1]. The tunneling amplitude is usually calculated by
setting up a coherent-spin-state path integral and ana-

lytically continuing to imaginary time (t ~ —ir); the
leading contribution can be found using the method of
steepest descent. The phase of the tunneling amplitude
depends on a topological phase, variously called a Berry
phase or a Wess-Zumino phase.

As was first pointed out by Haldane in his work on

extended quantum spin systems in one and two dimen-

sions, this phase can give rise to qualitative difFerences

between systems with integer and half-odd-integer spin

s, due to quantum interference between topologically dis-

tinct paths of a continuous unit vector field A(x, t) [2].
In this Letter, we point out that destructive quan-

tum interference between different tunneling paths can
also occur in somewhat simpler contexts, for systems
that involve only a small number of individual spins.
When there are several different symmetry-related tun-

neling paths connecting two degenerate classical ground
states of a spin system, the topological phase can lead

to destructive quantum interference between the respec-
tive tunneling amplitudes, and hence to a total tunneling

amplitude that is exactly zero. The occurrence of such a
cancellation has a geometric interpretation and depends
on the value of the spin 8. We illustrate this with two ex-

amples: The first involves a Hamiltonian with an m-fold

symmetry axis. The second concerns tunneling ampli-

tudes between different degenerate ground-state con6g-
urations of a kagomi-lattice quantum Heisenberg anti-
ferromagnet; these amplitudes are zero if s is half odd
integer, but nonzero if s is integer.

The tunneling amp/itude: In tunneling problems, the
customary object of study is the imaginary time transi-
tion amplitude from an initial state [i) to a final state

[f). For a spin system, this can be written as a coherent-
spin-state path integral [3]:

where 8 = jdrl: is the Euclidean action and 170 is the
measure of the path integral. For the special case of a
single spin, the Euclidean Lagrangian is

q(i) )
(s's&" +s'si'& )-/r"(4)

Here So is the action evaluated along the tth "tunneling

path, " which is a solution to the Lagrangian equations of
motion and will be denoted by overlined variables, e.g. ,

(a)(') (r), 8(') (r)). The index t allows for the possibility of
several different symmetry-related tunneling paths. The
prefactors JV ( ) measure the effects of fluctuations around
the tth tunneling path. Tunneling problems are charac-
terized by the fact that the coordinates in general acquire
imaginary parts along the tunneling path (else it is not
possible to satisfy the requirement that the Hamiltonian
be a conserved quantity along the path). Consequently,

the various So can have nonzero imaginary parts. Quan-(~)

turn interference, and possibly complete cancellation (so
that UI, = 0), can thus occur between the amplitudes of
the different paths.

L = —ibsen(1 —cos8) y'H($, 8) .

The coordinates (P, 8) label the coherent spin state ]P, 8)
for a particle with spin s, and may be associated with
a unit vector n in the ($, 8) —= 0 direction. The origin
of the topological first term, sometimes called a Wess-
Zurnino term, is clearly explained in [3(b)]. The dot
on P means c) . The "semiclassical" Hamiltonian is the
expectation value 'H:—($, 8['H[$, 8) of the operator 'H.

For simplicity, we shall consider only the case where ~i)

and
~ f) are "classically degenerate ground states" (in the

sense that (i['H[i) = (f]'H[f) are the smallest possible ex-

pectation values of 'H), and are separated by an energy
barrier.

The above path integral can be evaluated by the
method of steepest descent:

) ~(i) —si i/a ) U(i)

t t

where
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Geometric interpretation of phase: The conserved en-

ergy E0 = 'H(A(')) along the tunneling paths that con-
nect the degenerate states ~i) and

~ f) may be set equal to
zero without loss of generality. Hence 8(() is completely
determined by the topological term in Z.. This term has
a well-known geometrical interpretation [3(b)], which we

now discuss.
Let O(r) = ((t(r), 8(r)) be a purely real, cLosed, non-

self-intersecting, smooth path in spin space. The area on
the unit sphere enclosed by this path is given by

A = dr P(l —cos8),

modulo 4n, depending on which of the two oriented areas
(the "inside" or the "outside" of the closed path) one

Re[8(%' ] = Re[8(%' ], and A'") =A'(' (6)

Intuitively speaking, this situation arises when the local
neighborhoods of the two tunneling paths are, for sym-
metry reasons, identical for the two paths, so that the
local shapes and sizes of the barriers (which determine
the Re[8(I')]) and the local Huctuations around the tun-

neling paths (which determine the JV '
), are identical.

Then U&,. and U&, differ at most by a phase, namely,(t) (t')

considers.
Now consider two (of the possibly many) tunneling

paths, say 0(')(r) and A(')(r), not necessarily purely
real, connecting ~i) and

~
f). Suppose that some symme-

try of the Hamiltonian ensures that the absolute values

of the two tunneling amplitudes U&,. and Uf, of Eq. (3)(&) (&')

are equal, i.e. , that

r Re[/ ')](1 —Re[cos8(')])— r Re[(t (' )](1 —Re[cos 8(' )])

Terms such as Re[ ]Im[ ] do not appear due to Eq. (6).
We have assumed that Im [P(')]Im[cos 8(')] = 0 (same for
t ~ I'), for the following reason: The conserved energy
condition, 'R(O(')(r) ) = 0, can be solved to find, for
example, 8(') in terms of P('). The dependent variable 8(')

will be a complex function of the independent variable
P('), which can be taken to be real, so that Im[P(()] = 0.
A similar argument works if one chooses to write P(') in
terms of 8(') [1(c)].

Now, let A~~ be either one of the two oriented areas
on the unit sphere bounded by the loop formed by the
two paths Re[A(')] and Re[A(' )). Then, by Eq. (5), the
relative phase Eq. (7), which is sometimes called a Berry
phase [2(b)], reduces to

(8(I') —8(' ))/h = —isA

The 4~ ambiguity in A(~ is irrelevant, since exp( —i4vrs)
= 1 for any spin s.

If sAtt is an odd multiple of 7r, the amplitudes for the
two paths interfere destructively, so that Uf, +U&, ——0.
In the simplest case where 0(') and 0(') are the only two
tunneling paths, this means that the total amplitude Uf,
is zero. Note that this result does not depend on the
detailed dynamics of the tunneling motion. In particu-
lar, it is not necessary to know the imaginary parts of
the tunneling paths 0&') explicitly, as long as symmetry
arguments can be invoked to assert that the relations (6)
hold. It may happen that symmetry ensures that the
prefactors A (' are equal to alt orders of the steepest
descent method, which is an expansion in powers of 1/s
(and not merely to the lowest order that is usually em-

ployed). In this case the cancellation, if it happens, is
exact to all orders in 1/s.

Clearly, the occurrence of destructive interference de-
pends crucially on the value of s. This could create com-

plications in the analysis of the tunneling behavior of,
for example, a small ferromagnetic particle with eBective
spin ns (as has been considered in [1(c)]),where n is the
number of spins in the particle, since the effective spin is

then n dependent.
Turning on an external magnetic field can in general

affect the occurrence of destructive interference by chang-

ing the initial conditions (i.e. , ~i) and [f)) and the area

At& enclosed between different tunneling paths, and by
destroying the symmetry that ensures that the absolute
values of the amplitudes for all tunneling paths are the
same.

We now present two examples where destructive inter-
ference does occur.

Pamittonian ujith rn fotd symm-etry axis: Consider a
single spin s. Suppose that the Hamiltonian has an easy
axis (say the z axis, 8 = 0), around which it has m-fold

rotational symmetry: 'R(P, 8):—R(/+ 2'm /m, 8) for all P.
Suppose that [i) = ~8 = 0) and

~ f) = ]8 = n) correspond
to the two degenerate classical ground-state configura-
tions. Clearly, if A(0) = ($(0), 8(0)) is a tunneling path
from ~i) to ~f), so arethe paths 0(') = (P(0)+2vrt/m, 8( )),
for l = 0, . . . , m —1 (see Fig. 1). By symmetry, all Re[8(5')]

are equal to each other, as are all JV' . Furthermore,(t)

(Sp —8(I'))/h = isA0( = —is4~t/m, —

because the area on the unit sphere enclosed between the
real parts of any two neighboring paths is, by symmetry,
necessarily equal to 4vr/m. The total amplitude is thus:

m —1

~ (0) —8$ ~ & i4wls/m p ~ (0) —SP~/Se +& e 2s,km ~
L=Q

where the 6 function is nonzero only if 2s is an integer
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FIG. 1. Three equivalent tunneling paths for a Hamilto-
nian with threefold rotation symmetry on a "wrapped-open"
unit sphere.

FIG. 2. An ABABAB hexagon of spins (on the left) in a
coplanar ground-state configuration.

multiple of m.
A realization of the above scenario, with m = 3, is

afforded by a Hamiltonian with the symmetry of a trig-
onal prism, i.e., threefold rotational symmetry around
the z axis and reflection symmetry in the x-y plane. An
explicit example would be

'H = Jicos3$ sin 8 + Jz sin 8, (10)

with 0 & Jl & Jq. The unit vectors z and —z define the
two classical ground-state configurations.

Spin tunneling in the kagome lattice: Our second ex-

ample concerns spin tunneling events in a 2D quan-
tum Heisenberg nearest-neighbor antiferromagnet on a
kagome lattice (Fig. 2) [4]. The Hamiltonian is taken to
be

R = s'J) n,'n,
(& i)

(J &0),

where sn, = ($,, 8, [s,[$,, 8, ) is the "classical" spiri [see
Fig. 3(a)]. Any configuration in which the spins on each

triangle minimize their energy by assuming a coplanar
configuration, with relative angles of 120' [see Fig. 3(b)],
is a classical ground state. Therefore there are macro-

scopically many degenerate classical ground states. Gen-

erally, both quantum and thermal fluctuations are ex-

pected to lift some of the degeneracies, thereby induc-

ing magnetic ordering by selecting particular configura-
tions ("order from disorder" ). For example, spin wave ex-

pansions about various ground-state configurations have

shown that maximally coplanar configurations, in which

all spins in the lattice lie in the same plane (let this "ref-
erence plane" define P = 0 and P = vr), have lower zero-

point energies than any other configurations [4(b),(d)].
On the other hand, tunneling between diferent degen-

erate ground-state configurations competes with "order
from disorder" selection eKects, because it tends to drive
the system into a superposition of degenerate states,
rather than selecting a particular one. As the simplest
example of a tunneling event on the kagome lattice, we

consider the so-called "weather vane mode" (see Fig. 2):
the six spins of an ABABAB hexagon in one maximally

(a) (b)

FIG. 3. (a) The unit vector n = (P, 9). (b) Type A, B,
and t spins on a triangle of the kagomt'' lattice.

coplanar ground state, [i), rotate synchronously by 180'
around the z axis (defined by the C spins), to end up
as a BABABA hexagon in another maximally copla-
nar ground state, [f), while all other spins remain fixed.
Because of the above-mentioned spin wave selection ef-

fects, there is a "coplanarity barrier, " say Jb f(p), to this
type of motion; the barrier shape function f(re) obeys

f(P) = f( P), by—reflection symmetry in the reference
plane.

To study the hexagon tunneling event, we consider the
following Euclidean Lagrangian:

6

8 = ) —ih, sf~ (1 —cos 8~ ) + Jbf(p„)
j=l

6

+s J) n~ n~+i + n~ z+ n~+i z+ z . (12)
j=l

The index j is defined modulo 6, and P, —:s Q i (P~-
p~(0)). We take J && Jb & 0. The sz Jn~ z terms (in-
teraction with C spins) and the phenomenological f(P„)
coplanarity barrier are assumed to be the only ways the
other spins in the lattice, which are assumed to remain
fixed, influence the six spins on the hexagon.

To minimize the cost of the dominant s~ J term, the
hexagon spins are expected to rotate collectively, main-

taining mutual near coplanarity. Indeed, it can be shown

[5] that the hexagon tunneling problem can be mapped
onto a simple model problem, defined by the Lagrangian
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2= —ih6sp(1 —cos 8) + 12s J(cos 8 —
q~ ) + Jb sin2 p,

involving only a single (collective) spin degree of free-
dom with an effective spin of 6s. For present purposes,
however, the following observations suffice (discussed in
detail in [5]): Because of the reflection symmetry about
the reference plane, there are two possible tunneling
paths, to be denoted by (P+, 8+); they differ from each
other only in the direction of the P rotations and satisfy

(~) = P+(—7.), for j = 1, . . . , 6. Reflection symmetry

ensures that Re[So+] = Re[SO ] and JV+ = JV . Along
both tunneling paths, every P+ is purely real. To sat-
isfy 'H = 0 during the tunneling event, each 8s develops
a time-dependent imaginary part (which vanishes in [i)
and

]f)), but Re[cos 8&) maintains the value it has in [i)
and [f), namely, Re[cos 8~] = —2, j = 1, . . . , 6.

Thus, for each of the six spins, the real part of the
tunneling path is a contour of constant Re[cos 8s] = —z,
with Re[/+] (or Re[/ ]) changing from 0 to m (or —z)
for (+) or (—) paths. For each spin, the area enclosed
between the (+) and (—) paths is thus equal to vr, giving
for the six spins a total phase difference of i6vrs between
the amplitudes for a (+) or (—) event. It follows that the
total tunneling amplitude becomes

~+e—so+/h(1 + eisns)

2JV+e ~' ~" if s is integer,
0 if s is half odd integer.

Similarly, consider any larger closed "loop" of alternat-
ing A and B spins within a ground-state configuration. It
can be proven that any such loop contains 4n+ 2 spins (n
is some integer) [5]. Again one can study the tunneling
between two configurations that only differ by Pi ~ Pi+a.
(i.e. , A ~ B) for each spin on the loop. The relevant
phase between (+) and (—) paths will be in (4n + 2)s,
and for half-odd-integer s, destructive interference again
occurs.

The above results have interesting consequences for
the ground state of the kagorne antiferromagnet [5]: In
that subset of parameter space where "order from dis-
order" selection effects and the competing tunneling ef-
fects that favor more disorder are more or less equally
important, one might expect interesting integer versus
half-odd-integer s effects, reminiscent of those found in
1D antiferromagnetic spin chains [2(a)].

Integer versus half-odd-integer s eKects might also
make their appearance in exact diagonalization studies
of finite-size systems with discrete degeneracies, in the
analysis of which spin tunneling methods should be very
useful. The simplest realization of such a discrete de-
generacy is the Jq- J2 square lattice antiferromagnet for
J2 ) Jq/2, which shows a discrete degeneracy between
antiferromagnetic ordering vectors (1,0) and (0, 1) [6].

The vanishing of tunneling amplitudes obviously im-
plies an exact ground-state degeneracy in the semi-

classical picture. Sometimes, this degeneracy can be
shown to exist for all eigenstates of the system, on a
purely quantum-mechanical level. For example, consider
the following toy model for a quantum spin (indepen-
dently suggested to us by V. Elser): 'H = —S2 —aS2.
Here a (( 1, and S, and S are spin operators. The tun-
neling amplitude between the two classical ground states,
n = kz along the two tunneling paths 8+: 0 —+ vr,

P+ = 0, P = n, is zero for half-odd-integer s (the
phase difference is 2ms). On the other hand, '8 has time-
reversal symmetry and hence all its eigenstates display
a twofold Kramers degeneracy for half-odd-integer s. It
would be interesting to investigate more generally un-

der what circumstances vanishing semiclassical tunneling
amplitudes also imply exact quantum-mechanical degen-
eracies for all eigenstates.

In conclusion, we have shown that the topological
phase factor occurring in spin tunneling amplitudes can
have quite striking effects in simple systems involv-

ing only a few individual spins. If there are several
symmetry-related tunneling paths whose individual tun-
neling amplitudes have the same absolute value, their
topological phases can lead to destructive quantum in-

terference between the paths and a total tunneling am-
plitude that is zero. The conditions under which this
occurs can be interpreted geometrically in terms of the
areas on the unit sphere enclosed between the real parts
of the various tunneling paths. In quantum antiferromag-
nets, interesting integer versus half-odd-integer s effects
can result from the competition between "order from dis-
order" selection and tunneling effects.
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