Hybrid representation of spin foams

Sebastian Steinhaus

sebastian.steinhaus@uni-jena.de

Theoretisch-Physikalisches Institut Friedrich-Schiller-Universität Jena

Quantum Gravity, Hydrodynamics and emergent Cosmology @ LMU Munich December 8th 2022

Hybrid spin foams Sebastian Steinhaus

Two challenges in spin foam quantum gravity

Challenge 1: Defining the continuum limit

- Spin foams: path integral approach
 - Regularized by triangulation (2-complex)
- · How does the theory depend on the choice of regulator?

Formulate renormalization group flow by relating boundary states.

Challenge 2: Performing calculations

- Spin foam amplitudes: difficult to compute beyond quantum regime
 - Numerical costs for grow exponentially
- Can we find efficient approximations?

Hybrid method: Utilize semi-classical amplitude to accelerate calculations

1 Spin foams in a nutshell

- 2 Challenge 1: Consistent boundary formulation
- 3 Challenge 2: Hybrid algorithm
- 4 Summary and Outlook

Spin foam gravity

[Rovelli, Reisenberger, Barrett, Crane, Freidel, Livine, Krasnov, Perez, Speziale, Engle, Pereira, Kaminski...]

- Path integral of geometries
- Regulator: Discretization / 2-complex
- Quantum geometric building blocks
 - · (Constrained) topological quantum field theory
 - Discrete area spectrum
- Physical content: Transition amplitudes
 - Assign an amplitude $\mathcal{A} \sim e^{i S_{\rm EH}} + e^{-i S_{\rm EH}}$ to each geometry
 - Single building block \sim discrete gravity [Conrady, Freidel '08, Barrett, Dowdall, Fairbairn,

Gomes, Hellmann '09, Kaminski, Kisielowski, Sahlmann '17, Liu, Han '18, Simão, S.St. '21]

Quantum amplitudes (not Wick-rotated)

Derived from general relativity

No reference to background geometry

Aim to implement diffeomorphism symmetry

Spin foam gravity - Basics

- Regulator: (dual) 2-complex Δ*
 - Vertices v, edges e, faces f
- Coloured with group theoretic data $\{\rho_f, \iota_e\}$
- Boundary graph \sim 3D geometry
 - **Polyhedra** \sim intertwiner ι_e
 - Area of face \sim representation ho_f
- · Evolution: bulk geometry
 - History interpolating between boundaries
- Sum over all histories
 - Sum over all ι and ρ
 - Assign amplitude to each history
- Amplitude functionals: $\mathcal{A}_b : \mathcal{H}_b \to \mathbb{C}$
 - From initial to final state: $\mathcal{H}_i \otimes \mathcal{H}_f^*$: $\langle \psi_f, \psi_i \rangle_{\mathcal{A}}$

Partition function and geometric interpretation

Amplitudes locally assigned to building blocks

Quantum space-time as a superposition of quantum geometric building blocks

1 Spin foams in a nutshell

- 2 Challenge 1: Consistent boundary formulation
- 3 Challenge 2: Hybrid algorithm
- 4 Summary and Outlook

Challenge 1: Defining continuum limit

- Discretisation dependence
 - Diffeomorphism symmetry? [Dittrich, Bahr '09, Bahr, S.St. '15]
- Ambiguities in definition of 4D models
 - · Implementation of simplicity constraints
- Background independence no scale!
 - · Physical content are transition amplitudes
 - · Boundary states / geometry encode scale
 - · Refinement of discretisation implies refinement of boundary
- For **results to agree**, we must assign different amplitudes.

Consistent boundary formulation [Dittrich, S.St. '13, Dittrich '14, S.St. 2020, Asante, Dittrich, S.St. 2022]

Improve spin foam amplitudes by coarse graining Renormalization group flow of amplitudes across discretisations

Consistent boundary formulation [Dittrich, S.St. '13, Dittrich '14]

- Amplitude functional $\mathcal{A}_b : \mathcal{H}_b \to \mathbb{C}$
- Coarse graining involves two main steps:
 - Summing over fine degrees of freedom $ightarrow \mathcal{A}_{b'}$ with finer boundary data
 - Define **embedding maps** $\iota_{bb'} : \mathcal{H}_b \to \mathcal{H}_{b'}$

- Embedding maps prescribe how to add degrees of freedom
 - Kinematical maps: Ashtekar-Lewandowski vacuum [Ashtekar, Isham '92, Ashtekar, Lewandowski '95] and BF vacuum [Dittrich, Geiller '15, Bahr, Dittrich, Geiller '15]

Spin foam RG equations

• Compute effective amplitude \mathcal{A}'_b with embedding maps:

Spin Foam RG equations

$$\mathcal{A}_b' := \mathcal{A}_{b'} \circ \iota_{b'b}$$

- Renormalization group flow of amplitudes $A \to A' \to A'' \to \dots$ across different complexes Δ^*
 - · Uncover phase diagram / universality classes of dynamics
 - * Must hold for all boundary states \rightarrow all scales!

Search for fixed point and 2nd order phase transition.

Realizations of boundary formulation [5.5t 20, Asante, Dittrich, S.St. 22]

Tensor Network Renormalization [Levin, Nave '07, Gu, Wen '09]

- Phase diagram from RG flow of tensors
 - Embedding maps (and truncations) constructed from dynamics
- Applications to spin foams:
 - 2D Analogue spin foams [Dittrich, Eckert, Martin-Benito '11, Dittrich, Martin-Benito, Schnetter '13, Dittrich, Martin-Benito, S.St. '13, Dittrich, Schnetter, Seth, S.St. '16]
 - 3D Lattice gauge theory [Dittrich, Mizera, S.St. '14, Delcamp, Dittrich, '16, Cunningham, Dittrich, S.St. '20]

Restricted spin foam models [Bahr, S.St. '15, Bahr, S.St. '16, Bahr, Klöser, Rabuffo '17, Bahr, Rabuffo, S.St. '18]

- Define a subset of full 4D spin foam path integral
 - Coherent intertwiners restricted to cuboids / frusta
- Indications for UV attractive fixed point
- Spectral dimension [S.St., Thürigen '18, Jercher, S.St., Thürigen w.i.p]
- Scalar matter coupled to spin foams [Ali, S.St. '22]

1 Spin foams in a nutshell

- 2 Challenge 1: Consistent boundary formulation
- 3 Challenge 2: Hybrid algorithm
- 4 Summary and Outlook

Challenge 2: Performing calculations

- · Recent progress in spin foam calculations:
 - Vertex amplitude: numerical algorithm for EPRL/FK model [Donà, Fanizza, Sarno, Speziale '19, Gozzini '21]
 - Sum over configurations: effective spin foam algorithm
 [Asanta, Dittrich, Haggard PRL '20, Asante, Dittrich, Padua-Argüelles '21]
 - Observables: MCMC on Lefshetz thimbles [Han, Huang, Liu, Qu, Wan '20]
- Analytical expression for vertex amplitude [Conrady, Freidel '08, Barrett, Dowdall, Fairbarn, Gomes, Hellmann '09, '10, Kaminski, Kisielowski, Sahlmann '17, Han, Liu '18, Simão, S.St. '21]
 - Coherent boundary data [Livine, Speziale '07]
- Critical points dominate for large spins $(j \gg 1)$
 - SU(2) representations j
 - Closure condition: geometric 3D tetrahedra
 - · Bivector constraint: gluing of tetrahedra
- Exponential suppression away from critical points

Hybrid spin foams Sebastian Steinhaus

Gluing constraints [Asante, Simão, S.St. '22]

· Consider two vertices glued together

Hybrid spin foams Sebastian Steinhaus

Gluing constraints [Asante, Simão, S.St. '22]

Consider two vertices glued together

Hybrid spin foams Sebastian Steinhaus

Gluing constraints [Asante, Simão, S.St. '22]

· Consider two vertices glued together

Hybrid spin foams Sebastian Steinhaus

Gluing constraints [Asante, Simão, S.St. 22]

· Consider two vertices glued together

Equip each vertex with **independent set of coherent data**. Interpolate between them by **gluing constraints**.

Hybrid spin foams Sebastian Steinhaus

Hybrid algorithm idea [Asante, Simão, S.St. 22]

- Approximate each vertex by asymptotic formula
 - Only (regions around) critical points contribute

Critical points in Lorentzian EPRL [Barrett, Dowdall, Fairbarn, Gomes,

Hellmann '09, Donà, Fanizzo, Sarno, Speziale '19]

- Lorentzian 4-simplices
- Vector geometries (degenerate)
- · Gluing constraints interpolate between vertices
 - · Constraints peaked on closing and matching tetrahedra
 - Analytical formula away from critical points!

Non-matching, semi-classical vertices

Non-metricity: Torsion degrees of freedom [Asante, Dittrich, Haggard '20]

Hybrid spin foams Sebastian Steinhaus

Non-metricity: area vs. length variables

- Spin foams use **area**, not **length variables**.
 - Asymptotic formula: area Regge calculus
 - Discrete area spectrum
- Example: single 4-simplex [Asante, Dittrich, Haggard '18]
 - · Uniquely determined by its 10 edge lengths
 - 10 triangle areas: potentially multiple length configurations
- Simplicity constraints \sim metricity
 - Partially weakly imposed: related to Immirzi parameter γ
- Effective spin foams [Asanta, Dittrich, Haggard PRL '20, Asante, Dittrich, Padua-Argüelles '21]
 - · Rapidly oscillating amplitude can "wash out" constraint

Flatness problem (Bonzom '09, Han '13, Hellmann, Kaminksi '13, Oliveira '18, Donà, Gozzini, Sarno '20, Engle, Kaminski, Oliveira '20, Engle, Rovelli '21]

Small γ lessens flatness problem [GOZZINI '21] Hybrid representation might give new insights into γ dependence

Summary

- Brief introduction to spin foam models
 - Defined on cellular complex $\Delta^* \sim$ regulator
 - · Quantum amplitudes for quantum geometric building blocks
- Challenge 1: consistent boundary formulation
 - · Relate transitions on different boundaries via embedding maps
 - Renormalization group flow of amplitudes
- Challenge 2: hybrid algorithm
 - New representation of spin foam partition function
 - Use asymptotic formula to accelerate calculations
 - Gluing constraints
 - New regime: semi-classical, non-matching vertices

Better understanding of quantum space-time à la spin foams

Outlook

- Implement and test hybrid algorithm [Asante, Simão, S.St. w.i.p.]
- Hybrid representation: justify / develop simplified models
 - Effective spin foam models [Asante, Dittrich, Haggard '20]
- Tackle larger triangulations
 - Spectral dimension of triangulation
 - Cosmology (for $\Lambda>0)$ [Liu, Williams '15]
 - Spin foam amplitudes as embedding maps [Dittrich, Hoehn '09, Dittrich, Hoehn '11, Dittrich,

Hoehn '13, Hoehn '14]

- Define a theory space of spin foam models
 - Flow in Immirzi parameter γ ?
- Effective continuum theories
 - Area metric theory [Dittrich '21, Dittrich, Kogios '22, Borissova, Dittrich '22]

Thank you for your attention!

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA