Topics for bachelor thesis Summer semester 2015

Lode.Pollet@lmu.de

Topic nr 1: classical analysis of Helium in a nanopore

crucial for understanding: topological defect (disclination with Frank index $n=1$)
can this be understood at the classical level?

Ref: Lode Pollet and Anatoly B. Kuklov Phys. Rev. Lett. 113, 045301 (2014)
contact person: Tobias Pfeffer

Topic nr 2: Gross-Pitaevskii equation with finite range potential

Can the formation of clusters and the coherence between them seen with a single field ψ ?

Topic nr 3:classical Monte Carlo study of hard spheres

equation of state for hard spheres in a box. observe the jamming transition at high density

Topic nr 4:literature study of Majorana zero modes

$$
\gamma=\gamma^{\dagger}, \gamma^{2}=1,[H, \gamma]=0
$$

Have experiments observed a MZM, or are other explanations possible?
What are the impacts for topological quantum computing?

Topic nr 5: numerical linked cluster expansion

goal: understand and implement this method (exact diagonalization + finite size analysis)

Ref: M. Rigol, T. Bryant, R.Singh, Phys. Rev. E 75, 061118 (2007)
Ref: B. Tang, E. Khatami, M. Rigol, http://arxiv.org/abs/1207.3366
contact person: Stephen Inglis

Topic nr 6: Romberg integration method

can be repeated iteratively and converges very first + gives an idea of the systematic error

Question: if $\mathrm{H}=\mathrm{T}+\mathrm{V}$ with $[\mathrm{T}, \mathrm{V}] \neq 0$, can Romberg integration still give an advantage? contact person: Tobias Pfeffer

