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ABSTRACT

The precise nature of the quantum spin liquid (QSL) candidate region in
the spin—% triangular lattice Heisenberg antiferromagnet (TLHAF') remains an
open and actively debated question in condensed matter physics. In this thesis,
we investigate static and dynamical properties of the J;—Jo TLHAF model
on a finite YC6-0-36 cylinder, fixing J; = 1 and focusing on three represen-
tative regimes: the 120° Néel ordered phase at J; = 0, the QSL candidate
region at Jy = 0.125, and the stripe ordered phase at Jo = 0.2. Ground states
are obtained using the controlled bond expansion density matrix renormaliza-
tion group (CBE-DMRG) method, and real-frequency spectral functions are
computed via the novel tangent space Krylov (TaSK) method.

Our results reproduce the known features of the ordered phases and provide
evidence of suppressed magnetic order and broadened spectral features at the
point Jy = 0.125, consistent with QSL behavior. In particular, the dynamical
spin structure factor at Jo = 0.125 reveals gapped excitations and a broad con-
tinuum at high energies, suggesting the presence of fractionalized excitations.
However, finite-size effects and numerical limitations prevent a conclusive iden-
tification of the QSL type. In the stripe-ordered phase, sharp spectral features
and roton-like minima at characteristic momenta are recovered. Together, these
findings serve as non-trivial benchmark of the TaSK scheme in ordered regimes,
and demonstrate its ability to probe the dynamical properties of challenging
exotic phases of matter.
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Introduction

Many-body quantum systems exhibit a rich variety of collective phenomena
that continue to inspire both theoretical and experimental research. Among
them, magnetic materials with interacting spins have long served as a central
platform for exploring fundamental questions about quantum correlations and
emergent phases. Understanding how such systems behave — particularly when
the interactions are strong and the geometry of the lattice induces frustration
— is a key challenge in modern condensed matter physics.

Frustrated quantum magnets, in particular, offer fertile ground for discov-
ering unconventional states of matter. One notable example are quantum
spin liquids, e.g Dirac or Kitaev QSLs: highly entangled phases that lack any
form of conventional symmetry-breaking order, even at zero temperature [1].
A paradigmatic setting for studying such phenomena is the triangular lattice
Heisenberg antiferromagnet (TLHAF), where localized spins interact via ex-
change couplings. In this work, we consider the Ji-Jo TLHAF, where J; and
Jy correspond to nearest-neighbor and next-nearest neighbor interactions, re-
spectively.

When only nearest-neighbor interactions are present, the system exhibits
long-range 120° magnetic order in its ground state [2-4]. However, the addi-
tion of next-nearest-neighbor couplings increases geometric frustration and can
destabilize this order [5, 6]. For sufficiently large Jo, the system develops a
collinear stripe phase. Yet, it is the intermediate regime that has drawn the
most attention: numerous studies suggest that this region hosts a quantum spin
liquid phase — a focus of intense ongoing research, where the precise nature of
the ground state remains under active debate [6-8].

Understanding the ground state and excitation spectrum of such frustrated
spin systems is not only of fundamental theoretical interest but is also mo-
tivated by experimental realizations in a growing number of two-dimesional
materials [9-13]. However, studying these systems numerically remains a ma-
jor challenge due to the exponential growth of the Hilbert space with system
size. This exponential growth limits exact diagonalization studies to very small
system sizes [14]. Quantum Monte Carlo methods which are capable of deliv-
ering numerically exact results, show extremely slow convergence in frustrated
systems due to the infamous sign problem [15].

In this context, tensor network approaches — such as matrix product states
(MPS), the density matrix renormalization group (DMRG), and related methods
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— have enabled significant progress, particularly in determining ground state
properties. Methods of obtaining dynamical quantities, such as the spectral
function, are subject of current research.

One such development is the tangent space Krylov (TaSK) method, intro-
duced by Kovalska et al [16]. This method offers a promising and computation-
ally efficient approach for computing real-frequency spectral functions based on
DMRG ground states. By constructing a Krylov subspace within the tangent
space of the MPS manifold, TaSK enables direct access to spectral information
without relying on analytic continuation, making it especially well-suited for
computing dynamical properties in strongly correlated systems.

This thesis aims to combine both directions by applying the novel TaSK
method to the triangular lattice Heisenberg antiferromagnet. Our goal is to
characterize the proposed spin-liquid phase and to assess the performance of
this emerging tensor network technique. In particular, we compare our results
to the recent study of Drescher et al. [17], aiming to refine our understanding
of the intermediate part of the phase diagram, and ultimately to contribute to
the broader, ongoing effort to elucidate the nature of the quantum spin liquid
phase.
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Method

1.1 Tensor Networks - formalism

In this chapter, we introduce the tensor networks (TN) formalism as a pow-
erful computational framework for quantum many-body systems simulation.
Starting from the exponential complexity of many-body Hilbert spaces, we
motivate the need for approximate representations of the wavefunctions like
matrix product states (MPS), which allow to efficiently capture physical states.
We present the structure and construction of MPS and matrix product oper-
ators (MPO), and describe the projector formalism used to define variational
subspaces. These elements set the basis for the application of the density ma-
trix renormalization group (DMRG) algorithm, used to obtain ground states
variationally. Lastly, the tangent space krylov (TaSK) method is introduced,
which is used for computing real-frequency spectral functions within the MPS
tangent space.

Motivation

In condensed matter physics, it is common to consider quantum many-body
systems on a lattice. They play a key role in our understanding of material
properties at the microscopic level. In these systems, each vertex of the lattice
hosts a local quantum degree of freedom, which may be fermionic, bosonic, or
spin-like, depending on the model. These degrees of freedom are coupled by a
Hamiltonian, commonly expressed in the second quantization formalism as:

N
H=> h (1.1)
i=1

where N is the total number of sites, }ALZ ;j is a local observable centered at site 1,
and j is the set of sites with which the site ¢ interacts. A system described by
H lives in an exponentially large Hilbert space H of dimension d~, where d is
the number of local basis states. For example, a chain of N spin-1/2 particles
has a Hilbert space of dimension 2. To represent an arbitrary quantum state
[) in H, one must find its decomposition in the orthonormal single-particle
basis {|o1),...,|on)} as:
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d d
‘w> _ Z . Z wa’l,...,UN |O'1> R ® |0'N> = |o'> wcr. (12)

0'1:1 O'N:1

Such representation requires a specification of the tensor 1, which cor-
responds to storing d complex values in memory. This implies that linear
operations of interest, such as exact diagonalization (ED), involve d¥ x d
matrices. In practice, this is not as simple as it seems: ED is only computa-
tionally feasible for a limited size of the Hilbert space, with state-of-the-art
computations performed for at most N = 40 sites for spin systems [18].

A natural question arises: how can many-body systems (N =~ 10%3) be
efficiently simulated? Here, one needs to accept the need for approximate
solutions to get to larger systems. One way is to truncate the Hilbert space
to a smaller subspace of dimension d < d~ and to approximate [1) on that
smaller subspace. One can approximate 171~ to a product of matrices M/’
of dimension D; x D,, for a fixed o;, allowing us to rewrite Equation (1.2) as:

Y7 = [M]"" o, [Ma]*17% o [M5]%27° oy .. [My]*N 17N

1

- , (1.3)

which is the so-called matriz product state (MPS) representation. Diagrammat-
ically, M;" is a generic three-legged tensor depicted as a circle with three legs
(indices), where the direction of the arrows indicates their covariant (incoming)
and contravariant (outgoing) nature. In the diagram (1.3), the bonds denoted

by o = {01,09,...,0Nn} correspond to the physical bonds and have dimension
d. The connected bonds, referred to as virtual bonds, are labelled by the indices
a = {aj,as,...,an} and characterized by their bond dimension D;. These

virtual bonds encode the entanglement structure of the state. The outermost
bonds, are the dummy bonds, which have dimensions Dy = Dy = 1.

For simplicity, let us now assume a uniform bond dimension D; = D across
all bulk sites. Under this assumption, the numerical cost of representing an
MPS scales as O(N D?d), since each tensor [M;]%i-1% , is of size D x d x D.
This is exponentially more efficient than storing a generic quantum state in the
full Hilbert space, which would require O(d”) parameters.

The MPS representation is well-suited for ground and thermal equilibrium
states of systems that satisfy the area law [19]. For local Hamiltonians of the
form (1.1), the entanglement entropy of a state |1)) between a subset of local
degrees of freedom A and its complement B is defined as:

Sam) = —Tr [pap) 108 pan)] = — Y walogy wa, (1.4)

with w, being the eigenvalues of the reduced density matrix of A(B) obtained
by tracing out the degrees of freedom of its complementary part from the
density matrix: p45) = Tras)p- For gapped systems, this entropy scales with
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the boundary between the two regions: S4p) ~ 0A. This behavior is known
as the area law [20, 21]. Specifically, the entropy is constant for 1D [20], grows
linearly in respect to the system size N in 2D and quadratically for 3D.

0A

0A
A B

Figure 1.1: Graphical representation of the area law.

This scaling of the entanglement entropy has important consequences for
the bounds on the bond dimension D needed to successfully encode the entan-
glement in the system. One can show that the entropy (1.4) is maximal when
wq = 1/D for all a, resulting in

D
1. 1
S<-> Hlogy 75 =1log, D, (1.5)
a=1

from which we obtain that

25 < D. (1.6)

From this, it follows that for 1D systems, the bond dimension D used to
represent the state though an MPS, is independent of the system’s size, as its
entanglement entropy remains constant. This property allows for the efficient
encoding of the ground state entanglement using limited numerical resources
and forms the basis for many MPS-based methods, such as density matriz
renormalization group (DMRG), which will be introduced later in this chapter.

In contrast, for 2D and 3D systems the entanglement entropy increases with
system size, resulting in an exponentially growing bond dimension when using
an MPS. Consequently, more advanced approaches or modifications to the TN
structure are needed to keep the numerical cost manageable.

Matrix Product State basics

It is possible to obtain an MPS representation of any general tensor of arbitrary
rank through sequences of matrix factorizations such as the QR decomposition
or the singular value decomposition (SVD). During these factorizations, a
truncation is typically performed by discarding all singular values corresponding
to dimensions exceeding the desired bond dimension D.

A useful property of the MPS representation is its gauge freedom: any MPS
can be written in infinitely many ways without changing the physical state it
represents. This allows to transform the MPS wavefunction into four different
canonical forms which are particularly advantageous for numerical algorithms.
Such forms are presented in figure 1.2. In the left(right)-canonical form, all
MPS tensors are left(right) isometries, defined as shown in figure 1.3. The site-
canonical form is left-normalized to the left side of ¢, right-normalized to its
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right side, and has an orthogonality center at a reference site ¢. Lastly, the bond-
canonical form, has left-normalized tensors from 1 to £ and right-normalized
one from ¢+ 1 to N.

A A A A B B B B
xj\—»i—)—w WW
a) Left-canonical b) Right-canonical
(a) g
A A M B B A A S _B B

X N XX

(c) Site-canonical (d) Bond-canonical

Figure 1.2: Diagrammatic representation for various canonical forms of the
MPS representation.

A/ I3
A= N B =
(a) Left isometry (b) Right isometry

Ata= (T =¢( BBt = “[]=}

(¢) Normalization condi- (d) Normalization condi-
tion of left isometry tion of right isometry

Figure 1.3: Diagrammatic representation of isometry conditions.

The MPS representation also offers powerful contraction schemes. For exam-
ple, the overlap between two MPS states can be computed by contracting all the
physical indices site by site, while successively contracting the corresponding
virtual bonds between neighboring tensors:

(lw) = ML) opan, - 3] g V] 541 [M]'70 0, [Ma] ™72 gy - [My]*NN

Ml ]\/IZ ]\/13 o ]\/f‘\
Q, Qy Qv
— 0'2 O'3 U;\
= o, Lo o (1.7)
M, M, M, M

The calculation of such an object becomes treatable by arranging summa-
tions in a way that minimizes the number of ’open legs’:
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This contraction pattern is often referred to as ’closing the zipper’. It can
be performed from right to left and from left to right sides of the chain and has
a total cost of O(D3dN).

Matrix Product Operator representation

Analogously to the MPS representation, a similar procedure can be used to
represent any operator, for example a Hamiltonian H = |6/) H? , (o], as a
product of tensors by applying a sequence of QR decompositions:

’

N
ﬁ = [VVl]lg1 o1V [WQ}VIU% 212 [WN]VNilgxf onl = ‘0-,> [H WZ]U o <O’|
=1

(1.9)

This operator is referred to as matrix product operator (MPO), where the four-
legged tensors W, have elements [Wy]?¢%¢,, .,,, and the virtual bond indices
vy have dimension w.

The contraction of an MPO with an MPS yields a new MPS, just as applying
a Hamiltonian to a quantum state results in a new state. However, the resulting
tensors have a higher bond dimension of D’ = Dw > D. In practice, it will
always be followed by an SVD-based truncation scheme in order to bring
the bond dimension down to D. A similar bond dimension increase occurs
when contracting two MPOs, which likewise requires truncation to mantain
computational efficiency.

Analogous to the computation of overlaps in eq. (1.7), expected values of
operators can be computed in a similar manner as in eq. (1.8). The tensor
network representing (| H |1) allows for many different contraction patterns.
The most optimal pattern is shown below, with a computational cost of order
O(D3dw + D*d?w?).
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M

1 M2 Ali __ ]\/[N
(| H|p) = % W‘Z% W‘% %% % W‘"E (1.10)
M, A, ar, A,

It is important to note that for fully local operators, the evaluation of
expectation values, as given in eq. (1.10), becomes particularly efficient when
the MPS is brought into its canonical form.

Projector Formalism

The projector formalism provides a systematic framework for describing and
manipulating local variations of MPS within well-defined subspaces of the full
Hilbert space. These projectors play a central role in a variety of tensor net-
work algorithms, where updates are often restricted to low-dimensional tangent
or variation spaces in order to ensure numerical stability and computational
efficiency.

As previously discussed, when the MPS is brought into a canonical form,
its tensors become isometric. Such tensors span what is known as the kept
(k) subspace, which contains the most relevant components and the building
blocks of [¢). On the other side, the discarded (D) subspace is its orthogonal
complement and captures directions along which [¢)) may vary, for example,
during a time evolution update. Consequently, the full Hilbert space has a
nested structure:

VEevEevEc...cV¥s=vV. (1.11)

V™ denotes the subspace containing all n-site variations of |¢), with V% a
one-dimensional space spanned by 1) [22]. A notable example is V'*, which
is the so-called tangent space of |1)) and consists of all one-site variations of the
state |¢), endowed with a vector space structure.

Given an MPS in the site-canonical form (see figure 1.2 (c)), it is possible
to define the set of left K states |1/1£{>, composed of the 1 to £ tensors and the
set of the right kept states, composed of the tensors for sites 7 to N, |¢£—,(a,>
by using the A and B isometries shown in figure 1.3 (a) and (b) respectively.
The K and D spaces form unitary maps to their parent space through A; @ Ag
and B; @ Bg, where f_lg and Bg denote the p isometries. This definition allows
to define the following relations expressing orthonormality and completeness of
the spaces:

At A. _ 1D TA. n.npt _ 7D Rt —
AlA;=1P, Ald;=0, BBl =1I; B; B! =0, (1.12)

which diagrammatically corresponds to:

(I=0 I=0 LJ=] KJ=0 awm
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where the gray triangles denote the complements Ag and B[,. In addition,
one can define:

ApAL+ ;AL =1P, BLB; + Bl B; =17 (1.14)

diagrammatically

; (1.15)

C% + C,% = |=, (1.16)

respectively. P denotes parent space. These objects will serve as building blocks
for various expressions throughout the rest of this chapter.

One can construct a one-site projector with the tangent space of the ground
state as its image using K isometries:

Pls

I
M=

N—-1
P = > PP
=1 =1
—1

£=1 ¢+l

I
WE

o~
I
—

Similarly, to project onto the space of 2 variations, V2%, one can construct
the projector:

N-1 N-1
2s 2s 1s
PE =) Pir=) P
(=1 =2
N-1 N-1
_ _ (1.18)
=1 0 0+1 £=2

From which the definitions of the one-site P! and two-site P2 local projectors
follow. These objects can be rewritten in several ways by using the expressions
previously derived in egs. (1.12)- (1.16).

1.2 Density Matrix Renormalization Group

The Deunsity Matrix Renormalization Group (DMRG), introduced by Steve
White in 1992 [23, 24|, was originally developed to solve general quantum
chain models. It has since become the standard algorithm for finding ground
state solutions within the MPS ansatz. Its formulation in terms of MPS,
however, was only established later in 1995 by S. Ostlund and S. Rommer
in the thermodynamic limit N — oo [25], and subsequently formalized and
expanded upon [26-28], as reviewed by U. Schollwock in 2005 [29)].
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In its variational formulation, known as single-site (1s) DMRG, the algo-
rithm aims to find the optimal MPS of fixed bond dimension D that minimizes
the energy functional

5o W) (1.19)

(¥[)

within the variational manifold of MPS of the given bond dimension D. This
minimization is formulated by introducing a Lagrange multiplier A\ and extrem-
izing the corresponding Lagrangian:

(I H ) = A (@), (1.20)
graphically,
3 ~

The main idea of DMRG is to perform this optimization iteratively, updating
one tensor at a time. With [¢) in site-canonical form, having a fixed site ¢,
with all other tensors being held constant, the update condition becomes:

0

o] W) = A@lw) | =0 with (wlp)=1,  (1.22)

graphically,

< G, C,
W = X\ = X\ . (1.23)

This leads to an eigenvalue problem for the tensor Cy that can be solved with
linear algebra tools, e.g. the Lanczos algorithm [30].

To maximize efficiency, it is important that the MPS is maintained in a
site-canonical form with the orthogonality center at the site £. In eq. (1.20) the
energy of v is lowered by projecting the hamiltonian H into a local variational
space associated with the site £. The eigenvector with lowest eigenvalue - which
corresponds to the best estimate of the ground-state energy - is used to update
the MPS. This is followed by an SVD, which shifts the orthogonality center to
the site £+ 1, which will be the next tensor for optimization. Each optimization
step is referred to as a single-site (1s) update and has a computational cost of
order O(D3dw). To achieve global minimization of the energy E, this procedure
is applied iteratively across the chain, sweeping the MPS |¢) from left to right
and then from right to left. These sweeps are repeated until the change in
energy between successive iterations is below some predefined convergence
threshold. An alternative approach is the two-site (2s) DMRG algorithm, in
which the energy minimization is performed over two neighboring MPS tensors
simultaneously. This enlarges the local variational space allowing for dynamic
adjustment of the bond dimension during the optimization. Note that since
DMRG scales with order O(D?) it is useful to start the computations with low
D and gradually increase it while sweeping.
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Controlled Bond Expansion

When symmetries are present, the ground-state search must allow for the
possibility of expanding the virtual bond spaces, which encode symmetry-related
information, whenever such expansion leads to a lower energy. Single-site
(1s) DMRG algorithms can often become trapped in metastable states due to
their fixed bond dimension. In contrast, two-site (2s) DMRG allows for bond
dimension growth, avoiding such traps. However, this flexibility comes at a
significantly higher computational cost, i.e. O(D3*d® + D3d*w).

To address this, Gleis et al. [31] introduced the Controlled Bond Expan-
sion (CBE) algorithm that combines the efficiency of single-site DMRG, with
the flexibility of bond-expansion growth. This approach allows the MPS to
escape local minima and achieve better convergence to the ground state, while
mantaining 1s computational costs.

In 2s DMRG, the MPS is brought into a bond-canonical form and the H is

expressed as:

The optimization procedure closely resembles that of 1s DMRG but operates in
a larger effective Hilbert space that includes variations in the discarded sectors.

The key insight in CBE is to identify the components of the two-site or-
thogonal space that carry significant weight in the energy reduction. These
components are denoted as the the ’relevant’ discarded space, denoted rpp.
They can be found via a projector that can be constructed at one-site costs
through a truncation scheme termed 'shrewd selection’ [31].

To facilitate robust convergence, in this thesis we employ the CBE algorithm
in combination with a mixing parameter « [32] (for more details, see S.3 of the
reference [31]). The use of the latter in the context of (2s) DMRG schemes is
well-established [33]. By introducing noise into the wavefunction, the mixing
term enables the system to escape metastable minima. Including it during the
first few DMRG sweeps, in conjunction with the CBE algorithm, has been shown
to be the optimal strategy [31, 34] when simulating particularly challenging
models, such as those exhibiting quantum spin behavior.

1.3 Tangent space Krylov (TaSK) scheme

Introduced by O. Kovalska et. al. [16], the tangent space Krylov (TaSK) method
provides an accurate and computationally efficient approach for calculating real-
frequency spectral functions based on ground states obtained via DMRG. The
spectral function is defined as:

1 A 1 A
S(k,w) = —— Im (1h| O ) . 1.26
() = = T (] O O i) (1.26)
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Where the operator Ok typically adds or removes a particle with momentum k.
In the context of this thesis, it corresponds to a spin operator in momentum
space:

~ ~ 1 ) ~
Ox = Sk = 7% > ek, (1.27)
j

H|Y)

v /
111’5 1s’$'§
T
(a) (b)

Figure 1.4: (a) Ilustration of a tangent space spanned by vectors tangent
to curves within a smooth geometric structure (b) The MPS manifold Myps,
embedded in the full Hilbert space V of dimension d"V; V'* indicates the tangent
space of single-site variations within this manifold.

The core idea behind TaSK is to confine the computations to the tangent
space of the ground state MPS |1)g). To initiate the method, one applies the
momentum-space operator Oy to the ground state. The resulting state, i),
belongs to the tangent space V!* of |1)) since Ok is a linear combination of
local operators, acting on a single site.

A al T
1) = Ok [tho) = Y N 7 v 7 (1.28)
=1 Y

Where T = _?_ are rank-3 tensors contracted with the Schmidt states of |¢g),

with TV :_?_ and T =Y ~ for £ < N. This is known as a quasiparti-
cle ansatz [35-40]. To compute the spectral function, we construct a Krylov
subspace starting from the initial tangent space vector |i) using a standard
Lanczos algorithm [30]:

K1) = spanf{|gp) , H' [oh1) ..., (H™)Ner [gr) ). (1.29)

Here, the effective Hamiltonian, H'® = P HP1S  corresponds to the projection
of H (expressed as an MPO) into the subspace V15, This is crucial, since the
above scheme is only stable due to the inherent vector space structure of
V!5, The result is an M, + 1 dimensional Krylov space, on which H' has a
tridiagonal form that allows for efficient diagonalization, enabling the resolution
of the excitations needed to evaluate S(k,w).
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An error measure can be computed to estimate the error coming from the
projection of the Hamiltonian into the subspace V's. This error arises from
the implicit assumption that the elementary extitations of H can be fully
resolved within this subspace. By considering a two-site projector (1.18), one
can compute a 2s contribution to the energy variance, providing a measure
of the magnitude of the neglected component of the state within the two-site

variational space V2 as AZL = H’P2J‘HT/J||2, with the P2+ projector defined as:

N-1
p2L _ p2s _ pls _ Z %%, %:%E% ) (1.30)
=1 VAR

This error depends on the quality of the ground-state approximation and will
systematically decrease with increasing bond dimension D of the respective
ground state MPS.






CHAPTER 2

Theoretical Background

2.1 J;—J; Triangular Lattice Antiferromagnetic
Heisenberg Model

AVAVAV
NS SL e

0 0.05 0.1 0.125 0.15 0.2 2/

Figure 2.1: A schematic phase diagram of the J;-J5 triangular-lattice Heisen-
berg antiferromagnetic model as a function of the next-nearest-neighbor cou-
pling Jo. The diagram illustrates the evolution from the 120° Néel-ordered
phase at Jy = 0, through the intermediate spin-liquid candidate region, and
into the stripe-ordered phase at larger Js.

The Heisenberg model is one of the most fundamental and widely studied
models in quantum magnetism. In its simplest form, it describes localized
spins interacting via an exchange coupling, typically denoted by Ji, between
nearest-neighbors (NN) in a lattice. For the antiferromagnetic (AFM) case
(J1 > 0) on a triangular lattice, the ground state has been established to have a
120° Néel order phase [41-43]. Despite its apparent simplicity, the geometry of
the triangular lattice provides a clean platform for the emergence of a quantum
spin liquid (QSL) when further interactions are introduced.

By including a next-nearest neighbor (NNN) exchange coupling Jo, frustra-
tion in the spin system is increased (see figure 2.2), which can destabilize the
Néel order and open a window for quantum spin liquid behavior.
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Figure 2.2: Schematic representation of geometric frustration in the triangular
lattice. Antiferromagnetic interactions on the edges of a triangle lead to com-
peting constraints, preventing all spin pairs from simultaneously minimizing
their interaction energy.

The resulting Hamiltonian reads:

ﬁZlegi-gj+JQZ§i~gj (2.1)
(i,5) (D)

where S; is a spin-1/2 operator acting on site i, and (i,5) and ((i, ) denote
NN and NNN pairs on the triangular lattice, respectively. The frustrated
interaction plays a crucial role in the suppression of magnetic order and the
possible stabilization of QSL phases [44]. In the classical limit, this model
exhibits a zero-temperature phase transition at j—f =1/8 [3, 6, 45] between the
120° Néel order and a four-sublattice ordered phase with a residual degeneracy.
Many numerical studies have been performed for the quantum model, hinting
at the presence of a QSL phase in the region around the classical transition point
followed by a collinear stripe-ordered phase for larger J, values. The boundaries
of the QSL phase have been investigated using a variety of computational and
analytical methods, yielding a range of estimates. For instance, Variational
Monte Carlo (VMC) calculations suggest a QSL region within 0.08 < J5/J; <
0.16 [6], DMRG numerics [7] set the range 0.07 < J;/Jo < 0.15 while series
expansion methods [46] suggest 0.06 < J1/J2 < 0.17 or the values 0.072 <
J1/J2 < 0.18 through random phase approximation [45]. The precise nature
of this QSL phase remains under active debate [6-8, 47-50], with the most
popular candidates being a gapped Zs or a gapless U(1) Dirac spin liquid.

2.2 Candidate Spin Liquid Phases

What is a quantum spin liquid (QSL)? The term originated from Anderson’s
seminal 1973 paper, where he proposed that the ground state of a frustrated
antiferromagnet could be a quantum disordered state — what he called a
resonating valence bond (RVB) state [51]. Since then, spin liquids have become
a central topic in condensed matter physics, bridging magnetism, quantum
topology and quantum information science.

The definition of a QSL has evolved over the decades as our understanding
of strongly correlated systems has deepened. Within the modern framework, a
QSL is defined to be an exotic phase of matter that lacks any form of magnetic
order even at zero temperature, despite strong spin-spin correlations [1, 44, 52].

While classical spin liquids arise from extensive ground-state degeneracy
and geometric frustration, their quantum counterparts emerge through strong
quantum fluctuations — often in low-dimensional, frustrated magnetic systems.
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Quantum spin liquids (QSLs) are characterized by long-range entanglement and
the absence of conventional symmetry breaking. Unlike magnetically ordered
phases, they exhibit non-local correlations, and their classification frequently
involves emergent internal gauge structures such as SU(2), U(1), or Zs. These
gauge fields can give rise to topological order and are often associated with the
presence of fractionalized excitations, such as spinons.

Such characteristics can be used to classify different kinds of QSLs. While
this classification remains an active area of research, QSLs are often distin-
guished according to several features: the nature of the emergent gauge field
(e.g. SU(2), U(1) or Zs), the excitation spectrum (gapped or gapless), the
presence or absence of topological order, and symmetry properties such time-
reversal or lattice symmetries [1, 44, 52, 53].

These categories are not mutually exclusive and often overlap. For example,
a Dirac SL is typically gapless, exhibiting algebraically decaying correlations
and an emergent U(1) gauge structure [53]. On the other side, a Zy SL is
typically gapped, topologically ordered, and features fractionalized excitations
such as spinons [1]. The latter arise from the system’s highly entangled ground
state and can be indirectly observed thorugh inelastic neutron scattering (INS)
experiments [54] (which probe the dynamic spin structure factor of the system)
on which they appear as a broad continuum of excitations. In contrast, con-
ventional magnets support magnons, spin-1 quasiparticles that correspond to
collective spin-wave excitations of an ordered state [55], which appear as sharp
dispersive modes.

Experimental Landscape

Since Anderson’s proposal of the RVB state in 1973 [51], the search of experimen-
tal realizations of spin liquids has remained a central challenge in condensed
matter physics [44]. A major breakthrough came in 2003, when an organic
Mott insulator, kK — (BEDT — TTF),Cus(CN)s, with quasi-triangular lattice,
was found to exhibit no magnetic order even at tens of mK - a temperature far
below the energy scale of the exchange interactions [9]. This discovery renewed
the interest in triangular-lattice systems as promising QSL candidates and also
broadened the exploration of other frustrated geometries such as kagome and
hyperkagome lattices [10].

Recent progress has been made using inorganic rare-earth-based triangular-
lattice compounds, which offer cleaner platforms with large spin-orbit cou-
pling and strong quantum fluctuations [11]. Amongst them, the NaYbChy
(Ch = 0,85, Se) family has emerged as a leading QSL candidate.

In particular, Scheie et. al. [56], performed neutron scattering experiments
on NaYbSes, and observed a broad continuum of excitations, constistent with
spin fractionalization. No static magnetic order was detected down to 100 mK
and AC susceptibility measurements revealed a spin gap of approximately
2.1 peV. These results rule out gapless U(1) Dirac QSLs and suggest a gapped
Zs spin liquid ground state. This interpretation is supported by magnetic
dilution experiments performed by Zhang et. al [13] , who extracted anisotropic
exchange parameters in NaYbg g2Lug.ggSes. Their results are consistent with
an easy-plane XXZ Hamiltonian, which is known to stabilize Zs spin liquids in
frustrated triangular-lattice systems.
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Other materials have shown similar behavior. In YbMgGaOy, Li, et. al. [10]
found evidence for spin-liquid-like dynamics extending beyond NN. However,
the role of structural disorder remains a concern. It is still under debate whether
the fractionalized excitations are truly generic for all triangular magnets or
whether structural disorder plays any important role [10].

Although inorganic compounds offer structurally clean platforms for study-
ing QSLs, organic materials have also played a significant role in the develop-
ment of the field. One example is 8’ —EtMe3Sb[Pd(dmit)s]s, a triangular-lattice
material that has attracted attention for exhibiting a linear specific heat even
though being an insulator. This was initially interpreted as evidence for a
gapless SL. However, recent electron spin ressonance (ESR) amd muon spin
relaxation (uSR) experiments revealed its behavior is dominated by quasi-1D
dynamics, rather than the expected 2D characteristics [12]. These findings
highlight the importance of using advanced spectroscopic techniques to resolve
the true nature of candidate QSLs. The authors also emphasize the relevance
of this search for potential applications in quantum computing and spintronic
technologies.

Overall, recent advances highlight both the potential and difficulty of identi-
fying QSLs. While materials like NaYbSe, show strong evidence for spin-liquid
behavior, challenges such as disorder and hidden dimensionality persist. Con-
tinued progress will rely on high-quality materials and complementary experi-
mental techniques.



CHAPTER 3

Results

This chapter presents the main results of our study and discusses the physical
insights that emerge from them. We begin by introducing the physical systems
investigated, the key parameters considered, and other relevant methodological
aspects necessary for interpreting the results.

We then present the principal observables used to characterize the different
ground state behaviors: the equal-time spin structure factor, the spin-spin
correlation functions, and, most importantly, the spectral functions obtained
via the TaSK algorithm. Each observable is introduced with a brief discussion
of its physical significance.

The chapter is structured to follow a logical progression from setup to in-
terpretation. After outlining the systems and observables, we present the core
numerical results, with a focus on representative values of the interaction pa-
rameter Jo (see chapter (2)). Special attention is given to identifying signatures
of quantum spin liquid behavior, with the goal of contributing new insights
into this widely studied and debated phase in the triangular-lattice Heisenberg
antiferromagnet.

3.1 Preliminary considerations

To systematically explore the evolution of the ground state along the three
distinct regimes of the THLAF (see chapter (2)), we proceed by analyzing the
observables at three key values of J,. We begin with the unfrustrated case
Jo = 0, which serves as a reference point and allows us to verify that our
approach reproduces known features of the conventional 120° Néel order. We
then turn to Jo = 0.125, which lies in the quantum spin liquid candidate regime,
and is of particular interest for detecting possible signatures of spin liquid
behavior. Concretely, the point Jo = 0.125 corresponds to the classical phase
transition point and lies deep within the candidate quantum spin liquid region,
predicted by various methods such as DMRG, VMC or series expansion [6, 7,
45, 46]. Finally, for completeness, we include results at Jo = 0.2, corresponding
to a more strongly frustrated regime, to observe whether the trends identified
at intermediate frustration persist or evolve further.

Before performing numerical simulations, a specific choice of lattice geometry
and boundary conditions must be made, as they directly influence finite-size
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effects and our ability to capture relevant physical properties in two-dimensional
systems.

Cylindrical wrapping

The DMRG algorithm is highly efficient when applied to one-dimensional sys-
tems (see section (1.2)). To extend its use to two-dimensional models, a common
approach involves mapping the 2D lattice onto a one-dimensional chain. This
is typically achieved by defining a snake-like path that traverses all lattice
sites, reordering them into a linear sequence. A key consequence of this map-
ping is that short-range interactions in the original two-dimensional geometry
may become long-range along the one-dimensional path, thereby increasing the
complexity of the Hamiltonian representation.

In our study, we consider a cylindrical geometry, introducing periodic bound-
ary conditions (PBC) along the circumference and open boundary conditions
(OBC) along the cylinder’s length. This setup provides a good approximation of
a two-dimensional system, as it removes edge effects along the periodic direction
while remaining computationally manageable with DMRG.

As discussed in section (1.1), two-dimensional systems obey an area law
for entanglement entropy, where the entropy between two regions scales with
the length of their shared boundary. In the context of a cylinder, this cor-
responds to a cut across the width. Under snake-like mapping, such a cut
typically corresponds to a single MPS bond. As a result, the entanglement
entropy across MPS bonds increases with the cylinder’s width, leading to an
exponential growth in the bond dimension required to accurately represent the
ground state. In contrast, the dependence on the cylinder’s length is much
weaker. Consequently, while DMRG remains efficient for narrow cylinders, the
computational cost grows rapidly with increasing width.

In the following, we present the so-called YC wrapping [8] with three distinct
cylindrical boundary conditions, which effectively correspond to identifying the
site labeled ’x’ with either site ’a’, 'b’, or ’¢’ shown in figure 3.1.

a b ¢ g

Figure 3.1: Triangular lattice structure with the snake-like path shown, illus-
trating the site ordering used for the one-dimensional chain mapping. Sites
labeled x, a, b, and ¢ are used to demonstrate the three distinct wrapping types
discussed in the text. Primitive lattice vectors a; and as are indicated, along
with nearest-neighbor couplings J; and next-nearest-neighbor couplings Js.

To succinctly label these different cylindrical wrapping types, we use the
notation YCL, —u — L,. Here, the index u specifies the boundary condition
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by identifying sites r and r + Lyaz — uay, and L, and L, correspond to the
number of spins along the circumference and length of the cylinder, respectively.
The vectors a; and ap are the primitive vectors of the Bravais lattice and r
denotes the position of a lattice site. In our case, we will consider the cases
with YCL,~0-L,, YCL,~1-L,, and YCL,~2-L, which correspond to 'a — ’,
b — x’, and 'c — z’ wrapping types respectively in figure 3.1.

Once the appropriate geometry is chosen, a snake-like path is defined to
map the two-dimensional lattice onto a one-dimensional chain, as illustrated
in figure 3.1. Careful consideration must be given to both the geometry and
the path, as each introduces approximations—especially in systems where the
geometry significantly influences the physical behavior. In particular, the choice
of mapping strongly affects the number and range of effective couplings in the
one-dimensional representation. An ill-chosen path can lead to many artificially
long-range interactions, which increase the computational cost without intro-
ducing any new information. Minimizing such couplings is therefore essential
for both numerical efficiency and physical accuracy.

In this thesis, we focus our work on the YCL,-0-L, geometry, with L, =6
and L, = 36 respectively. All results refer to this wrapping convention.

Consequences of the cylinder choice

The choice of cylindrical geometry does not only impact entanglement and
finite-size effects; it also determines the set of momentum modes accessible to
the system. Since DMRG simulations are performed on finite cylinders with
periodic boundary conditions in one direction, the translational symmetry is
preserved only partially. As a result, momentum is no longer a good quantum
number in general, but discrete momentum components can still be defined
along the periodic direction.

This restriction plays an important role when computing observables such
as the equal-time structure factors, spectral functions or identifying ordering
patterns in momentum space. In particular, it limits the ability of the system
to capture certain key features of the full two-dimensional Brillouin zone. The
specific set of allowed momenta depends directly on the wrapping of the cylinder
and the corresponding identification of lattice sites.

To formalize this, we turn to Bloch’s theorem [57], which states that impos-
ing periodic boundary conditions constrains the wavefunction to be invariant
under discrete lattice translations. In our case, the periodic identification
implies:

b(r) = ¢(r + Lyaz —nai)
= eik-r — eik(r—‘—Lyag—nal) — eik-r . eik~(Lya2—na1). (31)

The momentum vector is expressed in terms of the reciprocal lattice basis
as k = k1by + kobs where by and bg are the reciprocal lattice vectors corre-
sponding to the real-space primitive vectors a; and ag of the triangular lattice
(see figure 3.1). The reciprocal vectors are given by:

Qaz 9 Qay
=27

b1 =2n—— 2 e
ay - Qaz’ az - Qay

(3.2)
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where a; = [a,0] and az = [a/2,1/3/2]. The lattice constant is set to a = 1
and Q corresponds to the 90° rotation matrix.

Applying the periodicity condition leads to the quantization of momentum
components along the periodic direction:

el (Byaz—nan) — 27 with g = 0,1,2,..., L, — 1. (3.3)

Figure 3.2 illustrates the resulting discrete sets of allowed momenta in the
Brillouin zone for the three cylindrical wrappings used in this work as well as for
an infinite two-dimensional lattice. These wrappings constrain which momenta
are accessible in our simulations and therefore influence the observables we can
extract. For example, if a particular cylinder does not intersect high-symmetry
points such as the K point, key features of the system’s low-energy behavior
may remain hidden. This underlines the importance of a careful choice of
boundary conditions and geometry. An example of a poor choice would be to
take the YCL,~1-L, and YCL,—2-L, geometries to study the K or M points,
see figure 3.2. An interesting feature for the YCL,~2-L, geometry, though,
is that the allowed momenta go through the Dirac points. We present some
results on this geometry in Appendix B. However, we don’t expect to find any
special features in the dynamical structure factor, explained below, at that
point.

(a) (b) (c) (d)

Figure 3.2: Accessible momenta for the triangular lattice on cylindrical geome-
tries. (a) Allowed momenta in the infinite 2D Brillouin zone. (b)—(d) Allowed
momenta for the finite-width cylinders YC6-0-L,, YC6-1-L,, and YC6-2-L,,
respectively. In (b) and (d), the momentum paths along which spectral data is
computed are highlighted. High-symmetry points along these paths are marked
with dots and labeled. The Dirac points, located at +Q = +(7/2,7/(2v/3)),
are shown in purple.

In this work, we adopt the same momentum-space cuts as those used by
Drescher et al. in [17], in order to benchmark the performance of our TaSK
algorithm against established results. Specifically, we focus along three distincth
paths in the Brillouin zone: from A to B, from Y to Y’, and from M’ to M,
passing through the high-symmetry point K, shown in figure 3.2(b). This
choice enables a direct and meaningful comparison of dynamical signatures. In
addition, in Appendix B some results for the YC6-2-36 and the cut shown in
figure 3.2 are presented.

3.2 Physical Observables: Definitions

To characterize the ground state properties of the system across different pa-
rameter regimes, we compute a set of physical observables that probe both
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local and non-local correlations. These observables serve as diagnostic tools to
identify the presence or absence of magnetic order, detect symmetry-breaking
patterns, and reveal signatures of exotic phases such as quantum spin liquids.
In this section, we aim to define the key quantities used throughout the analysis.

Real-Space and Momentum-Space Spin Correlations

As previously discussed, the TLHAF serves a paradigmatic example of a frus-
trated quantum magnet (2). To investigate the nature of the ground state and
the evolution of magnetic ordering across different coupling regimes, we would
like to compute the real-space spin-spin correlation function:

Sij = (Si - S;) (3.4)

where ¢ and j denote sites of the triangular lattice. This observable provides
insight into how spin orientations are correlated — whether they tend to align,
anti-align or fluctuate independently. A negative value on a give bond indicates
antiferromagetic correlations, while a positive value shows ferromagnetic cor-
relations. Such behavior helps distinguish between magnetically ordered and
disordered (e.g., spin liquid) phases. In this work, we will focus on nearest-
neighbor spin-spin correlations.

To gain a complementary perspective, it is instructive to analyze the correla-
tions in momentum space via their Fourier transform.This yields the equal-time
structure factor (ETSF), which encodes how spin correlations are distributed
accross different momentum modes and provides clearer signatures of emerging
magnetic order or the absence thereof. It is defined as:

A

— 1 7ik-(ri7rj) &
x(k) = v Ze (Si-S;), (3.5)
i,

where (k) is the momentum vector in the Brillouin zone, r; denotes the position
of site 4, and NN is the total number of lattice sites. The vector difference (r;—r;)
is taken to be the minimal distance between sites and ¢ and j, accounting for
periodic boundary conditions when applicable.

The equal-time structure factor (k) provides momentum-resolved infor-
mation about spin correlations and is evaluated at the set of discrete allowed
momentum vectors k, which are determined by the specific boundary condi-
tions imposed on the lattice geometry (see 3.1). Through the equal-time struc-
ture factor, one can also compute the order parameter for a given momentum

m?* = x(k)/N.
Spectral Functions

The retarded Green’s function for a spin model describes how a spin excitation
propagates through a system after a perturbation and it is defined as:

Gallow) = =i [ dte ol [$(0). 50 low) (39

0



24 Chapter 3. Results

where the momentum-space spin operators are defined as:

P

Sk —iker; S (3.7)

1
:ﬁ;e

with Sj being the local spin-1/2 operator at site j, k the crystal momentum
and r; the position of site j, and have Hermitian conjugate SL = S_yx. This
operators describe a collective spin fluctuation mode at momentum k, creating
for example, a magnon or a spinon pair. It probes spin correlations in the
reciprocal space, which is what experiments like neutron scattering measure.

At zero temperature, we can express the Green’s function (3.6) through the
Lehmann representation:

_ (10| B) 2 [(olSL18) 12
GR(k’w)’T=0 B zﬁ: w+in— (Ez— Ey) w+in+ (Es— Eo)

(3.8)

where {|8)} is a complete set of eigenstates of the Hamiltonian H with
corresponding eigenenergies Eg. It accounts to the response of the system to
an injected spin excitation. Each term corresponds to the contribution of a
physical spin-excited state |3) to the dynamics. Taking its imaginary part, we
obtain an observable known as dynamical structure factor (DSF):

Sk,w) = —% Im Gr(k,w)| o= Y {|(ﬁgk|¢0>|25(w — (Ep — E))
8

+1(BISLIv0) [ (w + (Bs — Eo))|. (3.9)

By restricting w > 0, i.e. considering only absorption:

S(k,w) = > [(BIG]to)* 6(w — (Eg — Ep)), w>0 (3.10)
B

which quantifies the probability of exciting the system from the ground state
[to) to an eigenstate |3), with an energy transfer w = Eg — Ejy, via a spin fluc-
tuation at momentum k. As such, it provides a direct probe of the nature of
low-energy excitations in the system. In magnetically ordered phases, the dom-
inant excitations are typically gapless magnons, while in quantum disordered
phases such as spin liquids, the excitations may be fractionalized spinons [48].

Spectral functions are obtained in a discrete form from the TaSK method.
For our results, we apply a continued fraction expansion (CFE) to this discrete
data, preserving 2 X Ncpg = 4 spectral moments. A Gaussian broadening with
o = 0.4 is used to obtain smooth spectra.
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Ground State Convergence

The determination of the ground state is a fundamental step towards the study
of the different properties of our system. To do so, we employ the CBE-DMRG
algorithm using the QSpace tensor library [58-60], which enables the explicit
incorporation of the SU(2) symmetry throughout this work. The use of non-
Abelian symmetries ensures that the calculations respect rotational invariance
and also improves numerical efficiency and precision by compressing the Hilbert
space into symmetry multiplets.

In the following, we aim to present the convergence protocol for obtaining
accurate ground states in the systems studied. Two main factors limit the
precision of the computed ground state: the bond dimension and the number
of sweeps. To ensure convergence, we run CBE-DMRG with increasing bond
dimensions. At each step, we initialize the simulation with the MPS obtained
from the previous bond dimension. This warm-start strategy significantly
accelerates convergence in subsequent steps of the algorithm. However, the
initialization of the first CBE-DMRG step requires a choice of an MPS ansatz.
It is important to point out that such a choice can implicitly restrict the
evolution to certain symmetry sectors if not chosen carefully. To address this,
in the quantum spin liquid candidate phase, we randomized the initial MPS
ansatz to avoid any unintentional bias toward a specific symmetry sector. We
then performed multiple CBE-DMRG runs with this randomized initialization,
using the same sweep schedule for each run, to test whether different initial
states could converge to different ground states.

To stabilize the optimization process and improve convergence, we acti-
vate the a-mixing parameter during the initial stages of the calculation [61].
Specifically, we turn on the mixing parameter for the entire duration of the
first bond dimension runs, and subsequently apply it only during the first two
sweeps of each higher bond dimension. A fixed number of sweeps is performed
at each bond dimension to ensure that the state has sufficiently relaxed. The
parameters used in this procedure are summarized in Table 3.1.

Number of Sweeps
Bond Dimension | Number of Sweeps | with a-mixing Active

512 16 16
1024 16 2
2048 8 2
3000 7 2

Table 3.1: DMRG sweep schedule used for the simulations. Each sweep con-
sists of a full back-and-forth pass through the system. The rightmost column
indicates how many of those sweeps used an active a-mixing parameter.

In figure 3.3 we aim to show this process, showing how the energy per site
varies after every sweep and when increasing the bond dimension. Having
established the convergence protocol and numerical framework for reliably
obtaining the ground states, we now proceed to present the results for our
simulations. In the following, we will analyze the ground state properties of
the system for various values of Js.
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Figure 3.3: DMRG results for a 6 x 36 triangular lattice in the spin liquid
candidate region for Jy = 0.125. The plot shows the evolution of the ground
state energy per site after each DMRG sweep for different bond dimensions
D. Each segment corresponds to a different bond dimension, with the circles
showing the energy after every sweep.

3.3 YC6-0-36 geometry

In the following, we study the ground-state properties of the system for three
different coupling regimes, as introduced in section (3.1).

Jo = 0: 120° Néel order

The limit J; = 0 of the Hamiltonian 2.1 corresponds to the nearest-neighbor
Heisenberg model. The ground state for the TLHAF with J; = 1 has been
long established [3, 6, 45] and corresponds to the 120° Néel ordered state,
see section (2) . This knowledge will be used to benchmark and discuss the
outcomes of the different observables we obtain.

To assess the convergence of the DMRG ground-state calculations, we ana-
lyze the energy as a function of both the inverse bond dimension 1/D and the
discarded weight &, as shown in Fig. 3.4. The minimal ground state energy per
site obtained, with a bond dimension of D = 3000 is Ey = —0.54852422 with an
associated discarded weight £ ~ O(10~7). However, for the results presented
in this work, we use data obtained with a fixed bond dimension D = 512.
This yields an energy Fy = —0.54835568, corresponding to a discarded weight
€ ~ O(1077), and differs from the most accurate energy by approximately 10~%.
This choice reflects a compromise between numerical precision and computa-
tional efficiency, and we have verified that the observables of interest remain
qualitatively robust at this level of approximation.

Following our study we present the results for the equal-time structure
factor for this regime. The positions and sharpness of peaks in xx provide
insight into the nature of spin correlations in momentum space. Notably, the
emergence of sharp Bragg peaks at high-symmetry points in the Brillouin zone
is an indication of long-range magnetic order. In figure 3.5 (a), we observe sharp
and isolated peaks at K, K’ and symmetry-equivalent points. Such results are
consistent with the expected 120° Néel order on the triangular lattice and
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Figure 3.4: DMRG results for a 6 x 36 triangular lattice in the Néel-ordered
regime. Panel (a) shows the convergence of the relative ground state energy per
site with respect to the inverse bond dimension 1/D, while panel (b) shows the
dependence of the ground state energy per site on the discarded weight £. The
inset in panel (a) displays the ground state energy obtained with the largest
bond dimension used in our simulations, D = 3000.

0.6

(0)

Figure 3.5: Equal-time structure factor x(k) for the YC6-0-36 geometry. Pan-
els (a), (b), and (c) correspond to Jy = 0, Jo = 0.125, and J, = 0.2, respectively.
Each plot is normalized independently to its own maximum intensity to high-
light the relative distribution of spectral weight across different coupling regimes.
The first Brillouin zone is outlined with dashed white lines as a guide to the
eye. Panel (a) and (b) are consistent with figure 2 of [17]

confirm the presence of robust long-range magnetic correlations in the ground
state [41-43]. We obtained an order parameter m ~ 0.16 at the K point, by
taking into account the two inner rings on our cylinder. This value is somewhat
lower than the widely accepted reported in the literature of m ~ 0.2 [8, 41—
43]. This discrepancy may stem from finite-size effects or difference in boudary
conditions.

In this regime, each spin forms an angle of 120° with its nearest-neighbors
(see figure 2.1) leading to a repeating pattern of spin orientations across the
lattice. This results in a characteristic three-sublattice spin structure. Such
a regular structure gives rise to a stable and spatially coherent pattern in the
spin-spin correlations.
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Figure 3.6: Real-space spin-spin correlation function between nearest-
neighbouring sites S;; = (S; - S;), see Eq. (3.4), in the Néel-ordered regime
(Jo =0).

In figure 3.6, we display the nearest-neighbor spin-spin correlations across
the system. The strength and sign of the observable (S; - §j> vary system-
atically depending on the quantum state. In this case, it can be seen that
in the bulk region the correlations are uniformly negative, consistently with
antiferromagnetic interactions and the presence of strong magnetic order. This
uniformity indicates that the central part of the cylinder remains deep within
the magnetically ordered regime. It is important to point out the appearance
of some variation in the strength of the correlations near the open edges of
the cylinder. Such deviations arise from boundary effects, given by the broken
translational symmetry at the edges of the cylinder, which slightly distort the
spin configurations in this region.

Figure 3.7 shows the results for the spectral function for the 120° Néel
ordered phase using the TaSK algorithm. The data is presented along three
high-symmetry paths in the Brillouin zone (see figure 3.2), each cut has been
normalized individually.
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Figure 3.7: Normalized dynamical spin structure factor S(k,w)/ max S(k,w) in
the quantum spin liquid candidate phase at J; = 0, computed on a YC6-0-36
cylinder. The spectral function is shown along three representative cuts in
the Brillouin zone, as defined in figure 3.2 (b). Each spectrum is individually
normalized to its maximum value to emphasize the relative distribution of
spectral weight along each path. As a reference, the normalization factor
1/ max S(k,w) is indicated at the top left of each panel. For comparison, see
figure 3, panels (a—c) of [17].

In all three cuts, the dominant feature is a sharp, well-defined excitation at
low frequencies, accommpanied by a fainter, broader continuum above it. The
most prominent low-energy signal appears at the K point, where the mode is
soft — i.e, gapless — consistent with the presence of Goldstone magnons in a
long-range ordered phase. This result is in excellent agreement with predictions
from linear spin wave theory [62], series expansion studies [42, 63], experimental
observations via neutron scattering [64], and the results shown in figure 3 (a-b-c)



3.3. YC6-0-36 geometry 29

from Ref. [17].

In contrast, the spectral minima at the M’ and M points—located at the
midpoints of the Brillouin zone edges—are gapped, which indicates roton-like
excitations, in agreement with series expansion and spin wave theory results [42,
63]. We also observe an increase in spectral weight at the midpoing between
M’ and M, which may result from data broadening induced by CFE.

Furthermore, the quasi-particle ansatz predicts an additional roton mini-
mum at the Y7 point, located midway between A and B (see figure 3 (a-b-c)
from [17]). However, we find no significant spectral weight at this location in
our data, suggesting that such an excitation, if present, is either too weak to
resolve or not well-defined within our current resolution.

It is important to point out that the data displayed in figure 3.7 has been
normalized individually along each momentum path. While this allows for a
clearer visualization of dispersion features, it does not accurately reflect their
relative spectral weight. From a physical standpoint, such normalization is not
meaningful, as it masks the true intensity of excitations across the Brillouin
zone. A version of the same data normalized by the global maximum of the
full spectrum — preserving the physical strength of features — is provided in
Appendix A.

Jo = 0.125: Quantum Spin Liquid Candidate

We now turn to the case of Jo = 0.125, which lies in the expected classical
phase boundary between the magnetically ordered 120° Néel phase and the
stripe-ordered phase. This region of the phase diagram is characterized for a
strong magnetic frustration, that raises between the competition of nearest-
neighbor and next-nearest-neighbor interactions in the triangular lattice. This
destabilizes the classical long-range order and enhances quantum fluctuations.

—0.5070
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—0.5100 | 2730
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Figure 3.8: DMRG results for a 6 x 36 triangular lattice in the spin liquid
candidate region. Panel (a) shows the convergence of the relative ground
state energy per site with respect to the inverse bond dimension 1/D, while
panel (b) displays the dependence of the ground state energy per site on the
discarded weight £. Each panel includes four different datasets corresponding
to independent DMRG runs. The inset in panel (a) displays the ground state
energy obtained with the largest bond dimension used in our simulations, D =
3000.
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To obtain the ground state in the spin-liquid candidate region, we perform
four independent CBE-DMRG simulations, each initialized with a different
random state. The results are shown in figure B.1, where we show the energy
dependence with the inverse of the bond dimension 1/D and the discarded
weight £. These multiple runs help us ensure that the results are representative
and not biased by any initial conditions. For the largest bond dimension
used, D = 3000, the lowest ground-state energy per site obtained is Ey =
—0.50959308. The discrepancy between different data sets is at most 107% —
107, hinting that all converge to the same ground state. As in the J, = 0
case, we chose to perform our subsequent analysis using data obtained with
a fixed bond dimension of D = 512 to ensure computational tractability. At
this bond dimension, the lowest energy obtained and considered for the future
study is Fy = —0.50749719, with a discarded weight of order 10~5. This value
only differs with the other CBE-DMRG runs to the order of 1075, so we can
conclude equivalence amongst all data sets. Although the deviation from the
best estimate at D = 3000 is on the order of 1073, we ensured that the key
observables remain qualitatively stable.
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Figure 3.9: Real-space spin-spin correlation function between nearest-

neighbouring sites S;; = <§z . Sj>7 see Eq. (3.4), in the quantum spin liquid
candidate (J = 0.125).

In figure 3.5(b) we show the equal-time structure factor for this case. While
the points K, K’ of the Brillouin zone still concentrate slightly higher spectral
weight, the peaks are noticeably more diffuse and continuous along the edges
of the Brillouin zone. This broadening gives hints of a critical phase without
long-range magnetic order order [8, 47]. Notably, one can also discern hints of
pinch point-like features — narrow, cross-shaped patterns in momentum space

— developing at the M points, which further support the interpretation of a
quantum spin liquid phase in this intermediate coupling regime. Overall, these
observations are consistent with the suppression of Néel order due to frustration
and align with previous studies [17, 48].

This behavior is further supported by the nearest-neighbor correlation map
shown in figure 3.9. However, compared to the Néel-ordered case at Jy = 0,
see figure 3.6, we observe a stronger influence of boundary effects near the open
ends of the cylinder. This reflects the more fragile nature of correlations in this
regime. Looking closely, one can also see slight hints of symmetry breaking
along the spin-chain that arise from the finite size of our system.

Figure 3.10 shows the spectral function along the same regions as shown
in figure 3.7, now for the quantum spin liquid candidate regime. Compared
to the Néel-ordered case, we observe a downward shift in spectral weight and
softening at the M’, M and B roton-like points. A low-energy gap opens at
the K point, in agreement with [17]. To clarify whether this gap remains in
the thermodynamic limit, finite-size scaling of the gap at K would be necessary.
That goes beyond the scope of this work.

In a QSL phase, one would expect a spectrum dominated by a broad con-
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Figure 3.10: Normalized dynamical spin structure factor S(k,w)/ max S(k,w)
in the quantum spin liquid candidate phase at J, = 0.125, computed on a YC6—
0-36 cylinder. The spectral function is shown along three representative cuts
in the Brillouin zone, as defined in figure 3.2 (b). Each spectrum is individually
normalized to its maximum value to emphasize the relative distribution of
spectral weight along each path. As a reference, the normalization factor
1/ max S(k,w) is indicated at the top left of each panel. For comparison, see
figure 4 of [17].

tinuum of spinon excitations. In our case, the spectrum still shows dominant
sharp, low-energy features — particularly at the K, M’ and M points. Those
momenta correspond to the ordering wave points of the 120° and stripe-ordered
phase, respectively. This demonstrates the high frustration in the system: it
tries to satisfy simultaneously the J; and Js interactions, giving rise to a QSL
phase [50]. Nevertheless, a broad continuum is also visible above the quasipar-
ticle peaks, especially near the zone boundaries, which is characteristic from
the dominated broad spinon-continua of a QSL.

As in the Jy = 0 case, the data in Fig. 3.10 has been normalized individually
along each momentum path. A version with a normalization in respect to the
global maximum is provided in Appendix A.

Jo = 0.2: Stripe-ordered phase

/ /1.

Figure 3.11: Real-space _spin-spin correlation function between nearest-
neighbouring sites S;; = (S, - S;), see Eq. (3.4), in the stripe ordered regime
(Jo =0.2).

For completeness, we also examine the case Jo = 0.2, which lies deep in
the frustrated regime of the model. In this parameter range, the ground state
is known to exhibit stripe order, as previously reviewed in (2), characterized
by spins aligning antiferromagnetically along one direction — forming stripes
— while exhibiting ferromagnetic alignment between neighboring stripes. This
pattern breaks the rotational symmetry of the triangular lattice and reflects a
distinct form of magnetic ordering that constrasts sharply with both the 120°
Néel order at J, = 0 and the disordered spin-liquid-like behavior at Jy = 0.125.
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The CBE-DMRG results obtained for this state yield a minimal ground-state
energy per site of Fy = —0.50488522 at a bond dimension D = 2048, with an
associated & ~ 1078, However, for the observables an MPS of bond dimension
D = 512, energy per site By = —0.50487250 and & ~ 1077,
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Figure 3.12: Normalized dynamical spin structure factor S(k,w)/ max S(k, w)
in the stripe ordered phase at Jo = 0.2, computed on a YC6-0-36 cylinder. The
spectral function is shown along three representative cuts in the Brillouin zone,
as defined in figure 3.2 (b). Each spectrum is individually normalized to its
maximum value to emphasize the relative distribution of spectral weight along
each path. As a reference, the normalization factor 1/ max S(k,w) is indicated
at the top left of each panel.

In figure 3.5(c) we show the equal-time structure factor for this phase. The
emergence of M-point sharp peaks confirm this stripe ordering [47, 65], which
breaks rotational symmetry [6]. This ordering also shows in the spin-spin corre-
lations between nearest neighbors, shown in figure 3.11: antiferromagnetically
ordered spins exhibit large and negative correlations giving rise to the pattern
in the figure. The spectral function for this case show very intense spectral
weight at the points M’ and M, hinting at a tendency towards the emergence
of a gapless Goldstone mode as the value of J; increases. Two sharp roton-like
minima show at points B and K where the presence of a gap consolidates.

It is worth pointing out that, as the two previous regimes, the data in
Fig. 3.12 has been normalized individually along each momentum path. A
version of the same data normalized by the global maximum of the full spectrum
is provided in Appendix A.



CHAPTER 4

Summary and outlook

Summary. In this thesis, we numerically studied the ground state and dy-
namical properties of the spin-1/2 J;-Jo Heisenberg antiferromagnet on the
triangular lattice. Restricting ourselves to finite-size geometries, specifically
the YC6-0-36 cylinder, we employed the CBE-DMRG routine to obtain the
approximate ground state solution in the MPS formulation. Once the desired
convergence was achieved, we computed static key observables such as the
equal-time structure factor and employed the Tangent Space Krylov (TaSK)
method to evaluate the dynamical spin structure factor, analyzing the excitation
spectrum along three distinct cuts in the Brillouin zone.

First, we benchmarked our results in the well-understood 120° Néel ordered
phase at Jo = 0. With a ground state energy of Ey = —0.548355 at bond
dimension D = 512 and a discarded weight & ~ O(10~7), our ground-state-
MPS accurately captures the expected phase characteristics. Sharp and isolated
peaks appear at the K point for the equal-time structure factor, indicating the
robust long-range magnetic correlations compatible. A sharp Goldstone mode
can be seen at the same point in the dynamical structure factor, in agreement
with previous works [17, 42, 62-64], alongside two roton-like excitations at
points M’ and M. No significant spectral weight was found in the momentum
point Y7, for which a roton-like excitation should appear, according to the
quasi-particle ansatz [17].

Upon increasing the value of J; to the classical phase transition point at
Jo = 0.125, a suppression of magnetic order has been observed. We considered
a ground-state MPS of energy Fy = —0.507497, bond dimension D = 512 and
& ~ 1075, The broadening of spectral features in equal-time structure factor
suggests the loss of long-range magnetic order, also showing hints of pinch-point-
like features at the M points. A relaxation of the dynamical structure factor
compared to the previous case is observed, with a low-energy-gap opening at
the K point. Sharp low-energy features can also be seen at M', M and B points,
however one can see a broad contiuum above these quasi-particle peaks. This
continuum arises from QSL behavior. No definitive conclusions on the QSL
type can be drawn due to finite-size effects, and numerical precision. Further
studies for the finite-size scaling of the gap at the K point would be necessary.

Lastly, by setting Jo = 0.2, we enter the so called stripe-phase regime.
Very sharp, roton-like minima are observed at points B and K, which are
characteristic of this phase. Additionally, we observe indications of a possible
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gap closing at point M, and its symmetry-related equivalents, in the ETSF.
This is further supported by sharp peaks at these same points in the spectral
function.

In comparison to the results of Drescher et al. [17], our TaSK-based study
confirms the reliability of the method in capturing the expected spectral fea-
tures of the triangular lattice Heisenberg model. For the equal-time spin struc-
ture factor, we observe broad and diffuse spectral weight that is continuously
distributed throughout the Brillouin zone which, compared to Ref. [17], the
spectral weight in our results appears slightly more uniformly distributed and
smoother in the spin-liquid regime, indicating that TaSK can capture low-
energy spin correlations with high consistency. For the dynamical properties,
we obtain results that are in strong agreement with those of Ref. [17], further
establishing TaSK as a reliable and accurate tool for investigating frustrated
quantum magnets. This consistency underscores its potential for future studies,
particularly in the directions outlined in the Outlook, where TaSK may prove
crucial for exploring larger system sizes and more complex regimes.

Outlook. There are several promising directions in which this work could
be extended. One important step would be a more systematic finite-size scaling
analysis of the spectral gap at the K point, which could help determine whether
the quantum spin liquid candidate phase is truly gapless or possesses a small
but finite spin gap — thus offering deeper insight into the nature of this exotic
phase.

Another key direction involves studying a Gutzwiller-projected fermionic
wavefunction representing a U(1) Dirac spin liquid. We plan to compute the
corresponding spectral functions using the TaSK algorithm applied to this
ansatz, and also use it as an initial state for DMRG, enabling the algorithm to
optimize the state before applying TaSK again. This approach could provide a
bridge between variational and unbiased methods.

Additionally, the exploration of alternative geometries such as the YC6-2-L,,
cylinder — where the allowed momenta intersect the Dirac points — remains
an intriguing path forward. Although our initial data in this geometry has
been inconclusive, see Appendix B, further targeted studies could reveal more
information about the system’s behavior and potentially expose new features
of the spin liquid phase.



APPENDIX A

Complementary Plots for the
YC6—0-36 geometry

In the main text, we present the dynamical spin structure factor S(k,w) nor-
malized individually for each momentum cut in the Brillouin zone. While this
emphasizes the relative distribution of spectral weight within each cut, it ob-
scures how the weight is shared across different regions of momentum space. To
provide a more physically meaningful comparison, figure B.2 shows the spectral
function normalized per full spectrum, i.e., by the maximum over all three
momentum cuts. This allows for a direct comparison of how the spectral weight
is distributed across symmetry points.

As expected, in the ordered phase at Jo, = 0, the Goldstone mode at the
K-point dominates the spectral response, carrying most of the total weight.
Similarly, for J, = 0.2, which lies deep in the stripe-ordered phase, the low-
energy roton modes at the M-points are prominent and account for most of
the spectral weight. In contrast, in the intermediate spin-liquid phase near
Jo = 0.125, the spectral weight is more evenly distributed across all symmetry
points, indicating the absence of dominant long-range order.
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Figure A.1: Normalized dynamical spin structure factor S(k,w)/max S(k,w)
for Jo =0, Jo = 0.125 and Jo = 0.125, computed on a YC6-0-36 cylinder. The
spectral function is shown along three representative cuts in the Brillouin zone,
as defined in figure 3.2. The spectrum for each J, value is normalized taking
the maximum value along the three cuts. As a reference, the normalization
factor 1/ max S(k,w) is indicated at the top left of each panel.



APPENDIX B

YC6-2-36 geometry

To investigate whether the Dirac cone structure of a potential U(1) Dirac spin
liquid leaves any observable imprint in the dynamical spin structure factor,
we examined the YC6-2-36 geometry. This geometry is of particular interest
because its set of allowed momenta intersects the Dirac points located at +Q =

i(gﬁ)
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Figure B.1: DMRG results for a 6 x 36 triangular lattice in the spin liquid
candidate region for the YC6-2-36 geometry. Panel (a) shows the convergence
of the relative ground state energy per site with respect to the inverse bond
dimension 1/D, while panel (b) displays the dependence of the ground state
energy per site on the discarded weight £. Each panel includes four different
datasets corresponding to independent DMRG runs. The inset in panel (a)
displays the ground state energy obtained with the largest bond dimension
used in our simulations, D = 3000.

We present both the ground state results and the corresponding dynamical
spectra through the cut shown in figure 3.2(d) obtained. As anticipated, no
pronounced features are observed at the Dirac points in the dynamical data.
This is consistent with theoretical expectations: the dynamical spin structure
factor S(k,w) probes spin-1 excitations, whereas the Dirac cones correspond
to gapless spin-1/2 spinons. Since the spin operator does not couple directly
to individual spinons, but rather to two-spinon excitations, and the spinon
density of states vanishes linearly at the Dirac point, the resulting spectral
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weight remains broad and suppressed in that region of momentum space.

J,= 0.125

Q

Figure B.2: Normalized dynamical spin structure factor S(k,w)/max S(k,w)
for Jo =0, J, = 0.125, and J, = 0.2, computed on a YC6-0-36 cylinder. The
spectral function is shown along the momentum cut defined in figure 3.2(d).
For each J,, the spectrum is normalized by the maximum value across the three
cuts. The corresponding normalization factor 1/ max S(k,w) is indicated at
the top left of each panel.
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