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We study dynamical scaling associated with a Kondo-breakdown quantum-critical point (KB QCP) of
the periodic Anderson model, treated by two-site cellular dynamical mean-field theory (2CDMFT). In the
quantum-critical region, the dynamical staggered-spin susceptibility exhibits ω=T scaling. We propose a
scaling ansatz that describes this behavior and reveals Planckian dissipation for the longest-lived
excitations. The current susceptibility follows the same scaling, leading to strange-metal behavior for
the optical conductivity and resistivity. Importantly, this behavior is driven by strong short-ranged vertex
contributions, not single-particle decay. This suggests that the KB QCP described by 2CDMFT is a novel
intrinsic (i.e., disorder-free) strange-metal fixed point. Our results for the optical conductivity match
experimental observations on YbRh2Si2 and CeCoIn5.
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Introduction—Strange metals [1–5], an enigmatic
state of matter found in many strongly correlated materials
[6–27], still defy a clear and unified understanding. Their
phenomenology, including a low-temperature (≳10 mK in
YbRh2Si2 [28]) T-linear resistivity [9], an ∼T lnT specific
heat and ω=T scaling [8,24,26,29–32], is incompatible with
normal Fermi liquids [33]. Despite the ubiquity of strange
metals, many basic questions remain unsettled [1], in
particular, whether intrinsic strange metals, i.e., ones with-
out disorder, exist [34,35].
Current attempts at explaining strange-metal phenomena

often employ the marginal Fermi liquid (MFL) hypothesis
[36], where electrons acquire a linear-in-T scattering rate
due to scattering by a critical bosonic mode. However, it
has recently been shown within the Yukawa-Sachdev-Ye-
Kitaev (YSYK) approach that interaction disorder is
required to also achieve a linear-in-T transport scattering
rate [37,38]; i.e., the MFL strange metal is not intrinsic. The

same goes for MFL strange metals arising in single-site
dynamical mean-field theory (DMFT) approaches [39],
where single-electron and transport scattering rates
coincide due to nonconserved momentum at the interaction
vertex [40,41]. It is questionable whether the MFL
approach can be reconciled with studies of disorder in
cuprates [42], the fact that many strange metals are very
clean [28,43] and with Hall angle measurements in strange
metals [1,16,44–50].
In this Letter, we present a novel approach to intrinsic

strange metals where phenomena like ω=T scaling and a
linear-in-T resistivity arise from collective short-ranged
fluctuations. The single-electron scattering rate does not
play a direct role, in stark contrast to MFL approaches. We
focus on heavy-fermion (HF) metals, where strange-metal
behavior routinely emerges in the quantum-critical region
of so-called Kondo breakdown (KB) quantum-critical
points (QCPs) [51–56]. Previous studies have obtained
interesting scaling behavior in the vicinity of a KB QCP
[38,51,57–60], but apart from the MFL-based YSYK
approach of Ref. [38], none of these studies explain the
intriguing optical properties of HF strange metals.
We study the quantum-critical region of a KB QCP

in the periodic Anderson model (PAM) described as a
continuous orbital-selective Mott transition [56,61–64] via
two-site cellular DMFT (2CDMFT) [41,65]. 2CDMFT
maps the PAM to a self-consistent two-impurity Anderson
model [56,61–64]. In a long companion paper [56], we
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used the numerical renormalization group (NRG) [66–71]
as an impurity solver for 2CDMFT to identify a novel,
2CDMFT-stabilized KB QCP (by contrast, the Jones–
Varma QCP is unstable [72–88]). We find ω=T scaling
for several susceptibilities and strange-metal behavior for
the optical conductivity and resistivity. Importantly, this
behavior arises from dominant vertex contributions rather
than single-particle decay.
Model and methods—We consider the PAM on a three-

dimensional cubic lattice, involving an itinerant c band and
a localized f band described by the Hamiltonian

HPAM ¼
X
kσ

ðϵf − μÞf†kσfkσ þ U
X
i

f†i↑fi↑f
†
i↓fi↓

þ V
X
kσ

ðc†kσfkσ þ H:c:Þ þ
X
kσ

ðϵck − μÞc†kσckσ:

ð1Þ

Here, f†kσ½c†kσ� creates a spin-σf½c� electron with momen-
tum k, and ϵck ¼ −2t

P
a¼x;y;z cosðkaÞ is the c-electron

dispersion. We set the c-electron hopping t ¼ 1=6 as an
energy unit (half bandwidth ¼ 1) and fix the f-orbital level
ϵf ¼ −5.5, the interaction strength U ¼ 10, and the chemi-
cal potential μ ¼ 0.2, as chosen in prior 2CDMFT studies
[56,63,64]. The ðT; VÞ phase diagram studied in detail in
Ref. [56] (shown also in Ref. [89], Sec. S-I) is characterized
by two V-dependent energy scales TFL and TNFL: The FL
scale TFL, below which FL behavior emerges, decreases
toward and vanishes at the KB QCP at Vc ¼ 0.4575ð25Þ.
This gives rise to a quantum-critical region between the
scales TFL < TNFL, where we found non-Fermi liquid
(NFL) behavior with strange-metal properties, such as a
T lnT specific heat [56].
In this work, we study dynamical scaling and

optical properties in the quantum-critical region.We fixV ¼
0.46≳ Vc [96] and tune T. At V ¼ 0.46, TNFL=TFL > 103;
i.e., the NFL region extends over more than three decades,
which allows us to study scaling. As in Ref. [56], we enforce
U(1) charge and SU(2) spin symmetries (using the QSpace
tensor library [97–99]), thereby excluding the possibility of
symmetry breaking order by hand.We do not find tendencies
toward symmetrybreaking (divergent susceptibilities) for the
parameters studied here.
Dynamical scaling—As a result of incomplete screening

in the NFL region, many dynamical susceptibilities

χ½A;B�ðωÞ ¼ −i
Z

∞

0

dt eiðωþi0þÞth½AðtÞ;B†�i ð2Þ

exhibit plateaus in their spectra χ00ðωÞ at TFL < ω < TNFL
and T ¼ 0; cf. Ref. [56], Fig. 4. We use the shorthand
χ½A�ðωÞ ¼ χ½A;A�ðωÞ and χðωÞ ¼ χ0ðωÞ − iπχ00ðωÞ. An
example of a susceptibility governed by incomplete screen-
ing is χ½Xxz�ðω; TÞ, where Xxz ¼ Sz1 − Sz2 is the staggered

f-electron spin on a two-site cluster. It exhibits ω=T
scaling, as demonstrated in Fig. 1.
The T-dependent spectra χ00ðω; TÞ and the corresponding

real parts χ0ðω; TÞ are shown in Figs. 1(a) and 1(b),
respectively. As T is decreased from around TNFL to
TFL, the aforementioned plateau in χ00ðω; TÞ emerges
between T < ω < TNFL, crossing over to ∝ ω behavior
for ω < T. For T < TFL, the spectrum becomes T inde-
pendent. In the (imaginary) time domain, the plateau in
χ00 implies SYK-like slow 1=τ dynamics; see Fig. S1
of Ref. [89].
χ0ðω; TÞ is related to χ00ðω; TÞ via a Kramers-Kronig

relation. It thus shows a logarithmic [100] ω dependence
for maxðT; TFLÞ < ω < TNFL and is constant for
ω < maxðT; TFLÞ. As a result, χ0ð0; TÞ [inset of Fig. 1]
has a ∝ lnT dependence for TFL < T < TNFL and is
constant for T < TFL, where Xxz fluctuations are screened.
Figure 1(c) shows χ00ðω; TÞ vs ω=T. In the NFL region

(TFL < T < TNFL, jωj < TNFL), the spectra all collapse
onto a single curve. This demonstrates dynamical scaling
in the sense that Tαχ00ðω; TÞ ¼ X 00ðω=TÞ with α ¼ 0. The
real part [Fig. 1(d)] also shows ω=T scaling.
Scaling function and Planckian dissipation—In the NFL

region (TFL < T < TNFL, jωj < TNFL), the spectra of
dynamical susceptibilities showing plateaus (e.g., χ½Xxz�)
can be fitted with a phenomenological ansatz for ω > 0:

χ̃00ðω; TÞ ¼ χ0

Z
TNFL

T

dϵ
π

ð1 − e−
ω
T
��

ϵ
T

�
νbT

ðω − aϵÞ2 þ ðbTÞ2 : ð3Þ

FIG. 1. Dynamical susceptibility χ½Xxz�ðω; TÞ. (a) Spectral part
and (b) corresponding real part for 13 choices of T (marked by
ticks on the color bar). (c),(d) Scaling collapse of spectral and real
parts. Black dashed lines show the universal scaling functions
X 00ðω=TÞ and X 0ðω=TÞ, respectively [cf. Eq. (4)]. Inset: χ0ð0; TÞ
(orange) and X 0

0ðT=TNFLÞ þ c [black dashed; cf. Eq. (4)]. The
constant shift c accounts for spectral weight at jωj > TNFL. Gray
areas indicate fitting uncertainties [89].
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ω < 0 follows from antisymmetry of χ̃00, and the real part χ̃0
is determined through a Kramers-Kronig relation. χ0; a; b,
and ν are determined by fits to our spectra in the NFL
region [89]. We find a ≃ 10−1, b ≃ 1, and ν ≃ 0; χ0
determines the plateau value. (These parameters are V
independent within our fitting accuracy.) When Eq. (3) is
evaluated for jωj; T ≪ TNFL one finds the scaling form

χ̃ðω; TÞ ≃ X 0
0

�
T

TNFL

�
þ X 0

�
ω

T

�
− iπX 00

�
ω

T

�
: ð4Þ

An explicit T dependence, due to the high-energy cutoff
TNFL, only enters via X 0

0ðT=TNFLÞ ≃ χ̃0ð0; TÞ; otherwise,
χ̃ðω; TÞ only depends on the ratio ω=T (for more informa-
tion on the universal scaling functions X 0

0;X
0, and X 00, see

Ref. [89]). In Figs. 1(c) and 1(d), we show that the scaling
function X captures χ½Xxz� well in the NFL region (black
dashed lines).
The ansatz (3) is motivated by a fit of hXxzðtÞXxzi to a

superposition of coherent excitations with mean energy aϵ,
decay rate bT, and density of states ðϵ=TÞν [89]. Since
b ≃ 1, these coherent excitations have a decay rate γ ≃ T or
correspondingly a lifetime τ ≃ 1=T; i.e., the longest-lived
Xxz excitations have a Planckian lifetime.
Optical conductivity—Our 2CDMFT approximation

allows us to compute the local current susceptibility
χ½jai �ðω; TÞ of the lattice model from the effective impurity
model. Here, jai ¼ −ite

P
σðc†iσciþaσ − c†iþa;σciσÞ is the

current operator in the a direction, with i and iþ a nearest
neighbors on the lattice, chosen to also correspond to the
two sites of the self-consistent impurity model.
For optical experiments and electronic transport, the

uniform current susceptibility χ½jaq¼0�ðω; TÞ is relevant,
where jaq is the q-dependent current in the a direction
jaq ¼ ð1=NÞPiσ e

−iq·ri jai . Assuming translation symmetry,
χ½ja0� can be expressed as a sum χ½jai � þ χnl½j� of local and
nonlocal parts, with χnl½j� ¼ ð1=NÞPl≠i χ½jal; jai � ¼
χ½ja0� − χ½jai �. The computation of χnl½j� would require
four-point correlators [101–103] for the self-consistent
two-impurity model, which currently exceeds our computa-
tional resources. Hence, we approximate it by its bubble
contribution χnl;B½j� ¼ χB½ja0� − χB½jai �. Thus, we use

χ½ja0� ≈ χ½jai � þ χnl;B½j� ¼ χB½ja0� þ χvtx½jai �; ð5Þ

where χvtx½jai � ¼ χ½jai � − χB½jai � is the vertex contribution to
the local current susceptibility.
The uniform current spectrum determines the real part of

the optical conductivity σ0ðω; TÞ ¼ ðπ=ωÞχ00½ja0�ðω; TÞ
shown in Fig. 2(a). At T ≪ TFL (blue and black), it features
a hybridization gap around ω ≃ TNFL;ω−1 behavior for
TFL < ω < TNFL, and a Drude peak at low frequencies
below TFL. These features emerge as the temperature is
lowered from T ≫ TNFL: The hybridization gap forms

around T ≃ TNFL (red), the ω−1 feature emerges between
TFL < T < TNFL (yellow and green), and the Drude peak
finally emerges for T < TFL (blue and black).
The ω−1 feature in the NFL region is due to ω=T scaling

of χ00½jai � (Fig. S5 in Ref. [89]) similar to that of χ00½Xxz�.
Remarkably, χ00½jai �, just as χ00½Xxz�, is well described by the
ansatz (3) (see Fig. S8 of Ref. [89]), implying ω=T scaling
and Planckian dissipation of current fluctuations. In the
NFL region, TFL < T < TNFL, σ0ðω; TÞ is therefore gov-
erned by a scaling function S0:

Tσ0ðω; TÞ ¼ ðT=ωÞπX 00ðω=TÞ ¼ S0ðω=TÞ: ð6Þ

Figure 2(b) shows that Tσ0ðω; TÞ is indeed well described
by this scaling function (black dashed line). Similarly, we
find that Tσ00ðω; TÞ ¼ S00ðω=TÞ, with S00ðxÞ ¼ X 0ðxÞ=x;
see Ref. [89], Secs. S–V, Fig. S10.
The scaling behavior (6) has two striking implications

for the NFL region TFL < T < TNFL: First, a scaling
collapse is achieved for Tασ0ðω; TÞ with α ¼ 1, an expo-
nent which was also found experimentally [24,26,32].
Second, the static conductivity σðTÞ ¼ σ0ð0; TÞ ¼
S0ð0Þ=T scales as 1=T, implying T-linear behavior for
the resistivity, ρðTÞ ¼ 1=σðTÞ ∝ T. This is borne out in
Fig. 2(c): ρðTÞ has a maximum around TNFL, where
the hybridization gap forms, then decreases ∝ T for
TFL < T < TNFL, before finally becoming ∝ T2 below TFL.
The ω=T scaling and linear-in-T resistivity in the NFL

region is completely dominated by the vertex contribution
to the current susceptibility χ00vtx½jai �j ≫ jχ00B½ja0�j. To visual-
ize this, we have included the bubble contribution σ0BðωÞ
(gray dashed) at T ¼ 10−10 in Fig. 2(a). In the NFL region
(TFL < jωj < TNFL), σ0B is orders of magnitude smaller

FIG. 2. (a) Real part of the optical conductivity σ0ðω; TÞ; gray
dashed line, bubble contribution at T ¼ 10−10. (b) ω=T scaling of
Tσ0ðω; TÞ; black dashed line, the scaling function S0 of Eq. (6).
(c) The resistivity ρðTÞ. (d) The single-particle decay rate γ,
quasiparticle (QP) weight Z, and QP decay rate γ�.
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than σ0ðωÞ and, crucially, does not show ω−1 behavior.
Also, σ0Bðω; TÞ does not exhibit ω=T scaling. However, it
contributes the Drude peak at jωj; T < TFL.
Next, we consider the single-particle decay rate γ [104],

QP weight Z, and QP decay rate γ�,

γ¼ ImG−1
kF
ð0Þ; Z−1¼∂ωReG−1

kF
ð0Þ; γ� ¼Zγ ð7Þ

shown in Fig. 2(d). Z and γ� determine the weight and
width of the Lorenzian line shape in the single-particle
spectral function at kF, while γ governs the bubble
contribution to the conductivity σ0B ∝ 1=γ. In the NFL
region, we find γ ∝ lnT, i.e., σ0B ∝ 1= lnT ≪ σ0 ∝ 1=T.
Thus, the conductivity in the NFL region is not governed by
single-particle decay but by short-ranged collective current
fluctuations, in contrast to the MFL paradigm.
In the FL region, γ; γ� ∝ T2, and Z ¼ const [Fig. 2(d)] as

expected, leading to a Drude peak of width ∝ T2 and
ρðTÞ ∝ T2; i.e., these features are due to long-lived
coherent QP carrying the current. Since we neglect non-
local vertex contributions which encode momentum con-
servation during small-momentum scattering [105], the
transport relaxation rate, and thus the T2 prefactor of
ρðTÞ, is set purely by the QP decay rate and is therefore
very likely overestimated.
Optical mass and transport scattering rate—To obtain

additional insights, we determined the transport scattering
rate τ−1ðωÞ and the optical mass m�ðωÞ defined as

τ−1ðωÞ ¼ Reσ−1ðωÞ; m�ðωÞ ¼ −ω−1Imσ−1ðωÞ ð8Þ

following Ref. [106], Eq. (1). Here, σðωÞ is the complex
optical conductivity, and we omitted constant prefactors to
focus on qualitative features.
Figure 3(a) shows our results for τ−1ðωÞ, with τ−1ð0Þ ¼

τ−10 ¼ ρðTÞ ∝ T for TFL < T < TNFL. For maxðTFL; TÞ <
jωj < TNFL, τ−1ðωÞ has a nontrivial ω and T dependence,
not following a simple power law with possible logarithmic
corrections. There, σðωÞ does not fit a Drude form. Non-
Drude behavior is most clearly visible from σ0ðω; TÞ
[cf. Fig. 2(a)], which shows a ω−1 dependence in the
NFL region, whereas a usual Drude peak would imply an
ω−2 dependence. Similar non-Drude behavior of the optical
conductivity has been observed in YbRh2Si2 [24,26].
Remarkably, in the NFL region (TFL < T < TNFL) at low

frequencies jωj≲ T, τ−1ðωÞ shows a quadratic frequency
dependence τ−1ðωÞ − τ−10 ∼ cðTÞω2; cf. Fig. 3(c). An ω2

dependence of τ−1ðωÞ was also found in CeCoIn5; cf.
Figs. 4(a) and 4(c) of Ref. [106] and its discussion.
However, whereas for an FL the prefactor cðTÞ does not
depend on the temperature, the ω=T scaling of σðω; TÞ in
the strange-metal region implies cðTÞ ∼ 1=T; see Ref. [89],
Sec. S–V.
We emphasize that in our results, τ−1ðωÞ is not propor-

tional to −ImΣðωÞ (without vertex contributions, a

proportionality would be expected). In our 2CDMFTþ
NRG approach to the PAM, −ImΣðωÞ has a logarithmic
ω and T dependence; cf. Figs. 11 and 12 of Ref. [56]. The ω
and T dependence τ−1ðωÞ discussed above differs from that,
again illustrating the importance of vertex contributions.
Figure 3(b) shows m�ðωÞ. In the NFL region

ðTFL < T < TNFLÞ,m�ðωÞ is strongly frequency dependent
around the NFL scale ω ≃ 10−3 − 10−4 ≃ TNFL, and then
saturates to an almost ω- and T-independent value
m�ðωÞ ≃m�ð0Þ ¼ m�

0. The weak ω and T dependence of
m�ðωÞ does not seem to follow a simple power law.
Interestingly, even though there are no well-defined QPs
in the strange-metal region, there nevertheless seems to be a
somewhat well-defined effective mass m�

0. We emphasize
though that in the NFL region, m�

0 ≃ 5 × 104 ∼ 10=TNFL is
orders of magnitude smaller than in the FL region, where
m�

0 ≃ 1.5 × 107 ∼ 1=TFL; cf. Fig. 3(d). The effective mass
in the NFL region is therefore decisively distinct from the
QP mass in the low-temperature FL region.
In Fig. 3(d), we show the temperature dependence of the

renormalized scattering rate τ�−1 ¼ τ−10 =m�
0 (blue), together

with m�
0 (red). Deep in the NFL region, we find τ�−1 ∼ T,

since τ−10 ∼ T and m�
0 ¼ const. Interestingly, in the cross-

over region between T ≃ TNFL and T ≃ 10−1TNFL, τ�−1
deviates from the linear-in-T behavior and is consistent
with FL-like T2 behavior.
A similar T2 behavior was reported for CeCoIn5 in

Ref. [106], where this behavior was interpreted as evidence
for a hidden Fermi liquid. Our calculations suggest that the
T2 behavior is rather a crossover behavior, and measure-
ments at lower temperatures are necessary for a definite
conclusion. Such measurements are presumably not pos-
sible in CeCoIn5 due to its relatively high Tc. A promising
candidate material to clarify whether τ�−1 ∼ T or ∼T2 may

FIG. 3. Frequency dependence of (a) the transport scattering
rate τ−1ðωÞ, (b) the effective mass m�ðωÞ, and (c) τ−1ðωÞ − τ−10 ,
where τ−10 ¼ τ−1ð0Þ ¼ ρ. (d) Temperature dependence of
τ�−1 ¼ τ−10 =m�

0 and m�
0 ¼ m�ð0Þ.
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be YbRh2Si2. To emphasize the similarity between the
experimental data on CeCoIn5 and our results on the PAM
more visually, we show the resistivity ρðTÞ of the PAM in
Fig. 4(a) on a linear scale in the crossover region, next to
the corresponding experimental data on CeCoIn5 [Fig. 4(b)],
adapted from Fig. 4(b) of Ref. [106]. In Figs. 4(c) and 4(d),
we further show the data for the renormalized scattering rate
and the effective mass for both the PAM and CeCoIn5,
respectively [adapted from Fig. 4(d) of Ref. [106] for the
latter]. The experimental data on CeCoIn5 and our numerical
data on the PAM show remarkable qualitative agreement in
the crossover region: (i) The resistivity has a broadmaximum
and turns to linear in T, (ii) the renormalized scattering rate
τ�−1 ∝ T2, and (iii) the effective mass m�

0 increases with the
temperature in a remarkably similar fashion. An estimate of
the suitability of our model parameters for CeCoIn5 is
provided in Ref. [89]. A more detailed quantitative descrip-
tion of CeCoIn5 (or YbRh2Si2) will require a more realistic
future study, e.g., using LDAþ DMFTþ NRG.
Discussion and outlook—Our work provides a promising

route toward an intrinsic strange metal. However, we have
not yet achieved a full understanding of the current decay
mechanism. An inherent feature of (C)DMFT is that the
interaction vertex does not ensure conservation of crystal
momentum [40,41]. Therefore, electron-electron scattering
does not conserve crystal momentum, leading to current
decay. This mechanism usually manifests as a dominant
bubble contribution (in single-site DMFT, this is the only
contribution). A dominant bubble contribution is also key

to the YSYK approach [37] to strange metals. There, a
disordered Yukawa coupling leads to nonconserved
momentum in scattering processes. The result is an MFL
where strange-metal scaling arises in the bubble contribu-
tion, and interaction disorder is needed to avoid its
cancellation by the vertex contribution. By contrast, in
our 2CDMFT approach, the strange-metal scaling in the
NFL region arises entirely from the vertex contribution, and
not at all from the (much smaller) bubble contribution.
This strongly suggests that the current decay mechanism is
not due to the nonconservation of crystal momentum at the
interaction vertex. Our 2CDMFT approach also includes
crystal momentum conserving umklapp scattering
processes between momenta around k ¼ ð0; 0; 0Þ and
k ¼ ðπ; π; πÞ which flip the current. We conjecture that
these cause our observed strange-metal scaling, but leave a
detailed analysis for future work.
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Section S-I discusses the phase diagram in the vicinity
of the QCP and SYK-like dynamics for unscreened fluc-
tuations. In Sec. S-II, we provide basic definitions and
expressions regarding the Fourier transforms of opera-
tors and regarding the optical conductivity. Section S-III
provides additional information on the numerical com-
putation of the optical conductivity, the role of vertex
contributions, and to what extent the Drude term van-
ishes. Section S-IV provides more information on the
scaling functions X and S. In Sec. S-V, we discuss scaling
of the imaginary part of the optical conductivity. Finally,
Sec. S-VI provides a rough estimate to what extent our
model parameter choice is suitable for the description of
CeCoIn5.

S-I. PHASE DIAGRAM AND SYK-LIKE
DYNAMICS

A. Phase diagram

Figure S1(a) shows our 2CDMFT+NRG phase dia-
gram in the (V, T ) plane close to the KB–QCP. At T = 0,
we find two Fermi liquid (FL) phases, separated by a
KB–QCP located at Vc = 0.4575(25), featuring a sudden
Fermi surface (FS) reconstruction [56]. At finite excita-
tion energies, we find two crossover scales, TFL(V ) and
TNFL(V ) [56]. FL behavior emerges below TFL, which
decreases towards and vanishes at Vc. The high-energy re-
gion above TNFL is characterized by thermally fluctuating
f -electron local moments decoupled from the c electrons.
TNFL does not decrease for V near Vc, hence strong scale
separation between TNFL and TFL occurs close to the QCP.
For excitation energies between TFL and TNFL, we find
NFL behavior—the main subject of this work.

B. Dynamical susceptibilities

The different regions can be most conveniently dis-
tinguished in terms of the dynamical behavior of re-
sponse functions. For now, we focus on the staggered

f -electron spin on a two-site cluster, Xxz = Sz
1 −Sz

2 , with

Sz
i = 1

2

[
f†i↑fi↑ − f†i↓fi↓

]
. The color scale in Fig. S1(a)

shows the exponent α of the imaginary-time autocorrela-
tion function of Xxz, ⟨Xxz(τ)Xxz⟩ ∝ τ−α, obtained via
log-derivative. For long times, τ−1 < TFL, we find α = 2,
consistent with FL behavior and the presence of long-
lived quasi-particles (QP) [3] and thus quickly decaying,
localized spin excitations. For short times, τ−1 > TNFL,
staggered-spin excitations decay very slowly with an ex-
ponent α < 0.5, consistent with local moment behavior.
For intermediate times, TFL < τ−1 < TNFL, we find an
SYK-like exponent α ≃ 1 in the NFL region, indicative
of the absence of coherent QP [3]. At V = 0.46, our data
closest to Vc, this behavior extends over almost 4 orders
of magnitude: in fact, our data suggests that it extends
down to τ−1 → 0 at Vc, where TFL = 0. We note that
we do not find ∝ τ−1/2 behavior of the single-electron
Green’s function G(τ), in contrast to the SYK model [3].
Thus, ⟨Xxz(τ)Xxz⟩ is not ∝ G(τ)2, i.e., the τ−1 behavior
is governed by vertex contributions.
To understand the origin of the τ−1 dependence, we

consider the spectral representation of bosonic correlators,

⟨A(τ)B†⟩ =
∫ ∞

−∞
dω

e−τω

1− e−βω
χ′′[A,B](ω). (S1)

Here, the spectrum χ′′(ω) is obtained from the dynamical
susceptibility χ(ω) = χ′(ω)− iπχ′′(ω), see Eq. (2) in the
main text.

The spectra for Xxz and for the total spin Sz = Sz
1+S

z
2

are shown in Fig. S1(b) at V = 0.46 and T = 0. The
spectra χ′′[Xxz] and χ′′[Sz] both show ∝ ω behavior
below TFL, indicating that these fluctuations are screened
in the FL, as expected. For long times, τ−1 < TFL, the
corresponding imaginary time correlation function (S1)
therefore decays as τ−2, as shown for Xxz in Fig. S1(a).
In the NFL region (TFL < ω < TNFL) the spectra dif-

fer qualitatively: while χ′′[Sz] ∝ ω still holds, χ′′[Xxz]
has an ω-independent plateau; hence Sz fluctuations are
screened, Xxz fluctuations are over-screened (reminis-
cent of the two-channel or two-impurity Kondo models
[72, 73, 90]). For intermediate times ⟨Sz(τ)Sz⟩ thus de-
cays as τ−2 (not shown) whereas ⟨Xxz(τ)Xxz⟩ decays as
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FIG. S1. (a) Phase diagram of the PAM obtained by
2CDMFT+NRG. The dots (connected by lines as guides to
the eye) denote relevant energy scales TFL and TNFL below
which we observe FL and NFL behavior, respectively, and
THall, the crossover scale between a large and small FS (see
Ref. [56] for details). The color scale denotes the exponent
α of the imaginary-time correlator ⟨Xxz(τ)Xxz⟩ ∝ τ−α. The
white dashed line denotes V = 0.46, used for all subsequent
plots in this work. (b) Spectra of Xxz and Sz at T = 0.

τ−1 [cf. Fig. S1(a)]. We note that besides Xxz, many
other operators also have plateaus in their spectra, see
Fig. 4 in Ref. [56]. Thus, the FL is reached via a two-
stage screening process: as ω drops below TNFL, some
excitations are screened, others over-screened; below TFL,
the latter are screened, too.

S-II. OPTICAL CONDUCTIVITY

In this section, we state some textbook [111] formulas
that are important in the context of the optical conduc-
tivity for the PAM.

A. Fourier transforms of operators

We define the Fourier transform of fermionic creation
and annihilation operators in a unitary fashion,

ckσ =
1√
N

∑
i

e−ik·riciσ, (S2)

ensuring {c†kσ, ck′σ′} = δσσ′δkk′ . For bosonic observables
Oi like the current density, on the other hand, we define
it as an orthogonal but non-unitary transformation,

Oq =
1

N

∑
i

e−iq·riOi. (S3)

This ensures that the expectation values ⟨Oq⟩ and ⟨Oi⟩
scale the same way with N in the thermodynamic limit.
(if we had used a unitary Fourier transforms for bosonic
observables, ⟨Oq⟩ ∼

√
N would not be well-defined in the

thermodynamic limit). The same goes for source fields
like the vector potential.

B. Current and conductivity

In presence of a vector potential A, the Hamiltonian (1)
is modified by replacing the hopping between site i and
i+ a by t→ t exp (−ieAa

i ), where a is some unit lattice
vector. The current density is

jai = − ∂H

∂Aa
i

= −ite
∑
σ

(
e−ieAa

i c†iσci+aσ − h.c.
)
. (S4)

If no lattice symmetry is broken, the current response to
a q- and ω-dependent electric field Eq(ω) = iω+Aq(ω)
(where ω+ = ω + i0+) takes the form ⟨jaq⟩(ω) =
σq(ω)E

a
q(ω), where the dynamical conductivity is given

by

σq(ω) =
1

iω+

[
⟨K̂⟩ − χ[jaq](ω)

]
, (S5)

K̂ = − te
2

N

∑
iσ

(
c†iσci+aσ + h.c.

)
,

and jaq = 1
N

∑
i e

−iq·rijai . In a d-dimensional hypercubic

lattice, ⟨K̂⟩ is proportional to the kinetic energy density
ϵkin = d

e2 ⟨K̂⟩.
The optical conductivity σ(ω) = σq=0(ω) is the re-

sponse to a uniform electric field. It can be decomposed
as [91, 92] σ(ω) = σD(ω) + σreg(ω), with

σD(ω) = D

[
δ(ω) + P i

πω

]
, (S6)

D = π
[
χ′[ja0 ](0)− ⟨K̂⟩

]
, (S7)

σreg(ω) = P 1

iω

[
χ′[ja0 ](0)− χ[ja0 ](ω)

]
, (S8)

where P denotes the principal part. The regular term
σreg(ω) describes currents that decay at long times; the
Drude term σD(ω) with Drude weight D describes persis-
tent currents. For a non-superconducting, thermodynam-
ically large lattice model at non-zero temperature, one
expects D = 0.
The optical conductivity fulfills the f -sum rule,∫ ∞

−∞

dω

π
σ′(ω) = −⟨K̂⟩, (S9)

which follows when evaluating χ′[ja0 ](0) using the Kramers–
Kronig relation for general susceptibilities,

χ′[O](ω′) = −P
∫ ∞

−∞
dω χ′′[O](ω)/(ω − ω′). (S10)
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C. Bubble contribution

The bubble contribution to the current susceptibility is
defined as the susceptibility of a free system but with the
Green’s functions replaced by the Green’s function of the
interacting system. We shortly outline the corresponding
formulas for the bubble contribution to the local current
susceptibility, χB[j

a
i ] and to the uniform q = 0 suscep-

tibility, χB[j
a
0 ]. Since the current operator in Eq. (S4)

consists only of c-electron operators, the formulas for
the bubble contribution only involve c-electron Green’s
functions. For brevity, we suppress the c labels on all
Green’s functions, spectral functions and self-energies in
this section and in Sec. S-IIIA. The current operators
can be written in terms of the bare current vertex J a,

jai =
∑
ℓℓ′σ

J a
iℓℓ′c

†
ℓσcℓ′σ, (S11a)

J a
iℓℓ′ = −ite (δiℓδi+aℓ′ − δi+aℓδiℓ′) , (S11b)

jaq =
1

N

∑
i

e−iq·rijai =
∑
kk′σ

J a
qkk′c

†
kσck′σ, (S11c)

J a
qkk′ =

−2te

N
δq,k−k′ei

q·a
2 sin

[(
k− q

2

)
· a

]
. (S11d)

We define the polarization bubble (with Im z > 0),

Pg,g′(z) =T
∑
m

Gg(iωm)Gg′(iωm + z) (S12)

=

∫ ∞

−∞
dω f(ω)[Ag(ω)Gg′(ω + z) (S13)

+Ag′(ω)Gg(ω − z)],

where G(z) is the Green’s function, A(ω) the correspond-
ing spectral function, f(ω) the Fermi-Dirac distribution
function and g and g′ are quantum numbers like momen-
tum, spin or spatial distance, rij = ri− rj and we assume
G depends on |ri − rj | only.

The bubble contribution to the q = 0 current suscepti-
bility is

χB[j
a
0 ](z) =

8t2e2

N

∑
k

sin2(k · a)Pk,k(z)

=
8t2e2

N

∑
k

sin2(k · a)
∫ ∞

−∞
dω f(ω)× (S14)

[Ak(ω)Gk(ω + z) +Ak(ω)Gk(ω − z)].

The corresponding spectral function is (ν± = ν ± i0+)

χ′′
B[j

a
0 ](ν) =

i

2π

[
χB[j

a
0 ](ν

+)− χB[j
a
0 ](ν

−)
]

=
8t2e2

N

∑
k

sin2(k · a)Ik(ν) (S15a)

Ik(ν) =

∫ ∞

−∞
dω [f(ω)−f(ω+ν)]Ak(ω)Ak(ω+ν).

(S15b)

The bubble contribution to the local current-current
susceptibility (involving one link in the lattice, i.e., two
sites) is then

χB[j
a
i ](z) = 2

∑
mm′

∑
nn′

J a
imm′J a

inn′Prmn′ ,rm′n(z)

=− 4t2e2
∫ ∞

−∞
dω f(ω)× (S16)[

[Ari,i+a(ω)Gri+a,i(ω + z)−Ari,i(ω)Gri,i(ω + z)]

+[Ari+a,i(ω)Gri,i+a(ω − z)−Ari,i(ω)Gri,i(ω − z)]
]
.

The local current-current spectral function is

χ′′
B[j

a
i ](ν) =

i

2π

[
χB[j

a
i ](ν

+)− χB[j
a
i ](ν

−)
]

(S17)

= 4t2e2
∫ ∞

−∞
dω [f(ω)− f(ω + ν)]× (S18)

[Ari,i(ω)Ari,i(ω + ν)−Ari,i+a(ω)Ari+a,i(ω + ν)].

S-III. OPTICAL CONDUCTIVITY: NUMERICAL
COMPUTATION

In this section, we describe how we compute the bub-
ble contribution χ′′

B[j
a
0 ](ν) [Eq. (S15a)] in a numerically

efficient way, how we treat the electronic self-energy close
to zero frequency and temperature, and how we deal with
vertex contributions and fulfillment of the f sum rule. We
further discuss the potential role of vertex contributions
for short-ranged nonlocal current fluctuations.

A. Bubble contribution

Computing the bubble contribution to the optical con-
ductivity requires numerical evaluation of Eq. (S15a).
This is challenging, especially close to ν = 0 or T = 0,
due to the close-to-singular behavior of Ak(ω)Ak(ω+ν)
in the integrand.
To deal with this, we exploit our knowledge of

G−1
k (ω+) = ω+ + µ− ϵk − Σk(ω

+). It is a smooth func-
tion of ω and known on a predetermined frequency grid
ω ∈ {ωi}. Since G−1

k (ω+) is a smooth function, we rep-
resent it by linear interpolation, G−1

k (ω+) = ai + biω,
for Ii = [ωi, ωi+1]. Due to the logarithmic resolu-
tion of NRG, we use a logarithmic frequency grid with
10−12 ≤ |ωi| ≤ 104 and 200 grid points per decade.

By writing

Ak(ω)Ak(ω+ν)=

1
π Im

[
Gk(ω

+)
Gk(ω+ν

+)−Gk(ω+ν
−)

2πi

]
, (S19)

the frequency integral in Eq. (S15b) can be computed by
evaluating the integrals,

I±k (ν) =

∫ ∞

−∞
dω [f(ω)−f(ω+ν)]Gk(ω

+)Gk(ω+ν
±)
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FIG. S2. Self-energy of the f electrons for the self-consistent
2IAM at different temperatures. (a,b) Bonding orbital (+)
and (c,d) anti-bonding orbital (−). Solid lines denote the nu-
merical data, dashed lines (not visible whenever they coincide
with solid lines) denote the extrapolated self-energy. Visible
differences occur only for |ω|, T < 10−1TFL, i.e., well below
the FL scale TFL.

=
∑
i

∫
Ii

dω
αi + βiω

(ai + biω)(ci,± + di,±ω)
, (S20)

where αi+βiω is a linear interpolation of f(ω)−f(ω+ν) on
the interval Ii and ai+ biω and ci,±+di,±ω are the linear
interpolations of G−1

k (ω+) and G−1
k (ω+ ν±), respectively.

The integral over every interval Ii in Eq. (S20) is very
simple to evaluate exactly, summing up the contributions
from all intervals gives I±k (ν).

The k sum/integral in Eq. (S15a) is finally computed us-
ing a standard integrator. (We use MATLAB’s integral
function.) We use the periodized self-energy when com-
puting Eq. (S15a), cf. App. A.3 of Ref. [56]. In our case,
this allows us to reduce the three-dimensional k integral
in Eq. (S15a) to a one-dimensional one, cf. Eq. (A10) of
Ref. [56].

B. Self-energy at ω, T ≃ 0

The Drude peak which emerges in the optical conduc-
tivity at T < TFL for small frequencies arises due to
−ImΣ(ω+) = aω2 + bT 2 behavior for |ω|, T < TFL. Cap-
turing this ω, T -dependence for very small TFL (≪ TNFL),
as is the current case close to the QCP, is highly chal-
lenging. To achieve this, we keep a large number of
states—up to 40,000 U(1)×SU(2) symmetry multiplets—
in iterative diagonalization and use an interleaved Wilson
chain [93, 94] to keep the computational cost manageable.
We compute the f -electon self-energy by using the sym-
metric improved estimator of Ref. [95] which significantly
reduces numerical artifacts and leads to state-of-the-art ac-
curacy. This accuracy allows us to obtain −ImΣf±(ω

+) =
aω2+ bT 2 behavior for |ω|, T ∈ (TFL/10, TFL) (but not for
|ω|, T ∈ (0, TFL/10), because there −ImΣf±(ω

+) becomes

smaller than 10−4, and numerical inaccuracies become
significant). Therefore, we fit the coefficients a and b with
the data for (TFL/10, TFL) then extrapolate −ImΣf±(ω

+)
to (0, TFL/10) based on the fitting. Figure S2 shows the
low T and ω behavior of −ImΣf±(ω

+) before (solid) and
after (dashed) extrapolation. The c-electron self-energy
Σc±(ω

+) = V 2/
(
ω+ − ϵf − Σf±(ω

+)
)
(which is not one-

particle irreducible) follows from Σf±(ω
+).

Note that in an FL, aπ2/b = 1 should hold. On the
other hand, our fits yield aπ2/b = O(2–3) due to the
broadening used in NRG, which overestimates a. We have
checked that a → b/π2 when we lower the broadening
width. This however comes at the expense of severe
discretization artifacts. Since the exact value of a is
irrelevant to the present work, we preferred to adopt the
procedure described above.

C. Local vertex contributions

We stated several times in the main text that vertex con-
tributions are crucial for the current-current correlation
functions to capture the strange metallicity and Planck-
ian dissipation. As described in the main text, we have
included vertex contributions only for the local contribu-
tion, χ[jai ], to the uniform current susceptibility, χ[ja0 ] =

χ[jai ] + χnl[j
a
0 ], where j

a
i = −ite

∑
σ(c

†
iσci+aσ − h.c.) is

the current between lattice sites i and i+ a, the neighbor
of i in a-direction. We explain in Sec. S-III E why the
full nonlocal vertex contributions are currently out of
reach. By choosing sites i and i+a as the two sites of our
self-consistent two-impurity model, we can compute χ[jai ]
directly as a two-point correlation function using NRG.
Here, we provide supplemental data that shows to what
extent the full local susceptibility χ[jai ] is influenced by
its vertex contribution χvtx[j

a
i ] = χ[jai ]− χB[j

a
i ]. To this

end, we compare χ[jai ] to its bubble contribution χB[j
a
i ],

computed via Eq. (S18). The integrand of the latter is
not close-to-singular [in contrast to that of Eq. (S15b)]
and can therefore be efficiently evaluated via a standard
integrator.

The bare output of NRG are discrete spectra for χ′′[jai ],
which are subsequently broadened through log-Gaussian
broadening kernels, see Ref. [70] for more details. The
spectral functions used in Eq. (S18) to compute χ′′

B[j
a
i ]

on the other hand are obtained by computing the self-
energy via the symmetric improved estimators of Ref. [95];
χ′′
B[j

a
i ] therefore contains finer high-frequency details than

achievable with NRG for χ′′[jai ]. To compare the full
χ′′[jai ] and its bubble contribution χ′′

B[j
a
i ] [computed from

Eq. (S18)], we, therefore, smear out the continuous curve
of χ′′

B[j
a
i ] by further applying the log-Gaussian kernel used

to broaden the discrete data for χ′′[jai ], to match their
resolution levels. We emphasize here that this broadening
of χ′′

B[j
a
i ] only affects high-frequency details at |ω| > TNFL,

the basic features remain the same.
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FIG. S3. (a) Spectrum of the local current susceptibility
χ′′[jai ](ω, T ). Solid lines are full susceptibilities χ′′[jai ], dashed
lines are the bubble contributions χ′′

B[j
a
i ]. χ′′

B[j] is almost
temperature independent, which is why the χ′′

B[j
a
i ] curves for

T < 10−3 are covered by the T = 10−3 curve. χ′′
B[j

a
i ] and

χ′′[jai ] are almost identical at T = 10−3. (b) The ratio between
full susceptibility and bubble contribution.

Figure S3(a) shows the spectrum of the full local current
susceptibility χ′′[jai ] and of the corresponding bubble
contribution χ′′

B[j
a
i ], while Fig. S3(b) shows their ratio.

The bubble contribution captures only the high-frequency
behavior at |ω|, T > TNFL well: the spectra in Fig. S3(a)
almost coincide and the ratios in Fig. S3(b) are close to
1.

On the other hand, the plateau emerging below |ω|, T <
TNFL is not captured at all by the bubble contribution, i.e.,
both the ω/T scaling and the Planckian dissipation dis-
cussed in the main text and in Sec. S-IV result from vertex
contributions. The ratio shown in Fig. S3(b) increases
dramatically in the NFL region (TFL < |ω|, T < TNFL) by
several orders of magnitude and saturates close to 103 in
the FL region (|ω|, T < TFL).

D. Estimate of nonlocal vertex contributions

To estimate what to expect for nonlocal current fluc-
tuations in terms of scaling and vertex contributions,
we define “current” operators that lie across the cluster
boundaries,

ji = (−1)i
ite√
5

(
c†iσaiσ − h.c.

)
, (S21)

where aiσ annihilates a spin-σ electron in the first bath
orbital (within the Wilson chain) that directly couples
to the c orbital of the cluster site i = 1, 2. According
to the effective medium construction of DMFT (which
defines bath sites by replacing the interaction on the
original lattice sites by the self-energy, cf. Sec. III D of
Ref. [40]), the Green’s function of aiσ is the same as
that of a symmetric superposition of the five nearest
neighbors (on the lattice) of site i which are not located
on the same cluster. Due to that, we can interpret these
orbitals as a proxy for the aforementioned symmetric
superposition. The current operators in Eq. (S21) can
therefore be interpreted as a proxy for the average (hence
normalization by

√
5) current between these five nearest-

neighbor sites and the corresponding cluster site. Since

FIG. S4. (a,b) Absolute values of the spectra of different nonlo-
cal current susceptibilities, χ′′[jai , j1](ω, T ) and χ′′[j1, j2](ω, T ).
Solid lines are full susceptibilities, dashed lines are the bubble
contributions. Cusps indicate sign changes in the spectra.
(c,d) Ratios between the spectra of the full susceptibility and
the bubble contribution. The cusps at |ω| > 10−1 arise due to
a slight misalignment between the sign changes in χ′′ and χ′′

B.

there is no specific direction in the lattice associated
with these currents, we did not specify a superscript a in
Eq. (S21). We emphasize that this correspondence is not
exact since the first bath sites are non-interacting orbitals
that belong to the dynamical mean field. Correlators
involving j1 or j2 do not enter the results shown in the
main text.

We compute χ[jai , j1] and χ[j1, j2] to estimate the be-
havior of nearest-neighbor and next-nearest-neighbor cur-
rent susceptibilities, respectively. Their spectra, includ-
ing the corresponding bubble contribution, are shown in
Fig. S4(a,b). The spectra of the full susceptibilities again
show a similar plateau as observed for the local current
susceptibility. Figure S4(c,d) shows the ratio between full
susceptibility and bubble contribution. Similarly to the
local current susceptibility, the ratio is somewhat close to
1 for |ω|, T > TNFL and becomes large for |ω|, T < TNFL,
suggesting that vertex contributions are important also
on the nonlocal level in this region.

In Fig. S5, we further illustrate that χ′′[jai , j1] and
χ′′[j1, j2] show ω/T scaling very similar to χ′′[jai ]. Since
the behavior of the nonlocal susceptibilities is qualitatively
similar to that of the local susceptibility, we expect that
the full nonlocal current susceptibility χ′′

nl[j], in contrast
to its bubble contribution χ′′

B,nl[j], will show similar ω/T
scaling as χ′′[jai ]. As discussed in the main text, we expect
that the full inclusion of vertex contributions in χ′′

nl[j] will
ameliorate or fully avoid the artifacts seen in Fig. 2(c)
for the resistivity ρ(T ): (i) in the NFL region, the nearly-
T -linear behavior will become fully-T -linear; and (ii) in
the FL-to-NFL crossover region, the shoulder will become
less prominent or disappear.
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FIG. S5. Current spectra versus frequency (left column) and
versus ω/T (right column). (a,b) Local current spectrum. (c,d)
Proxy to the nearest-neighbor current spectrum. (e,f) Proxy
to the next-nearest-neighbor current spectrum.

E. Full vertex contributions: why they are currently
out of reach

In Secs. S-III C–S-IIID above [see also Eq. (5) and its
discussion in the main text], we demonstrated the rele-
vance of the vertex contributions by computing the local
vertex contributions and arguing in the spirit of DMFT
that the corresponding lattice quantities have weak mo-
mentum dependence by computing various correlators.
While more rigorous arguments could be made by quan-
tifying nonlocal vertex contributions, it goes beyond the
reach of our current abilities, regrettably, for the following
reasons.

First, one needs to compute the full four-point ver-
tex function at the cluster impurity of the self-consistent
2IAM, which is computationally heavy. Very recently,
some of us developed the NRG method for such computa-
tion and applied it to one-band impurity models [107, 109].
In these works, the logarithmic discretization parameter
Λ has to be chosen comparably large, to allow using a
small number of kept states, Nkeep = 300, and to limit
the length of the Wilson chain, Nchain ≃ 20. This is
desirable since the cost of vertex computations scales as
O(N3

keepN
3
chain). Even with this choice, the calculations

in Refs. [107, 109] were quite heavy. For the 2IAM used in
this study, we have a larger local Hilbert space dimension,
requiring Nkeep

>∼ 10,000, and we have significantly longer
Wilson chains. All of that means that NRG computa-
tions of four-point correlation functions for this 2IAM are
currently not feasible with reasonable resources.

Second, even if the four-point vertex were obtained from

FIG. S6. The Drude weight D/π = χ′[ja0 ](0) −
〈
K̂
〉
vs tem-

perature. For the upper (or lower) row of the legend, χ′[ja0 ](0)
was approximated as χ′

B[j
a
0 ](0) (or χ′

B[j
a
0 ](0) + χ′

vtx[j
a
i ](0)),

i.e., using only the bubble contribution (or including also
the local vertex contribution). When computing these χ′[j](0)
terms via the Kramers–Kronig transformation (S10), we either
integrated over all ω ∈ R (solid lines) or only high frequen-
cies |ω| > TNFL (dashed lines). Since solid and dashed lines
almost match, χ′[j](0) is governed by high-frequency contri-
butions, where NRG has poorer frequency resolution. From
that perspective, the values for the Drude weight found here,
D/π <∼ 10−3, are remarkably close to the expected value of
zero.

the impurity model, it is a matter of current research how
to periodize it to obtain the corresponding lattice version.
Third, even if the periodized four-point vertex were

available, the computation of lattice susceptibilities from
the 2CDMFT Green’s functions and local vertex would
still require solving non-trivial diagrammatic (e.g., Bethe–
Salpeter) equations on the real-frequency axis at ex-
tremely low temperatures. This is highly non-trivial and
computationally expensive, and will require further de-
velopment of numerical methodology (e.g., to obtain a
compressed representation of the diagrammatic objects)
to be feasible in the future.

F. Drude weight

In this section, we discuss the Drude weight of Eq. (S7),
D/π = χ′[ja0 ](0)− ⟨K̂⟩. According to Eq. (S6), if D ̸= 0
that would imply (i) a δ(ω) contribution to σ′(ω) and
therefore zero resistivity (i.e., persistent currents), and
(ii) a 1/ω contribution in σ′′(ω). Since our study of σ(ω)
considers only non-superconducting solutions at T > 0,
we expect that our system does not support persistent
currents and D = 0. Accordingly, we have set D = 0 for
all results shown in this manuscript.
As a consistency check, we have also computed the

Drude weight directly. This is a difficult task, since the
numerical challenges involved in computing χ′[ja0 ](0), a
uniform, zero-frequency susceptibility, and ⟨K̂⟩, a local,
equal-time expectation value, are quite different. More-
over, our computation of χ′[ja0 ] involves a rather crude
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approximation [Eq. (5) of the main text]. Nevertheless,
we find |D|/π to be remarkably small, <∼ 10−3, with an
estimated numerical uncertainty that is likewise of the
order of 10−3. This justifies our choice to set D = 0.
Below, we describe how we obtained these values.

Figure S6 shows the Drude weight D/π, with the static
current response χ′[ja0 ](0) computed via Eq. (5) in the
main text. Both the bubble contribution χ′

B[j
a
0 ](0) and

our locally vertex-corrected result χ′
B[j

a
0 ](0) + χ′

vtx[j
a
i ](0)

show a deviation from ⟨K̂⟩ of the order of 10−3. The
inclusion of χ′

vtx[j
a
i ](0) slightly reduces this deviation

at low T but slightly increases it at high T . The solid
and dashed lines in Fig. S6 compare results obtained by
computing the χ′[ja0 ](0) contributions via the Kramers–
Kronig transform (S10) in two ways, either including the
spectral weight from all frequencies, ω ∈ R (solid), or
only from large frequencies, |ω| > TNFL (dashed). Since
the solid and dashed lines almost match, the contribution
to D from low frequencies |ω| < TNFL (including the
contribution from the plateau in χ′′

vtx[j
a
i ](ω)) is negligible.

Therefore, the non-fulfillment of D = 0 is mainly due to
inaccuracies at high frequencies.

High-frequency inaccuracies are to be expected in NRG
spectra, due to the use of logarithmic discretization and an
asymmetric log-Gaussian broadening kernel (cf. Eqs. (17)
and (21) from Ref. [70]), which can lead to slight shifts
in spectral weight. The broadened spectral function is
evaluated on a logarithmic frequency grid and approx-
imated by linear interpolation between grid points. In
practice, this means that if a discrete spectrum of the
form χ′′(ω) =

∑
j χ

′′
j δ(ω − Ej) is broadened, the integral

of the broadened spectrum can differ slightly from the
actual weight,

∑
j χ

′′
j , typically by an amount ∼ O(10−3).

As a result, the Kramers–Kronig transformation used to
compute χ′(0) = −P

∫
χ′′(ω)/ω usually induces an er-

ror ∼ O(10−3), compared to the result directly computed
from the discrete data, χ′(0) = −

∑
j χ

′′
j /Ej . Since our ap-

proximation of χ′′[ja0 ](ω) involves the bubble contributions
χ′′
B[j

a
0 ](ω) and χ

′′
B[j

a
i ](ω) which are only available as broad-

ened spectral functions, direct computation of χ′
B[j

a
0 ](0)

from discrete data is not possible. All of the aforemen-
tioned issues, on top of the approximation (5), can lead to
inaccuracies in the spectral weights and their correspond-
ing frequencies. We have checked that shifting spectral
positions by O(1%), i.e., ω → (1±10−2)ω and normalizing
the spectra accordingly, i.e., χ′′(ω) → (1± 10−2)−1χ′′(ω),
is sufficient to change χ′[ja0 ](0) by O(10−3). For all these
reasons, we estimate the numerical uncertainty of our
determination of the Drude weight D to be at least of the
order of 10−3.

S-IV. SCALING FUNCTION

In the main text, we reported that the staggered-spin
susceptibility χ[Xxz] = χ′−iπχ′′ showed a striking plateau

for its spectrum χ′′, leading to ω/T scaling behavior in
the NFL regime (TFL < T < TNFL, |ω| < TNFL). We noted
that there, χ can be well fitted by a function χ̃ = χ̃′−iπχ̃′′

obtained by making a phenomenological ansatz for its
imaginary part at positive frequencies,

χ̃′′(ω > 0, T ) = χ0

∫ TNFL

T

dϵ

π

(1− e−
ω
T )( ϵ

T )
νbT

(ω − aϵ)2 + (bT )2
, (S22)

imposing antisymmetry on the imaginary part,

χ̃′′(−ω, T ) = −χ̃′′(ω, T ), (S23)

and defining its real part via the Kramers-Kronig relation

χ̃′(ω) = P
∫ ∞

−∞
dω′ χ̃

′′(ω′)

ω − ω′ . (S24)

We also noted that the resulting χ̃ can be expressed as

χ̃(ω, T ) ≃ X ′
0

( T

TNFL

)
+ X ′

(ω
T

)
− iπX ′′

(ω
T

)
, (S25)

where X0 and X = X ′ − iπX ′′ are universal scaling func-
tions. In this Section, we motivate the ansatz Eq. (S22),
derive explicit expressions for the scaling functions, and
provide details of our fitting procedure for the Xxz suscep-
tibility. The discussion for other susceptibilities showing
a plateau and scaling in the NFL region (e.g., the current
susceptibility χ[jai ]) is analogous.

Our scaling ansatz starts from the assumption that the
“greater” correlation function of the staggered spin Xxz,

χ>[X
xz](t) = −iθ(t)⟨Xxz(t)Xxz⟩, (S26)

can be well mimicked by a function χ̃>(t) constructed as
a superposition of coherent excitations,

χ̃>(t) = −iθ(t)

∫ TNFL

T

dϵ
( ϵ
T

)ν

e−i(aϵ−ibT )t. (S27)

These coherent excitations have mean energy aϵ, decay
rate bT , and a power-law density of states with exponent
ν. We assume that the spectrum of this ansatz,

χ̃>(ω) = −i

∫ ∞

0

dt χ̃>(t)e
iω+t, (S28)

χ̃′′
>(ω) = − 1

π
Im χ̃>(ω),

captures the low-frequency behavior, |ω| < TNFL. High
frequencies |ω| > TNFL are not governed by the quantum
critical point and contain information on the local-moment
behavior which is not of interest here. The spectrum
should also fulfill the fluctuation-dissipation theorem,

χ̃′′
>(−ω) = −1− e−ω/T

1− eω/T
χ̃′′
>(ω), (S29)

which mainly affects and constrains the very low-frequency
spectrum, |ω| <∼ T . We therefore use our ansatz (S26)
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FIG. S7. (a) Spectral part X ′′(x) and (b) real part X ′(x) of
the scaling function X , for parameters χ0 = 1, a = 0.1, b = 1
and ν = 0.

to compute the ω > 0 part of the spectrum (S28) and
we then determine the ω < 0 part via Eq. (S29), i.e., we
enforce Eq. (S29).

The spectrum of the corresponding retarded correlator
is given by

χ̃′′(ω) = (1− e−ω/T )χ̃′′
>(ω), (S30)

leading to the ansatz (S22) for ω > 0. The negative-
frequency contribution χ̃′′(ω < 0) and the real part χ̃′(ω)
are obtained via Eqs. (S23) and (S24).
To get the scaling function X ′′, we take the limit of

TNFL → ∞ in Eq. (S22). (This limit exists for ν < 1,
while our data shows ν ≃ 0.) Equation (S22) is then a
function of x = ω/T ,

X ′′(x) = χ0

∫ ∞

1

dy

π

(1− e−x)yνb

(x− ay)2 + b2
, x > 0, (S31)

X ′′(−x) = −X ′′(x).

In Eq. (S24), χ̃′(ω) is singular in TNFL/T → ∞ if ν ≥ 0.
Therefore, we split the real part into a potentially singular
static part, χ̃′(0), and a non-singular part, χ̃′(ω)− χ̃′(0).
Using

1

ω − ω′ −
1

−ω′ =
ω

(ω − ω′)ω′ ,

we can take the TNFL/T → ∞ limit of the non-singular
χ̃′(ω)− χ̃′(0) part,

X ′(x) = P
∫ ∞

−∞
dx′

xX ′′(x′)

(x− x′)x′
. (S32)

This defines the scaling function X (x) = X ′(x)− iπX ′′(x).
(Note that unlike χ̃′ and χ̃′′, the scaling functions X ′ and
X ′′ are not Kramers-Kronig related.) The asymptotic
behavior of the scaling function is

X ′(x) ∼

{
x2, |x| ≪ 1,

(|x|ν − 1)/ν, |x| ≫ 1,
(S33a)

X ′′(x) ∼

{
x, |x| ≪ 1,

sign(x)|x|ν , |x| ≫ 1.
(S33b)

Figure S7 shows X (x) for the parameters χ0 = 1, a = 0.1,
b = 1 and ν = 0.

FIG. S8. (a) χ′′[Xxz](ω) and (b) χ′′[j](ω) (solid lines) versus
scaling function X ′′(x) (black dashed line). The grey shaded
area indicates the deviation when fitting at different tempera-
tures. Only curves used in the fitting process are shown, the
ticks on the color bar at the top indicate the temperature, and
the color range is the same as in Fig. 2 of the main text. (c,d)
Corresponding real parts. Insets: NFL contribution to the
static susceptibility. (e,f) Fit parameters at different tempera-
tures. The 95% confidence interval is smaller than the symbol
size.

For the potentially singular static contribution χ̃′(0), we
cannot safely take the TNFL → ∞ limit. In the TNFL/T ≫
1 limit, the spectral part χ̃′′(ω) sharply drops to zero
for |ω| > TNFL, so that we can approximate χ̃′(0) ≃
X ′

0(T/TNFL), with

X ′
0(y) = −P

∫ y

−y

dx′
X ′′(x′)

x′
. (S34)

X ′
0(T ) describes the contribution of the excitations within

the NFL region to the static response,

χ′
NFL(0) = −P

∫ TNFL

−TNFL

dω′ χ
′′(ω′)

ω′ . (S35)

The remaining contribution from high-energy excitations,

χ′
high(0) = χ′(0)− χ′

NFL(0), (S36)

may dominate the temperature dependence of χ′(0). In
that case, X ′

0(T/TNFL) only governs χ′
NFL(0) but not χ

′(0).
This is for instance the case for the static current sus-
ceptibility, where only χ′

NFL[j](0) follows X ′
0(T ). On the

other hand, χ′[Xxz](0) is well described by X ′
0(T ) up to

an additive constant.
We determine the parameters a, b, ν and χ0 in Eq. (S31)

by fitting logarithms of χ′′
>(ω) to the logarithm of our
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FIG. S9. Effect of log-Gaussian broadening width σ = α lnΛ
on the fit parameter b for (a) χ′′[Xxz](ω) and (b) χ′′[j](ω).

scaling ansatz (S31). We employ a least-square fit on a
logarithmic frequency grid with 20 grid points per decade
and frequencies between ωmin = 10−9 and ωmax = TNFL/4,
i.e., we stay well below the crossover temperature TNFL.
Our fits are done for seven logarithmically spaced tem-
peratures between (TFL ≪)10−6.5 and 10−5(≪ TNFL), i.e.,
for temperatures well separated from the crossover tem-
peratures TFL and TNFL. We then determine a scaling
curve by the geometric average over the fitted curves at
different temperatures. The largest deviations from the
geometric average serve as an error bar. X ′(x) and X ′

0(T )
are determined via Eqs. (S32) and (S34), respectively.

Figure S8(a–d) shows the fitting result for χ′′[Xxz](ω)
and χ′′[j](ω). In both cases, our ansatz fits our data
very well, with all temperatures yielding very similar
curves (the grey area, indicating the largest deviations
from the geometric mean, is relatively small). Fig. S8(e,f)
shows the results for the fit parameters a, b and ν. The
fitting parameters for both χ′′[Xxz](ω) and χ′′[j](ω) are
very similar and the variation with temperature is small.
We note that the fits for the highest temperatures are
a little less reliable because the plateau in χ′′(ω) is not
that well developed yet. Most important to us is the
result for b, which varies between 1.153 at T = 10−6.5

and 1.005 at T = 10−5 for χ′′[Xxz](ω) and between 1.130
at T = 10−6.5 and 0.999 at T = 10−5 for χ′′[j](ω). Thus,
our results are consistent with Planckian dissipation, i.e.,
the lifetime of Xxz or current excitations is τ ≃ 1/T , up
to a prefactor close to 1.

The fit parameters also depend on how the discrete
spectral data from NRG is broadened. For our scaling
analysis, we used both a log-Gaussian broadening ker-
nel (cf. Eq. (17) of Ref. [70]) with width σ = 0.7 lnΛ
(Λ = 3) and the derivative of the Fermi-Dirac distribution
with width γ = T/10 (cf. Eq. (21) of Ref. [70]) as linear
broadening kernel. The broadening parameters are chosen
such that the data is almost underbroadened (i.e., dis-
cretization artifacts become visible for smaller broadening
width). In Fig. S9, we show the effect on b of varying the
width σ = α lnΛ of the log-Gaussian broadening kernel.
Most importantly, b remains of order 1 and changes from
b ≃ 1.4 for α = 0.4 (underbroadened) to b ≃ 0.66 for
α = 1.2 (overbroadened). Interestingly, the parameter b
which determines the decay rate decreases with increasing

FIG. S10. (a) Imaginary part of the optical conductivity
at different temperatures. σ′′(ω) becomes negative around
ω >∼ 10−3. (b) Dynamical scaling of the imaginary part. In
the NFL region, all curves fall onto the scaling curve S ′′(ω/T ).
Data at ω > 10−3 has been omitted for clarity.

broadening width. The linear broadening parameter γ
(not shown) appears to have the converse effect, i.e., lower
γ leads to lower b and vice versa.

S-V. COMPLEX OPTICAL CONDUCTIVITY

The scaling behavior of the current susceptibility in
the NFL region implies a related scaling behavior for the
complex optical conductivity σ = σ′ + iσ′′. The scaling
of its real part, Tσ′(ω, T ) = (T/ω)πX ′′(ω/T ) = S ′(ω/T ),
is discussed in the main text. The imaginary part is
obtained via a Kramers-Kronig relation from the real
part,

Tσ′′(ω, T ) = P
∫

dω′

π

Tσ′(ω′, T )

ω − ω′ =
T

ω
X ′(ω/T ), (S37)

where for the last step, we evoked Eq. (S32). It is thus
likewise expected to show scaling behavior in the NFL
region. Indeed it does, as shown in Fig. S10.
To summarize, the scaling behavior of σ(ω, T ) can be

expressed through the scaling function X (x) governing
the current susceptibility, as follows:

Tσ(ω, T ) = S(x) = − 1

ix
X (x) = S ′(x) + iS ′′(x),

S ′(x) =
π

x
X ′′(x), S ′′(x) =

1

x
X ′(x). (S38)

The asymptotic behavior of S(x) follows from Eqs. (S33b)
and (S33a),

S ′(x) ∼

{
const., |x| ≪ 1,

|x|ν−1, |x| ≫ 1,
(S39a)

S ′′(x) ∼

{
x, |x| ≪ 1,

(|x|ν − 1)/νx, |x| ≫ 1.
(S39b)

The ω/T scaling of the optical conductivity implies
ω/T scaling of the dynamical transport scattering rate
and of the effective mass,

τ−1(ω, T )/T = Re [Tσ(ω, T )]−1,
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FIG. S11. (a) Scaling of the dynamical scattering rate τ−1(ω)
and (b) of the optical mass m∗(ω) in the NFL region. The
dashed lines denote the scaling functions T −1(ω/T ) and
M(ω/T ), respectively.

= Re [S(ω/T )]−1
= T −1(ω/T ) (S40)

m∗(ω, T ) = −T
ω
Im [Tσ(ω, T )]−1

= −T
ω
Im [S(ω/T )]−1

= M(ω/T ). (S41)

In the main text, we have shown that τ−1(ω, T ) = τ−1
0 +

c(T )ω2 at low frequencies in the scaling region. The ω/T
scaling above then implies τ−1

0 ∝ T and c(T ) ∝ 1/T .
Figure S11 shows the ω/T scaling of both τ−1(ω) and

m∗(ω). Both follow their respective scaling curves well
within the NFL region, i.e., for TFL ≪ T ≪ TNFL and
ω/T ≪ TNFL/T (for T = 10−7, the lowest temperature
shown, TNFL/T ≃ 1.5× 103).

S-VI. CHOICE OF MODEL PARAMETERS:
COMPARISON TO EXPERIMENT

In this section, we give a crude estimate on how our
model parameters compare to expectations for CeCoIn5.
Our goal is to provide some background on our comparison
in Fig. 4 of the main text. The first thing to stress is, how-
ever, that our PAM is a toy model that cannot be expected
to precisely describe the physics of real heavy-fermion ma-
terials over a broad range of energy scales. These systems
have multiple bands, multiple Fermi surfaces, and 14-fold
degenerate f levels instead of the two-fold degenerate
f levels used in our PAM. However, at sufficiently low
energies, we believe that our model is sufficiently accurate
for two reasons: First, critical phenomena are universal
and are insensitive to the details when one focuses on
low-energy phenomena. Second, the f orbitals in both
the 115 materials and YbRh2Si2 are subject to tetragonal
crystal fields such that a single Kramers doublet is active
at low energies, justifying our description by the effective
two-fold degenerate f levels [96].
Specifically for CeCoIn5, the low-energy j = 5/2 mul-

tiplet is split into three Kramers doublets, denoted Γ−
7 ,

Γ+
7 , and Γ6 [96]. Of those, Γ−

7 has the lowest energy; Γ+
7

has an excitation energy of E+
7 ≃ 6.8meV = 79K while

the excitation energy of Γ6 is E6 ≃ 25meV = 290K. The

coherence scale (TNFL in our manuscript) of CeCoIn5 is
40K [112] and therefore clearly lower than E+

7 . Therefore,
it seems reasonable to describe the universal physics in
the vicinity or below the coherence scale in terms of a
single orbital (modeling the Γ−

7 doublet). However, the
Γ+
7 doublet could play a role in establishing the value of

the coherence scale, TNFL, as we will elaborate below.
Let us now outline why we believe that for our toy PAM

our choice of parameters (adopted from prior 2CDMFT
studies [56, 63, 64]) is reasonable, at least in order of
magnitude. In our NRG computations we take the half-
bandwidth, say W , as an energy unit, i.e., we set W = 1.
The half-bandwidth is a very high energy scale, not di-
rectly relevant for the low-energy physics. If, for argu-
ment’s sake, we take the full bandwidth D = 2W to
be 1 eV, (W ∼ 0.5 eV) [97, 98], then the parameter
choices made in our paper imply U = 10W = 5 eV,
which is the usual order-of-magnitude value for Ce com-
pounds [99, 100], and −ϵf = 5.5W = 2.75 eV, somewhat
similar to the value 2 eV observed in the photoemission
spectrum of Ce compounds [99].
Finally, our choice of V = 0.46W = 0.23 eV for

the impurity-bath hybridization V in the Anderson
model implies an effective exchange coupling, JKSimp ·∑

k,k′,s,s′ ψ
†
ksσss′ψk′s′ , of strength [cf. Eq. (1.73) of

Ref. [101]]

JK = V 2

(
1

|ϵf |
+

1

ϵf + U

)
≃ 0.043 eV. (S42)

This quantity determines the coherence scale (called TNFL

in our work), which for the one-band Anderson model is
roughly given by [cf. Eq. (3.47) of Ref. [101]]

TNFL/W ≃
√
2JKρ exp

(
− 1

2JKρ

)
. (S43)

Here, ρ is the density of states per spin at the Fermi level.
For a featureless band, one would have ρ = 1/2W = 1/eV.
However, in the more realistic case (and also for the
periodic Anderson model) ρ is not featureless, hence the
value for ρ entering the formula for TNFL is more of an
effective parameter. Indeed, our 2CDMFT calculation
using the above choice of bare parameters leads to a
coherence scale of TNFL ≃ 1.55 × 10−4W . According
to Eq. (S43), this corresponds to JKρ ≃ 0.065. With
JK ≃ 0.043 eV [from Eq. (S42)] we get ρ ≃ 1.51/eV, quite
a bit larger than the ρ = 1/eV obtained for a featureless
band.
For CeCoIn5, we assume that the coherence scale is

influenced by the presence of the Γ+
7 doublet. We take that

into account by means of an effective orbital degeneracy
NCCI, which is a free parameter that is expected to be
larger than 1, but not (significantly) larger than 2 since
we expect the Γ6 excitation to play a negligible role. To
estimate the coherence scale, we use the position of the
resistivity maximum, TCCI

NFL ≃ 40K = 0.0034 eV [112] (in
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the PAM, the resistivity maximum is slightly below TNFL,
though this does not matter for an order-of-magnitude
estimate). For an N -orbital Anderson model, the Kondo
temperature and effective exchange coupling are related
by [cf. Eq. (D.18) of Ref. [101]]

TNFL/W ≃ (2NJKρ)
1/2N exp

(
− 1

2NJKρ

)
. (S44)

Using the same “effective impurity model” parameters
of (JK,W ) ≃ (0.043, 0.5) eV and ρ ≃ 1.51/eV estimated
from our PAM result, we find that a value of TCCI

NFL ≃ 0.0034
eV is obtained for an effective orbital number of NCCI ≃

1.5. This suggests that apart from Γ−
7 , the Γ+

7 crystal
field excitation indeed does play a role in establishing the
coherence scale. At even lower energies, the Γ+

7 excitation
presumably freezes out hence a one-orbital description of
the low-energy physics seems reasonable.

All in all, our parameter choice for the PAM seems
to be suitable for a rough description of CeCoIn5. That
said, the above arguments are clearly very heuristic. A
quantitative analysis beyond the universal phenomena
will require a more elaborate study using a more realistic
model (treated using LDA+DMFT+NRG).
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