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Introduction - Moduli problem

There are two (related) problems in string
model building:
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Introduction - Moduli problem

There are two (related) problems in string
model building:

1st. problem: String compactifications contain many
massless moduli fields φ with flat potential: dilaton, geometric
(closed string) moduli, gauge (open string, bundle) moduli.

• New forces?

• Uncalculable couplings?

• How gets supersymmetry broken?

• How to get inflation?

• Dark energy?
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Introduction - Moduli stabilization

Moduli can be stabilized, i.e. fixed, by creating a (static)
potential for them:

• Tree level: background fluxes

• Non-perturbatively: D-brane instantons, gaugino
condensates.

Eurostrings Conference, Cambridge, 6. April 2006 – p.4/32



Introduction - Moduli stabilization

Moduli can be stabilized, i.e. fixed, by creating a (static)
potential for them:

• Tree level: background fluxes

• Non-perturbatively: D-brane instantons, gaugino
condensates.

In this way one can obtain a discrete set of vacua with either

• negative cosmological constant, Λ < 0, (AdS vacua),

• zero cosmological constant, Λ = 0, (Minkowski vacua),

• positive cosmological constant, Λ > 0, (dS vacua)

and with various possibilities for the low-low energy matter
fields (gauge bosons, quarks, leptons, ...).
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Introduction - Landscape problem

2nd. problem: Count the number of consistent string

vacua =⇒ Vast landscape with Nsol = 10500−1500 discrete
vacua! (Lerche, Lüst, Schellekens (1986); Douglas (2003))

Eurostrings Conference, Cambridge, 6. April 2006 – p.5/32



Introduction - Landscape problem

2nd. problem: Count the number of consistent string

vacua =⇒ Vast landscape with Nsol = 10500−1500 discrete
vacua! (Lerche, Lüst, Schellekens (1986); Douglas (2003))

Two possible solutions of the landscape problem:

Eurostrings Conference, Cambridge, 6. April 2006 – p.5/32



Introduction - Landscape problem

2nd. problem: Count the number of consistent string

vacua =⇒ Vast landscape with Nsol = 10500−1500 discrete
vacua! (Lerche, Lüst, Schellekens (1986); Douglas (2003))

Two possible solutions of the landscape problem:

• Strings statistics (Anthropic answer): Determine the
fraction of vacua with good phenomenological
properties: (Λ/MPlanck)

4 ∼ 10−120,
G = SU(3) × SU(2) × U(1), ...
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Introduction - Landscape problem

2nd. problem: Count the number of consistent string

vacua =⇒ Vast landscape with Nsol = 10500−1500 discrete
vacua! (Lerche, Lüst, Schellekens (1986); Douglas (2003))

Two possible solutions of the landscape problem:

• Strings statistics (Anthropic answer): Determine the
fraction of vacua with good phenomenological properties:
(Λ/MPlanck)

4 ∼ 10−120, G = SU(3) × SU(2) × U(1), ...

• Entropy of string vacua (Entropic answer): determine a
probability wave function in moduli space,

|ψ(φ)|2 = eS(φ) ,

and see if |ψ|2 is peaked, i.e. has maxima, at vacua
with good phenomenological properties.
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Entropy of string (flux) vacua
Use correspondence between flux vacua and attractor
mechanism for supersymmetric black holes: moduli are fixed
at the horizon of supersymmetric black holes:
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(H. Ooguri, C. Vafa, E. Verlinde (2005)):
Probability distribution for (5-form) AdS flux vacua (in 2
dimensions):

HH wave function : |Ψp,q|
2 ∼ exp(S), S =

Ahorizon

4
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Further outline of the talk

• Moduli stabilization in type IIB ZN × ZM orientifolds

(D. Krefl, D. Lüst, S. Reffert, E. Scheidegger, W.
Schulgin, S. Stieberger, P. Tripathy (2005/06))
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• Statistics of type II Z2 × Z2 D-brane models
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Further outline of the talk

• Moduli stabilization in type IIB ZN × ZM orientifolds

(D. Krefl, D. Lüst, S. Reffert, E. Scheidegger, W.
Schulgin, S. Stieberger, P. Tripathy (2005/06))

• Statistics of type II Z2 × Z2 D-brane models

(R. Blumenhagen, F. Gmeiner, G. Honecker, D. Lüst, M.
Stein, T. Weigand (2004/05/06))

• Entropy maximization of flux compactifications

(G. L. Cardoso, D. Lüst, J. Perz (2006))
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Moduli stabilization in orientifolds

KKLT-Proposal:
(Kachru, Kallosh, Linde, Trivedi (2003))

Step 1: Fix all moduli (preserving SUSY)
Dilaton (S) and complex structure moduli (U) are stabiized
by 3-form fluxes, Kähler moduli are fixed by non-perturbative
effects → SUSY AdS vacuum.
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Moduli stabilization in orientifolds

KKLT-Proposal:
(Kachru, Kallosh, Linde, Trivedi (2003))

Step 1: Fix all moduli (preserving SUSY)
Dilaton (S) and complex structure moduli (U) are stabiized
by 3-form fluxes, Kähler moduli are fixed by non-perturbative
effects → SUSY AdS vacuum.

Step 2: Uplift the minimum of the potential to a positive,
non-SUSY (metastable) dS vacuum (by D̄3-branes).

This form of the up-lift requires that the AdS vacuum is
“stable” in the sense that all scalar masses are positive definite
(stronger requirement that Breitenlohner/Freedman bound):

∂V

∂φi∂φ̄j

> 0, (φi, φj = S, T, U)
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Moduli stabilization in orientifolds
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Can the KKLT scenario be realized in
concrete orientifold models?
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Moduli stabilization in orientifolds

We are considering 4D type IIB ZN × ZM orientifolds and
their blown-up versions, which is a smooth CY threefold X.

This is done by performing the following steps:
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Moduli stabilization in orientifolds

We are considering 4D type IIB ZN × ZM orientifolds and
their blown-up versions, which is a smooth CY threefold X.

This is done by performing the following steps:

• Choose some T 6/(ZN × ZM ) type II(B) orbifold that
preserves N = 2 supersymmetry.

• A consistent orientifold projection has to be performed.
This yields O3- and O7-planes. The associated tadpoles
must be cancelled by D3- and D7-branes and/or
background fluxes. The space-time supersymmetry is
reduced to N = 1.
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Moduli stabilization in orientifolds

We are considering 4D type IIB ZN × ZM orientifolds and
their blown-up versions, which is a smooth CY threefold X.

This is done by performing the following steps:

• Choose some T 6/(ZN × ZM ) type II(B) orbifold that
preserves N = 2 supersymmetry.

• A consistent orientifold projection has to be performed.
This yields O3- and O7-planes. The associated tadpoles
must be cancelled by D3- and D7-branes and/or
background fluxes. The space-time supersymmetry is
reduced to N = 1.

• The Kähler potential for the moduli fields has to be
computed.
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Moduli stabilization in orientifolds

• Background 3-form fluxes are turned on. They create a
superpotential W (S,U) for the dilaton S and the
complex structure moduli U .
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complex structure moduli U .

• Non-perturbative effects (D3-instantons, gaugino
condensates) may generate a superpotential W (T ) for
the Kähler moduli. This depends on the topology of the
divisors of X.
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the Kähler moduli. This depends on the topology of the
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• The scalar potential has to be minimized at stable
supersymmetric AdS points in the moduli space.
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Moduli stabilization in orientifolds

• Background 3-form fluxes are turned on. They create a
superpotential W (S,U) for the dilaton S and the
complex structure moduli U .

• Non-perturbative effects (D3-instantons, gaugino
condensates) may generate a superpotential W (T ) for
the Kähler moduli. This depends on the topology of the
divisors of X.

• The scalar potential has to be minimized at stable
supersymmetric AdS points in the moduli space.

• (The uplift to dS-vacua has to be performed.)
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Moduli stabilization in orientifolds
Closed string moduli space:

• h(1,1) Kähler moduli T i (size),

• h(2,1) complex structure moduli U i (shape),

• dilaton S = e−φ10 + iC0.

Moduli stabilization: Dilaton and complex structure moduli
are stabilized via background fluxes (Giddings, Kachru, Polchinski):

G3 = F3 + iSH3 , F3 = dC2 , H3 = dB2 .

Flux superpotential (Gukov, Vafa, Witten; Taylor, Vafa):

Wflux = κ−2
10

∫

X

G3 ∧ Ω .

Kähler moduli are stabilized via non-perturbative effects.
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Moduli stabilization in orientifolds
Two possible origins for the non-perturbative superpotential:

• Euclidean D3-brane instantons wrapping internal
4-cycles (divisors)

Wnp = gie
−2πVi

• Gaugino condensation in the world volume of D7-branes
wrapped on internal 4-cycles

Wnp = gie
−

2πVi
bi

Condition for existence of non-vansishing non-perturbative
superpotential (F/M-theory) (Witten):

χ(wrapped divisor) = h(0,0) − h(0,1) + h(0,2) − h(0,3) = 1

Zero modes may change in the presence of 3-form fluxes
and/or O-planes! Eurostrings Conference, Cambridge, 6. April 2006 – p.13/32



Moduli stabilization in orientifolds
Effective N = 1 superpotential:

W = Wflux(S,U i)+Wnp(T
i) = κ−2

10

∫

X

G3∧Ω+
∑

i

gie
−hiT

i

.

Scalar potential:

V = eκ
2
4K

(

|DSW |2 +
∑

i

|DT iW |2 +
∑

i

|DU iW |2 − 3|W |2

)

Impose SUSY condition:

DiW = ∂iW + κ2
4W∂iK = 0, ⇒ S0, T

i
0, U

i
0

Generically the SUSY vacua with fixed moduli are AdS:

V0 = −3eκ
2
4K0|W0|

2.
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Moduli stabilization in orientifolds
Type IIB orientifolds that allow for tadpole cancellation:

ZN -orbifolds

Twist Γ huntw.
(1,1)

huntw.
(2,1)

htwist.
(1,1)

htwist.
(2,1)

Z3 9 0 27 0

Z
(1)
6−I

5 0 24 5

Z
(2)
6−I

5 0 20 1

Z
(1)
6−II

3 1 32 10

Z
(2)
6−II

3 1 26 4

Z
(3)
6−II

3 1 28 6

Z
(4)
6−II

3 1 22 0

Z7 3 0 21 0

Z
(1)
12 3 0 26 5

Z
(2)
12 3 0 22 1
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Moduli stabilization in orientifolds
ZN × ZM -orbifolds

Twist Γ huntw.
(1,1)

huntw.
(2,1)

htwist.
(1,1)

htwist.
(2,1)

Z2 × Z2 3 3 48 0

Z3 × Z3 3 0 81 0

Z6 × Z6 3 0 81 0

Z3 × Z6 3 0 70 1

Z2 × Z3 3 1 32 10

Z2 × Z6 3 1 48 2

Z2 × Z6 3 0 33 0

Kählerpotential for untwisted moduli at the orbifold point:

K = − log(S + S̄) −
X

i

log(T i + T̄ i) −
X

i

log(U i + Ū i) .

Superpotential for untwisted moduli at the orbifold point:

W = (a0 − ia1S)(b0 +
X

i

biU
i +

X

i

ci

Y

Uk/U i + d0

Y

Uk) +
X

i

gie
−hiT i

.
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Moduli stabilization in orientifolds
Given this K and W , are there stable AdS vacua at the
orbifold point?
(D. Lüst, S. Reffert, W. Schulgin, S. Stieberger, hep-th/0506090; see also Choi,

Falkowski, Nilles, Olechowski, Pokorski, hep-th/0411066 ):
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Moduli stabilization in orientifolds
Given this K and W , are there stable AdS vacua at the
orbifold point?
(D. Lüst, S. Reffert, W. Schulgin, S. Stieberger, hep-th/0506090; see also Choi,

Falkowski, Nilles, Olechowski, Pokorski, hep-th/0411066 ):

• Dilaton and 3 Kähler moduli: No!

• Dilaton and 5 Kähler moduli: No!

• Dilaton and 9 Kähler moduli: No!
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Moduli stabilization in orientifolds
Given this K and W , are there stable AdS vacua at the
orbifold point?
(D. Lüst, S. Reffert, W. Schulgin, S. Stieberger, hep-th/0506090; see also Choi,

Falkowski, Nilles, Olechowski, Pokorski, hep-th/0411066 ):

• Dilaton and 3 Kähler moduli: No!

• Dilaton and 5 Kähler moduli: No!

• Dilaton and 9 Kähler moduli: No!

• Dilaton and 3 Kähler moduli and one complex structure
modulus: YES!

• Dilaton and 3 Kähler moduli and 3 complex structure
moduli: YES!
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Moduli stabilization in orientifolds
Problems at the orbifold points:

• In many orientifold models, the D7-branes wrap divisors
of the form Di = T 2 × T 2 in the covering space of
orbifold. These divisors have χ = 0 and do not
contribute to Wnp.
2 possible ways out: lift zero modes by fluxes or
use fractional D7-branes which wrap shorter 4-cycles

D̃i = P 1 × P 1.

• We want to stabilize all moduli, including the twisted
Kähler moduli (blowing up modes). Most likely they will
be fixed at finite values.
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Moduli stabilization in orientifolds
Problems at the orbifold points:

• In many orientifold models, the D7-branes wrap divisors
of the form Di = T 2 × T 2 in the covering space of
orbifold. These divisors have χ = 0 and do not
contribute to Wnp.
2 possible ways out: lift zero modes by fluxes or
use fractional D7-branes which wrap shorter 4-cycles

D̃i = P 1 × P 1.

• We want to stabilize all moduli, including the twisted
Kähler moduli (blowing up modes). Most likely they will
be fixed at finite values.

Go to smooth Calabi-Yau with resolved singularites!
(Z2 × Z2: F. Denef, M. Douglas, B. Florea, A. Grassi, S. Kachru, hep-th/0503124; all

orbifolds: S. Reffert, E. Scheidegger, hep-th/0512287; D. Lüst, S. Reffert, E.

Scheidegger, W. Schulgin, S. Stieberger, to appear)Eurostrings Conference, Cambridge, 6. April 2006 – p.18/32



Moduli stabilization in orientifolds
Resolving the orbifold singularities involves these steps:
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Moduli stabilization in orientifolds
Resolving the orbifold singularities involves these steps:

• The regions close to the orbifold singularity can be
described by toric geometry. In these local patches one
can resolve the singularities via blow-up. Finally the local
patches are glued together to form a smooth CY X.
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• The regions close to the orbifold singularity can be
described by toric geometry. In these local patches one
can resolve the singularities via blow-up. Finally the local
patches are glued together to form a smooth CY X.

• Perform the orientifold projection on the smooth CY ⇒
O-planes and D-branes.
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• The regions close to the orbifold singularity can be
described by toric geometry. In these local patches one
can resolve the singularities via blow-up. Finally the local
patches are glued together to form a smooth CY X.

• Perform the orientifold projection on the smooth CY ⇒
O-planes and D-branes.

• Determine the divisor topologies to decide whether a
non-pert. superpotential is generated.
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Moduli stabilization in orientifolds
Resolving the orbifold singularities involves these steps:

• The regions close to the orbifold singularity can be
described by toric geometry. In these local patches one
can resolve the singularities via blow-up. Finally the local
patches are glued together to form a smooth CY X.

• Perform the orientifold projection on the smooth CY ⇒
O-planes and D-branes.

• Determine the divisor topologies to decide whether a
non-pert. superpotential is generated.

• Determine the Kähler potential from the triple
intersection ring of X:

K = − log(S + S̄) − log

Z

Ω ∧ Ω̄ − 2 log V

V =
1

6

Z

J ∧ J ∧ J =
1

6
DijkT iT jTk .

Eurostrings Conference, Cambridge, 6. April 2006 – p.19/32



Moduli stabilization in orientifolds
Results for the blown-up orientifolds:

• The Kähler potential for the Kähler moduli can be
computed for all models. E.g. Z6−II -orientifold (h

(1,1)
un.tw. = 3,

h
(1,1)
tw. = 22, h

(2,1)
un.tw. = 1, h

(2,1)
tw. = 0):

V = 3r1r2r3 + r3

3
X

β=1

t2,βt4,β −
1

2
r2

4
X

γ=1

t23,γ − r3

X

β

(2t22,β +
1

2
t24,β)

+
1

2

X

βγ

t31,βγ − 2
X

β

t22,βt4,β +
16

3

X

β

t32,β +
2

3
(
X

β

t34,β +
X

γ

t33,γ)

−
X

βγ

(2t1,βγ t22,β +
1

2
t1,βγ t23,γ

1

2
+ t1,βγt24,γ)
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Moduli stabilization in orientifolds
Results for the blown-up orientifolds:

• The Kähler potential for the Kähler moduli can be
computed for all models. E.g. Z6−II -orientifold (h

(1,1)
un.tw. = 3,

h
(1,1)
tw. = 22, h

(2,1)
un.tw. = 1, h

(2,1)
tw. = 0):

V = 3r1r2r3 + r3

3
X

β=1

t2,βt4,β −
1

2
r2

4
X

γ=1

t23,γ − r3

X

β

(2t22,β +
1

2
t24,β)

+
1

2

X

βγ

t31,βγ − 2
X

β

t22,βt4,β +
16

3

X

β

t32,β +
2

3
(
X

β

t34,β +
X

γ

t33,γ)

−
X

βγ

(2t1,βγ t22,β +
1

2
t1,βγ t23,γ

1

2
+ t1,βγt24,γ)

• The Kähler potential for the complex moduli can be

computed for models with h
(2,1)
tw. = 0.
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Moduli stabilization in orientifolds
Results for the blown-up orientifolds:

• The Kähler potential for the Kähler moduli can be
computed for all models. E.g. Z6−II -orientifold (h

(1,1)
un.tw. = 3,

h
(1,1)
tw. = 22, h

(2,1)
un.tw. = 1, h

(2,1)
tw. = 0):

V = 3r1r2r3 + r3

3
X

β=1

t2,βt4,β −
1

2
r2

4
X

γ=1

t23,γ − r3

X

β

(2t22,β +
1

2
t24,β)

+
1

2

X

βγ

t31,βγ − 2
X

β

t22,βt4,β +
16

3

X

β

t32,β +
2

3
(
X

β

t34,β +
X

γ

t33,γ)

−
X

βγ

(2t1,βγ t22,β +
1

2
t1,βγ t23,γ

1

2
+ t1,βγt24,γ)

• The Kähler potential for the complex moduli can be

computed for models with h
(2,1)
tw. = 0.

• The non-pert. superpotential for the Kähler moduli can
be computed for all models.Eurostrings Conference, Cambridge, 6. April 2006 – p.20/32



Moduli stabilization in orientifolds
Result from analyzing the scalar potential:

Candidate models with stable, supersymmetric AdS minima:
Z4, Z6−II , Z2 × Z2 Z2 × Z4 orientifolds! (Stable minima are
excluded for orientifolds with no complex structure moduli).
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Moduli stabilization in orientifolds
Result from analyzing the scalar potential:

Candidate models with stable, supersymmetric AdS minima:
Z4, Z6−II , Z2 × Z2 Z2 × Z4 orientifolds! (Stable minima are
excluded for orientifolds with no complex structure moduli).

Alternative schemes to KKLT:

• Uplift from AdS via D-terms ⇒ Stability analysis has to
be refined.
(Burgess, Kallosh, Quevedo, hep-th/0309187; Villadoro, Zwirner,

hep-th/0508167; Achucarro, de Carlos, Casas, Doplicher, hep-th/0601190)
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Moduli stabilization in orientifolds
Result from analyzing the scalar potential:

Candidate models with stable, supersymmetric AdS minima:
Z4, Z6−II , Z2 × Z2 Z2 × Z4 orientifolds! (Stable minima are
excluded for orientifolds with no complex structure moduli).

Alternative schemes to KKLT:

• Uplift from AdS via D-terms ⇒ Stability analysis has to
be refined.
(Burgess, Kallosh, Quevedo, hep-th/0309187; Villadoro, Zwirner,

hep-th/0508167; Achucarro, de Carlos, Casas, Doplicher, hep-th/0601190)

• Supersymmetric Minkowski vacua with Wvac = 0 and
DW = 0 ⇒ These are automatically stable vacua;
however one needs more complicate race-track
superpotentials that may not lift all flat directions.
J. Blanco-Pillado, R. Kallosh, A. Linde, hep-th/0511042; D. Krefl, D. Lüst,

hep-th/0603211)) Eurostrings Conference, Cambridge, 6. April 2006 – p.21/32



Statistics of D-brane vacua
Now consider the open strings on the D-branes (D7-branes
with F -flux in IIB resp. D6-branes at angles in IIA) on top of
flux vacua:

• Possibilty of getting the spectrum of the MSSM.
Standard Model D-brane quiver:

HSSM

a U(3)

b

U(2)

c

U(1)

d U(1)

Q U D

L E

L R R

RL

• Computation of soft masses. (D. Lüst, S. Reffert, S. Stieberger)

Now one has to solve the supersymmetry condition for
D-branes (vanishing D-terms) plus the constraints from RR
tadpoles and K-theory! Eurostrings Conference, Cambridge, 6. April 2006 – p.22/32



Statistics of D-brane vacua

Statistical survey of 1.66 · 108 susy D-brane models on
Z2 × Z2 orientifold. (R. Blumenhagen, F. Gmeiner, G. Honecker, D. Lüst, T.

Weigand, hep-th/0411173,0510170; see also T. Dijkstra, L. Huiszoon, A. Schellekens)

Restriction Factor

gauge factor U(3) 0.0816

gauge factor U(2)/Sp(2) 0.992

No symmetric representations 0.839

Massless U(1)Y 0.423

Three generations of quarks 2.92 × 10−5

Three generations of leptons 1.62 × 10−3

Total 1.3 × 10−9

Only one in a billion models give rise to an MSSM like four
stack D-brane vacuum. Eurostrings Conference, Cambridge, 6. April 2006 – p.23/32



Probability distribution of flux vacua
(G.L. Cardoso, D. Lüst, J. Perz, hep-th/0603211; related work: Gukov, Saraikin, Vafa,

hep-th/0509109; Fiol, hep-th/0602103; Belluci, Ferrra, Marrani, hep-th/0602161)

Is it possible to assign a probability distribution |ψ|2 to the
string vacua to decide which of the many vacua is the most
likely one?

Probability of the MSSM?

Consider N = 2 closed string flux vacua without D-branes at
particular points in their moduli spaces, where additional
states become massless:

• Additional vector multiplets (β > 0): Asymptotic
freedom!

• Additional hypermultiplets (β < 0): Infrared freedom!

Which of the two possibilties is more likely?
Eurostrings Conference, Cambridge, 6. April 2006 – p.24/32



Probability distribution of flux vacua
Ooguri, Vafa, Verlinde (hep-th/0502211):

Instead of 3-form fluxes consider IIB on S2 × CY with
Ramond 5-form fluxes through S2 × Σ3 (Σ3 ⊂ CY ) =⇒
Superpotential:

W =

∫

S2×CY

(F5 ∧ Ω) , F5 = ω ∧ F3 .

SUSY conditions: DAW = 0 =⇒ AdS2 vacua!

pI = Re(CXI), XI =

∫

AI

Ω, pI =

∫

S2×AI

F5, I = 0, . . . , h(2,1)

qI = Re(CFI), FI =

∫

BI

Ω, qI =

∫

S2×BI

F5

Complex structure moduli: zA = XA/X0

(A = 1, . . . , h(2,1)). Eurostrings Conference, Cambridge, 6. April 2006 – p.25/32



Probability distribution of flux vacua
These are just the attractor equations of N = 2 SUSY black
holes!

N = 2 black hole N = 1 landscape

D3-branes wrapped around Σ3 F5 through S2 × Σ3

Black hole charges (qI , pI) 5-form fluxes (qI , pI)

Central charge Z(z) Superpotential W (z)

Stabilization cond. DAZ = 0 Supersymmetry cond. DAW = 0

Entropy S Cosmological constant |V0|

Near horizon geometry AdS2 × S2 Vacuum space AdS2 × S2

Probability wave function: |ψp,q(z, z̄)|
2 = eSp,q(z,z̄).

The attractor eqs. pI = Re(Y I) and qI = Re(FI(Y )) provide
a non-unique map between fluxes/charges and moduli

zA = Y A/Y 0.
This non-uniqueness can be resolved by fixing one pair of
(p, q)-charges, i.e. by fixing Y 0.

Eurostrings Conference, Cambridge, 6. April 2006 – p.26/32



Probability distribution of flux vacua
Entropy at the two-derivative level:

S = π i
(

Ȳ I F
(0)
I (Y ) − Y I F̄

(0)
I (Ȳ )

)

= π |Y 0|2 e−G(z,z̄) .

One modulus example with a singularity at V → 0 (conifold):

F (0)(V ) = −i(Y 0)2(
β

2π
V 2 log V+a) , V = −iz1 = −iY 1/Y 0

e−G(V,V̄ ) = 4 Re a−
β

2π
(V + V̄ )2 −

2β

π
|V |2 log|V | .

It follows that Re a > 0 (large black holes).

Eurostrings Conference, Cambridge, 6. April 2006 – p.27/32



Probability distribution of flux vacua
Positivity of the Kähler metric:

gV V̄ ≈
β

π
eG0 log|V |2 > 0 β < 0 .

Together with the gauge coupling constant g−2 ≈ β
4π

log|V |2.
we see that the corresponding gauge theory is infrared free
(β = (nV − nH)/2)!
From this we finally get that the entropy exhibits a maximum
at V = 0 (in agreement with Fiol):

-0.5
-0.25

0
0.25

0.5ReHVL

-0.5

0

0.5

ImHVL-0.5
-0.25

0
0.25

0.5ReHVL
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Probability distribution of flux vacua
Entropy with higher curvature interactions:
(Cardoso, de Wit, Mohaupt (1998))

S = π
(

i
(

Ȳ I FI(Y,Υ) − Y I F̄I(Ȳ , Ῡ)
)

+4 Im (ΥFΥ)
)

, (Υ = −64)

Perturbative expansion:

F (Y,Υ) =
∞
∑

g=0

F (g)(Y ) Υg .

F (1) for one modulus example near V = 0:

F (1) ≈ −
i

64 · 12π
β log V

Maximum of entropy gets enhanced by Wald term!
Eurostrings Conference, Cambridge, 6. April 2006 – p.29/32



Probability distribution of flux vacua
The higher F (g) are divergent with alternating coefficients:

F (g)(Y ) = i Ag

(Y 0)2g−2 z2g−2 (g > 1).

However the full non-perturbative prepotential is known from
the topological partition function: (Gopakumar, Vafa (1998))

F (Y,Υ) =
iΥ

128π
Ftop =

iΥ

128π

∞
∑

n=1

n log (1 − qnQ) ,

where g2
top = − π2Υ

16(Y 0)2 , q = e−gtop, Q = e−2πV .

For real gtop the entropy has again a maximum:
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Probability distribution of flux vacua

OSV Free energy:
Entropy as a Legendre transformation:

S = E − L ,

Free energy

E = 4π ImF, Ztop = e−Ftop ,

and where L is given by

L = π qI φ
I = 4π ImFI ReY I

At the conifold point the entropy is maximized, however the
free energy has a local minimum!

Eurostrings Conference, Cambridge, 6. April 2006 – p.31/32



Probability distribution of flux vacua

In conclusion: following the entropic principle
infrared free theories seem to be preferred!

Eurostrings Conference, Cambridge, 6. April 2006 – p.32/32



Probability distribution of flux vacua

In conclusion: following the entropic principle
infrared free theories seem to be preferred!

Remark:

This result differs from the paper of Gukov, Saraikin Vafa.
Apparently they consider the free energy instead of the
entropy.

Eurostrings Conference, Cambridge, 6. April 2006 – p.32/32



Probability distribution of flux vacua

In conclusion: following the entropic principle
infrared free theories seem to be preferred!

Remark:

This result differs from the paper of Gukov, Saraikin Vafa.
Apparently they consider the free energy instead of the
entropy.

Thank You!

Eurostrings Conference, Cambridge, 6. April 2006 – p.32/32
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