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Introduction

Perturbative QFT based on the Einstein-
Hilbert action needs infinitely many 
parameters to absorb divergences Insist on the perturbative 

paradigm

Go non-perturbative

Sophisticated non-perturbative QFT tools Lattice 

Functional methods



Different descriptions of 
the same dynamics Universality

Use different descriptions to 
address different questions

Paradigmatic example: QCD

continuum: 

• finite density 
• chiral fermions 
• clear understanding of 

physical mechanisms 

• necessity of many 
unphysical ingredients 

• harder to get to 
observables   

lattice/discrete: 

• direct access to 
observables  

• first-principles 
computations 

• continuum limit as a 
challenge  

• foggy view towards 
driving physical 

mechanisms  

synergy between two prospects 
to tackle problem of interest 

functional methods Monte-Carlo simulations



… what about Quantum Gravity?

perturbative renormalizability is neither 
necessary nor sufficient to define a 

fundamental theory 

QED

• perturbatively renormalizable 
• features a Landau pole

Quantum GR as an 
effective field theory

• perfectly valid for 
computations up to UV cutoff  

• physical predictions 

Both QFTs are well-defined in the presence of 
a UV cutoff

Can one take the continuum 
limit?

Those are “effective field theories” 
as opposed to “fundamental field 

theories”.



Naively… 

∫ΛUV

[𝒟gμν]
VDiff

eiSEH ΛUV → ∞ ?

∑
Δ

1
C(Δ)

eiSRegge Volume (Δ) → 0
# (Δ) → ∞

?

Both in the “continuum” as well as in the discrete descriptions, 
one looks for a well-defined continuum limit



Technically, a well-defined continuum limit 
is achieved by a scale-invariant regime

Couplings freeze and the cutoff can be 
safely removed 

The continuum limit must be universal, i.e., should not depend 
on the details of the regularization scheme

Renormalization Group Fixed Point

The existence of a suitable fixed point which requires the tunning of finitely many 
free parameters to adjust a renormalization group trajectory defines a predictive 

UV-completion of the underlying QFT

Asymptotic Safety

This is a concept — not a method!



Question: is (quantum) gravity an asymptotically safe QFT?

Choose your preferred computational 
method to check it

In general: fixed point sits at 
non-vanishing values of 

couplings

This means that perturbation theory might be 
just inapplicable

We need to evaluate renormalization-group flows non-
perturbatively

Lattice Functional methods



Functional Renormalization Group
Starting point: single scalar field

Z[J] = ∫Λ
𝒟ϕ e−S[ϕ]+ ∫ ddx J(x)ϕ(x) generating functional of correlation functions 

W[J] = ln Z[J] generating functional of connected correlation functions 

⟨ϕ(x1)…ϕ(xn)⟩ =
δnW[J]

δJ(x1)…δJ(xn)
J=0

φ(x) ≡ ⟨ϕ(x)⟩J =
δW[J]
δJ(x)

Γ[φ] = − W[Jφ] + ∫ ddx Jφ φ
generating functional of one-particle irreducible 
correlation functions 

We go Euclidean from now on [sorry Andreas!]



introduction of regulator function

Z[J] = ∫Λ
𝒟ϕ e−S[ϕ]+ ∫ ddx J(x)ϕ(x) Zk[J] = ∫Λ

𝒟ϕ e−S[ϕ]−ΔSk[ϕ]+ ∫ ddx J(x)ϕ(x)

regulator “action”: ΔSk =
1
2 ∫ ddx ϕ(x) ℛk(−∂2)ϕ(x)

Λ

k

k = 0

gives a (large) mass to 
field modes with 

momentum lower than k

in flat space: Fourier modes

ϕ(x) = ∫p
eix⋅p ϕ̃(p)

ℛk(p2)
k2 , p2 < k2

0 , p2 > k2

essentially



p2/k2

ℛk(p2)

1

it effectively implements the suppression 
of “slow modes” 

k = 0 : complete functional integration 

Wk[J] = ln Zk[J]

next to that: 

Γ̄k[φ] = − Wk[Jφ] + ∫ ddx Jφ φ

finally

Γk[φ] ≡ Γ̄k[φ] −
1
2 ∫ ddx φ(x)ℛk(−∂2)φ(x)

effective average action 
(EAA)



interpolates between full effective 
action and the “classical” one 

Properties:

Γ

SΓk k = Λ

k = 0

k

satisfies an exact flow equation

∂tΓk =
1
2

STr [(Γ(2)
k + ℛk)

−1
∂tℛk]

(exact) flow equation 

Wetterich equation

∂t ≡ k∂k

conversion of functional integral into 
functional differential equation 

solving the flow equation 

= 

solving the functional integral  



space of all functionals of the field which are compatible with the symmetries of the theory  

Theory Space

the effective average action is expanded as Γk[φ] = ∑
i

ḡi(k) 𝒪i[φ]

∂tΓk[φ] = ∑
i

(∂tḡi(k)) 𝒪i[φ]
ḡi = kdi gi

∂tḡi = kdi (di gi + βi)
βi = − di gi + k−di∂tḡi

∂tΓk[φ] = ∑
i

kdi (di gi + βi) 𝒪i[φ]
suitable projection  

rule for the Wetterich 
equation

extraction of beta functions

Approximations are necessary, but we don’t need to use a perturbative scheme!

(Infinitely many)



Looking for fixed points:

βi(g*) = 0 , i = 1,…, ∞

g* = (g*1 , … , g*∞)

g1

g2

g∞

g* = (g*1 , … , g*∞)

Theory Space

Linearized flow around the fixed point:

∂t(gi − g*i ) = ∑
j

∂βi

∂gj
(gj − g*j )

diagonalize

∂tzi = λi zi

zi(t) = Ci ( k
k0 )

−θi

θi = − λiw/

θi < 0

In order to hit the fixed point:

zi grows towards de UV

Ci = 0 irrelevant direction

θi > 0 zi decreases towards de UV

Ci free parameter

relevant direction



Predictivity requires that the number of relevant directions is finite

g1

g2

g∞

finite-dimensional 
critical surface

Asymptotic Safety: 

Existence of a renormalization-group fixed point; 

Fixed point features finitely many relevant directions;

β = #1 g + #2 g2

β

g* g
β

g*
g

#1 > 0

#2 < 0

#1 < 0

#2 > 0



- the technical side - 
Asymptotically Safe Quantum Gravity

No background to set a scale: background field method

Z = ∫ 𝒟gμν e−S[gμν]
gμν = ḡμν + hμν

The gravitational action is 
invariant under general 

coordinate transformations: 
gauge invariance

The spectrum of the Laplacian of the background metric defines a scale

background independence is 
encoded in split symmetry

ḡμν → ḡμν + ϵμν

hμν → hμν − ϵμν

Introduction of a gauge fixing 
term: 

Faddeev-Popov procedure



Gauge fixing

Z = ∫ 𝒟hμν𝒟C̄α𝒟Cβ e−S[ḡ+h]−Sgf[ḡ;h]−Sgh[ḡ;h,C̄,C]

Faddeev-Popov ghosts

Sgf[ḡ; h] =
1

2α ∫ ddx ḡ ḡμνFμ[ḡ; h]Fν[ḡ; h]

Fμ[ḡ; h] = ∇̄νhν
μ −

1 + β
d

∇̄μh

Sgh[ḡ; h, C̄, C] = ∫ ddx ḡ C̄α ℳα
β[ḡ; h]Cβ

Gauge-fixing term breaks split symmetry! Harmless breaking

Introducing regulators

ΔSk[Φ̄; Φ] = ΔSh
k [ḡ; h] + ΔSC̄C

k [ḡ; C̄, C]

ΔSh
k [ḡ; h] = ∫ ddx ḡ C̄α Rα

k, β ( − ∇̄2) Cβ

ΔSh
k [ḡ; h] =

1
2 ∫ ddx ḡ hμν Rμν,αβ

k ( − ∇̄2) hαβ

Regulators break split symmetry and 
(quantum) gauge invariance!



Zk[𝒥] = ∫ 𝒟hμν𝒟C̄α𝒟Cβ e−S[ḡ+h]−Sgf[ḡ;h]−Sgh[ḡ;h,C̄,C]−ΔSk[Φ̄;Φ]+ ∫ dd x ḡ𝒥⋅Φ ≡ eWk[𝒥]

In complete analogy: construction of effective average action Γk = Γk[Φ̄; Φ]

∂tΓk[Φ̄, Φ] =
1
2

STr [(Γ(0,2)
k [Φ̄, Φ] + ℝk)

−1
∂tℝk]

The effective average action is a functional of two fields; 

Integrating the flow and taking k=0 leads to an effective action that depends on two fields, but 
background independence is guaranteed by BRST symmetry;

WARNING!
very little is known about the Gribov problem in quantum 
gravity and how it can affect background independence



Choices…
Our starting point was a path integral over Riemannian metrics  

However…

gμν = ḡμν + hμν

metric can be degenerate 

metric can change signature 

hμν can fluctuate widely 

Such a linear split of the metric might introduce many spurious configurations in the non-
perturbative realm!

Alternative: gμν = ḡμα(eḡ−1h)
α

ν

avoid the previous problems + cover the 
space of Riemannian metrics 

In the path integral, should we adopt different variables that lead to the same field equations 
in the case of GR?

Palatini (gμν , Γα
βσ) or pure ea

μ or (ea
μ , ωbc

ν )

No a priori reason to choose one formulation instead of the other



• Basic question in this program: Does the would-be 
QG fixed point extends to gravity-matter systems? 

• Coupling matter to gravity: generation of infinitely 
many matter-graviton vertices already from the 
matter-field kinetic term.

Coupling scalars

Sϕ =
1
2 ∫ ddx g gμν∂μϕ∂νϕ

g−1 = ḡ−1 − h + hh + …

∂ϕ ∂ϕ

h



This generates induced matter-self-interactions as well as non-minimal interactions.

ϕ → ϕ + c

The induced interactions share the same 
symmetries of the kinetic term. In particular,

shift symmetry 

ϕ → − ϕ
Z2 - symmetry 

ℐ1 = ∫ ddx g gμαgνβ(∂μϕ)(∂αϕ)(∂νϕ)(∂βϕ)

ℐ2 = ∫ ddx g R gμν(∂μϕ)(∂νϕ)

ℐ3 = ∫ ddx g Rμν(∂μϕ)(∂νϕ)

ℐ# = ∫ ddx g G(R, Ric, Riem)μνKμν(X) Xαβ ∼ (∂αϕ)(∂βϕ)

induced self-interactions 



Apart from the induced interactions, one can still 
introduce a “standard” potential for the scalar fields 
in the effective action.

V(ϕ2) = ∑
i

ḡi ϕ2i

breaks shift symmetry 

ϕ → ϕ + c
Γk = Γgrav

k + Γϕ
k

Γϕ
k = Γss

k + Γnss
k

Several results in the literature support that nss 
interactions feature just a Gaussian fixed point - the so-
called Gaussian-Matter fixed point  

 
[see, e.g., Percacci & Narain ’09 ]

NGFPASQGM = NGFPASQG ⊗ GFPmatter

However… 

shift-symmetric interactions cannot feature a GFP

Γss
k ∼

Zϕ

2 ∫ ddx g gμν(∂μϕ)(∂νϕ)

+ Z2
ϕ Ck ∫ ddx g gμαgνβ(∂μϕ)(∂αϕ)(∂νϕ)(∂βϕ)

[Eichhorn’ 12, … ]



βc = a0 + a1 c + a2 c2

contributions arising 
from the kinetic term 
- they do not depend 
on c 

associated to canonical/
anomalous dimensionality 
of c 

contributions from two-
vertex diagrams 

Setting c = 0 shows that, in general, this does not 
correspond to a fixed point QG fluctuations shift the GFP

no QG fluctuations 

sufficiently “small” QG fluctuations 

QG fluctuations are too strong 



Hence, tentatively, the fixed-point structure should have the form

NGFPASQGM = NGFPshift−symmetric ⊗ GFPnon shift−symmetric

∫x

δΓk

δϕ(x)
= 0

Shift-symmetry is preserved 
along the flow: shift-symmetric 
subspace is closed under the 

RG



Shift-symmetric Scalar-Tensor theories: fixed-point structure 

Γss
k ∼

Zϕ

2 ∫ ddx g gμν(∂μϕ)(∂νϕ)

Γk = Γgrav
k + Γss

k + Γgf
k + Γghost

k Γgrav
k =

1
16πGk ∫ ddx g (2Λk − R)

Laporte, ADP, Saueressig, Wang, JHEP 12 (2021) 001 



Shift-symmetric Scalar-Tensor theories: fixed-point structure 

Γss
k ∼

Zϕ

2 ∫ ddx g gμν(∂μϕ)(∂νϕ) + Z2
ϕ Ck ∫ ddx g gμαgνβ(∂μϕ)(∂αϕ)(∂νϕ)(∂βϕ)

Γk = Γgrav
k + Γss

k + Γgf
k + Γghost

k Γgrav
k =

1
16πGk ∫ ddx g (2Λk − R)

Laporte, ADP, Saueressig, Wang, JHEP 12 (2021) 001 

Eichhorn ’12;  de Brito, Eichhorn, dos Santos ’21 



Shift-symmetric Scalar-Tensor theories: fixed-point structure 

Γss
k ∼

Zϕ

2 ∫ ddx g gμν(∂μϕ)(∂νϕ)

+ Zϕ C̃k ∫ ddx g Rμν(∂μϕ)(∂νϕ)

Γk = Γgrav
k + Γss

k + Γgf
k + Γghost

k Γgrav
k =

1
16πGk ∫ ddx g (2Λk − R)

Laporte, ADP, Saueressig, Wang, JHEP 12 (2021) 001 

Eichhorn, Lippoldt, Skrinjar ’17 



Shift-symmetric Scalar-Tensor theories: fixed-point structure 

Γss
k ∼

Zϕ

2 ∫ ddx g gμν(∂μϕ)(∂νϕ) + Z2
ϕ Ck ∫ ddx g gμαgνβ(∂μϕ)(∂αϕ)(∂νϕ)(∂βϕ)

+ Zϕ C̃k ∫ ddx g Rμν(∂μϕ)(∂νϕ) + Zϕ Dk ∫ ddx g Rgμν(∂μϕ)(∂νϕ)

Γk = Γgrav
k + Γss

k + Γgf
k + Γghost

k Γgrav
k =

1
16πGk ∫ ddx g (2Λk − R)

& Feynman-de Donder gauge

Laporte, ADP, Saueressig, Wang, JHEP 12 (2021) 001 



Shift-symmetric Scalar-Tensor theories: fixed-point structure 

Γss
k ∼

Zϕ

2 ∫ ddx g gμν(∂μϕ)(∂νϕ) + Z2
ϕ Ck ∫ ddx g gμαgνβ(∂μϕ)(∂αϕ)(∂νϕ)(∂βϕ)

+ Zϕ C̃k ∫ ddx g Rμν(∂μϕ)(∂νϕ) + Zϕ Dk ∫ ddx g Rgμν(∂μϕ)(∂νϕ)

Γk = Γgrav
k + Γss

k + Γgf
k + Γghost

k Γgrav
k =

1
16πGk ∫ ddx g (2Λk − R)

& Feynman-de Donder gauge

Laporte, ADP, Saueressig, Wang, JHEP 12 (2021) 001 

Employ a generic background to disentangle the tensor structures



We can get some intuition about the behavior of the system of beta functions when the 
anomalous dimension of the scalar field is set to zero

The beta function of the induced quartic 
matter self-interaction has a structure of a 
polynomial of even degree on the coupling c

On the other hand, the beta 
functions associated to the non-
minimal interactions have the 
structure of polynomials which are 
odd on the non-minimal couplings

It is possible to have multiple, 1 or no real solution!

QG fluctuations might 
just be too strong and 
remove real fixed point 

solutions

There is always a real solution

QG fluctuations are 
compatible with NGFP



Z2
ϕ Ck ∫ ddx g gμαgνβ(∂μϕ)(∂αϕ)(∂νϕ)(∂βϕ)

Zϕ C̃k ∫ ddx g Rμν(∂μϕ)(∂νϕ)

Zϕ Dk ∫ ddx g Rgμν(∂μϕ)(∂νϕ)

No fixed point!



Z2
ϕ Ck ∫ ddx g gμαgνβ(∂μϕ)(∂αϕ)(∂νϕ)(∂βϕ)

Zϕ C̃k ∫ ddx g Rμν(∂μϕ)(∂νϕ)

Zϕ Dk ∫ ddx g Rgμν(∂μϕ)(∂νϕ)

fixed point!



Z2
ϕ Ck ∫ ddx g gμαgνβ(∂μϕ)(∂αϕ)(∂νϕ)(∂βϕ)

Zϕ C̃k ∫ ddx g Rμν(∂μϕ)(∂νϕ)

Zϕ Dk ∫ ddx g Rgμν(∂μϕ)(∂νϕ)

No fixed point!



Z2
ϕ Ck ∫ ddx g gμαgνβ(∂μϕ)(∂αϕ)(∂νϕ)(∂βϕ)

Zϕ C̃k ∫ ddx g Rμν(∂μϕ)(∂νϕ)

Zϕ Dk ∫ ddx g Rgμν(∂μϕ)(∂νϕ)

Suitable fixed point!

2 relevant directions 
 

+ 
 

3 irrelevant ones

Non-minimal interactions play 
a crucial role in the fixed-point 

structure



Z2
ϕ Ck ∫ ddx g gμαgνβ(∂μϕ)(∂αϕ)(∂νϕ)(∂βϕ)

Zϕ C̃k ∫ ddx g Rμν(∂μϕ)(∂νϕ)

Zϕ Dk ∫ ddx g Rgμν(∂μϕ)(∂νϕ)

Suitable fixed point!

2 relevant directions 
 

+ 
 

3 irrelevant ones

Non-minimal interactions play 
a crucial role in the fixed-point 

structure

Upon inclusion of the 
anomalous dimension, 

two fixed points are 
found. The second one 

has another relevant 
direction.



Questions:

In the case of starting with a discrete formulation of gravity (either in a pre-geometric setting 
or not) + scalar fields, what is the corresponding analogue of those induced interactions?

Quantum gravity directly impacts the structure of effective matter vertices: how does this 
affect the use of scalar fields as “clocks” is a quantum-cosmological framework?

Coarse-graining of GFTs with local coordinates: any hint of this type of induced interactions?

The present results suggest that one should include “non-minimal” interactions in truncations 
for the stabilization of the fixed-point solution. What is the status of that in discrete 
approaches?

What does GFT+Scalars fixed-point structure tell us?



Thank you!


