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The QG perspective on Cosmology

Matter sector Initial conditions

Gravity sector

I Impact of singularity resolution on pert.?

I Is the evolution of pert. modified by QG effects?

I . . .

I Are these effects observable?

I Nature of dark matter?

I Singularity resolution?

I . . .

I Nature of dark energy?

I Geometric inflation?

I Is the vacuum state a QG

modified BD vacuum?

I . . .

I Are these effects observable?

yA
p

p
ro

xim
a

te
o

n
lyy

Challenges from the QG perspective:

I How to define (in)homogeneity?

I How to extract macroscopic dynamics?

I How to construct cosmological geometries?

I . . .

Relational description

Coarse-graining/

collective behavior
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The (T)GFT approach to QG

(Tensorial) Group Field Theories:

theories of a field ϕ : Gd → C defined
on d copies of a group manifold G .

d is the dimension of the “spacetime to be” (d = 4)

and G is the local gauge group of gravity,

G = SL(2,C) or, for some models, G = SU(2).

ciao

ciao Kinematical states: d − 1-simplices decorated with discretized field data y

I Group (Lie algebra) variables associated to discretized gravitational quantities.

I Appropriate (geometricity) constraints allow the simplicial interpretation.

I Scalar field discretized on each d-simplex: each d − 1-simplex composing it

carries values χ ∈ Rdl .

ciao Dynamics: connection with simplicial/spinfoam models

SGFT obtained by comparing ZGFT with simplicial gravity path integral.

I Non-local and combinatorial interactions guarantee the

gluing of d − 1-simplices into d-simplices.

I Γ are dual to spacetime triangulations.

I Scalar field data are local in interactions.

ZGFT =
∑

Γ

∏
i λ

ni (Γ)

i

sym(Γ)
ZGFT(Γ)

GFTs are QFTs of atoms of spacetime.

H1-p =

g1

g2

g3

g4

•H1-p =

g1

g2

g3

g4

•χ

Oriti 0912.2441; Oriti 1408.7112; Krajewski 1210.6257; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . . .
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The (T)GFT approach to QG
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QG condensates and peaked states
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(ciao(T)GFT condensates

Simplest collective behavior: macroscopic σ dynamics well described in the mean-field approx.

|σ〉 = Nσ exp

[∫
d
d
l χ

∫
dgI σ(gI , χ

µ)ϕ̂†(gI , χ
µ)

]
|0〉

I Assuming σ(gI , ·) = σ(hgI h
′
, ·), D = GL(3)/O(3)× Rdl :

I D = space of spatial geometries + matter at a point.

I If χµ, µ = 0, . . . , d − 1 constitute a matter ref. frame:

σ(gI , χ
a;χµ) ∼ distrib. of

spatial geometries and

matter at χµ.

R
el

a
ti

o
n

a
lit

y

(ciaoCondensate Peaked States(

I If σ is peaked on χµ ' xµ, |σ〉x encodes relational info. about spatial geometry + matter at xµ.

σ = (fixed peaking function η)× (dynamically determined reduced wavefunction σ̃)

I Relational strategy implemented at an effective level on “hydrodynamic” (averaged) quantities.

Spatial relational homogeneity: σ depends on a single “clock” scalar field χ0

(D = minisuperspace + homogeneous massless free clock)

LM, Oriti 2008.02774; LM, Oriti 2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238; Gielen 1404.2944;
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Mean-field approximation and QG hydrodynamics
σ

-h
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ϕ=σx0

= 0 .

I Non-localities present in geometric (gI )

and pre-matter (χ) variables.

I Non-linearities prevent any quantum-mechanical

interpretation for σ (no superposition principle).

σ 6= Wavefunction of the Universe (though they share the same domain)

I Only statistical interpretation of σ, as a distribution producing observable averages.

S
im

p
lifi

ed
σ

-d
yn

a
m
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s (ciaoWorking approximations(

I Mesoscopic regime: large N but negligible interactions.

I Hydrodynamic truncation of kinetic kernel due to peaking

properties.

I Isotropy: σ̃υ ≡ ρυe iθυ fundamental variables, with
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υ − 2iπ̃0σ̃
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υ − E 2

υσ̃ = 0
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Cosmology from QG condensates: observables and relationality

Spatial relational homogeneity:

σ depends on a single “clock” scalar field χ0

(D = minisuperspace + clock)

Collective Observablesp

Number, volume (determined e.g. by the mapping with

LQG) and matter operators (notation: (·, ·) =

∫
dχ

0
dgI ):

N̂ = (ϕ̂†, ϕ̂) V̂ = (ϕ̂†,V [ϕ̂])

X̂ 0 =
(
ϕ̂
†
, χ

0
ϕ̂
)

Π̂
0

= −i(ϕ̂†, ∂0ϕ̂)

I Observables ↔ collective operators on Fock space.

Relationality

I Averaged evolution wrt x0 is physical:

〈χ̂〉σx0
≡ 〈X̂〉σx0

/ 〈N̂〉σx0
' x0

I Emergent effective relational description:

• Small clock quantum fluctuations.

• Effective Hamiltonian Hσx0 '〈Π̂
0〉σx0

.

I 〈Ô〉σx0
= O[σ̃]|χ0=x0 hydrodynamic

variables: functionals of σ̃ localized at x0.

Wavefunction

isotropy
〈V̂ 〉σ0

x
=
∑∫

υ

Vυ|σ̃υ|2(x0)
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Effective relational volume dynamics
E

ff
.

d
yn

a
m

ic
s (ciaoMean-field approximation

I Mesoscopic regime: large N but negligible interactions.

I Hydrodynamic approx. of kinetic kernel.

I Isotropy: σ̃υ ≡ ρυe iθυ fundamental variables.

σ̃
′′
υ − 2iπ̃0σ̃

′
υ − E 2

υσ̃ = 0.

Effective relational Friedmann equations

(
V ′

3V

)2

'
(

2
∑∫
υ
Vυρυsgn(ρ′υ)

√
Eυ − Q2

υ/ρ
2
υ + µ2

υρ
2
υ

3
∑∫
υ
Vυρ2

υ

)2
V ′′

V
'

2
∑∫
υ
Vυ
[
Eυ + 2µ2

υρ
2
υ

]
∑∫
υ
Vυρ2

υ

Classical limit (large ρυs, late times) Bounce

I If µ2
υ is mildly dependent on υ (or one υ is

dominating) and equal to 3πG

(V ′/3V )2 ' 4πG/3 flat FLRW

I Quantum fluctuations on clock and geometric

variables are under control.

I A non-zero volume bounce happens for a large

range of initial conditions (at least one Qυ 6= 0 or

one Eυ < 0).

I The average singularity resolution may still be

spoiled by quantum effects on geometric and clock

variables.
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LM, Oriti 2008.02774; LM, Oriti 2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Pithis 2112.00091; . . .
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Exploring the physics of (T)GFT

condensates



Physics of (T)GFT cosmology
In
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(ciaoGeometric acceleration from interactions

Early times: geometric inflation Late times: phantom dark energy

3 Geometric inflation from QG interactions.

For some models bottom-up natural and slow-roll.

Comparison with observations?

3 Phantom dark energy generated by QG

effects (no field theoretic issue).

Comparison with observations?

(ciaoIncluding more realistic matter: running couplings

3 Matching with GR requires the macroscopic

constants (including G) to run with time.

Insights on renormalization?

Connection with asymptotic safety?

In
h

o
m

o
g

en
ei

ti
es

(ciaoEffective dynamics of cosmological scalar perturbations(

I Classical system: gravity + 5 m.c.m.f. scalar

fields, 4 of which constitute the relational frame.

I Perturbations at the level of σ.

3 Matching with GR at late times only for

super-horizon modes.

Why the mismatch?

Relation with modified gravity?

Full relational frame requires quanta

with different causal properties.

Including quantum correlations

substantially helps the matching.

Geometry from quantum correlations!

De Cesare, Oriti, Pithis 1606.00352; LM, Oriti 2112.12677; Oriti, Pang 2105.03751; Ladstätter, LM, Oriti (to appear); Jercher, LM, Pithis (to appear)
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microscopic (T)GFT

model

hydrodynamics on

superspace

effective relational

description

averages of collective

observables

macroscopic

cosmological dynamics

mean-field approx.

I Quanta: simplices decorated

with discretized fields.

I Models related to simplicial

gravity, spinfoams and LQG.

I Achieved via averaged

q.e.o.m. on condensate states.

I σ: distribution of matter +

spatial geometries at a point.

I Hydrodynamic quantities: exp.

values of 1-body operators.

I Effective relational strategy

via peaked condensate states.

(Scalar) Inhomogeneities, free

I Late times: strong indications

for GR matching.

I Early times: deviations from

classical gravity.

Homogeneous, interacting

I Late times: emergence of

phantom dark energy.

I Early times: possible

geometric slow-roll inflation.

Homogeneous, free

I Late times: FRLW flat

classical dynamics.

I Early times: averaged

quantum bounce.
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Backup



Relational strategy: the classical and quantum GR perspective

Background

independence
Problem of time Relational strategy

Quite well understood from a classical perspective, less from a quantum perspective.

ClassicalQ Quantum GR

Notion of relationality can be classically encoded in

relational observables:

I Take two phase space functions, f and T with

{T ,CH} 6= 0 (T relational clock).

I The relational extension Ff ,T (τ) of f encodes

the value of f when T reads τ .

I Evolution in τ is relational.

I Ff ,T (τ) is a very complicated function, often

written in series form.

I Applications only for (almost) deparametrizable

systems, such as GR plus pressureless dust or

massless scalar fields.

Dirac approach: first quantize, then implement

relationality

I Perspective neutral approach: all variables are

treated on the same footing.

I Poor control of the physical Hilbert space.

Reduced phase space approach: first implment

relationality, then quantize

I No quantum constraint to solve.

I Led to quantization of simple deparametrizable

models (LQG).

I Not perspective neutral. Too complicated to

implement in most of the cases.

Isham 9210011; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Hoehn et al. 1912.00033 and 2007.00580; Tambornino 1109.0740; . . .
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Relational strategy and emergent quantum gravity theories

Background

independence
Problem of time Relational strategy

I Well understood from a classical perspective, less from a quantum perspective.

I Difficulties especially relevant for emergent QG theories.

Microscopic pre-geo Macroscopic proto-geo

I Fundamental d.o.f. are weakly related

to spacetime quantities;

I Set of collective

observables;

I The latter expected to emerge from the

former when a continuum limit is taken.

I Coarse grained states or

probability distributions.

The quantities whose evolution we want to describe relationally

are the result of a coarse-graining of some fundamental d.o.f.

Effective approaches:
I Bypass most conceptual and technical difficulties;

I Relevant for observative purposes.

LM, Oriti 2008.02774; Giulini 0603087; Kuchar Int.J.Mod.Phys.D 20(2011); Isham 9210011; Rovelli Class. Quantum Grav. 8 297;
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Emergent effective relational dynamics

P
O

S
T

Q
U

A
N

T
U

M

A
N

T
E

Q
U

A
N

T
U

M
PROTO-GEOMETRIC

PRE-GEOMETRIC

Effective
Relational
Dynamics

Basic principles

Emergence Rel. dynamics formulated in terms

of collective observables and states defined

in the microscopic theory.

Effectiveness Rel. evolution intended to hold on

average. Internal clock not too quantum.

Concrete example: scalar field clock

Emergence

I Identify a class of states |Ψ〉 which encode

collective behavior and admit a continuum

proto-geometric interpretation.
I Identify a set of collective observables:

Ôa χ̂ Π̂ N̂

Geometric
observables

Scalar field and
its momentum

Number
of quanta

〈·〉Ψ 〈·〉Ψ 〈·〉Ψ

Effectivness

I It exists a “Hamiltonian” Ĥ such that

i
d

d 〈χ̂〉Ψ
〈Ôa〉Ψ = 〈[Ĥ, Ôa]〉Ψ ,

and whose moments coincide with those of Π̂.
I Relative variance of χ̂ on |Ψ〉 should be � 1

and have the characteristic 〈N̂〉−1

Ψ behavior:

σ
2
χ � 1 , σ

2
χ ∼ 〈N̂〉

−1

Ψ .

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;
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Continuum physics and QG: the general perspective

Continuum

limit in QG

Large number of dynamical

microscopic dof.

Full partition function needed!

?GR

?

The (F)RG perspective Approximate methods: mean-field theory

Spacetime QFT QG theory

I Energy scale defines the

flow from IR and UV.

I Only internal “timeless”

scales available.

UV and IR have different meaning in QG!

I Theory space constrained

by symmetries.

I Symmetries of QG

models hard to classify.

Little control over QG theory space!

I Based on collective quantity: order

parameter.

I Mean-field (saddle-point) approx. of Z :

“simple” computations!

I Good description of quantum

condensate phase transitions.

I QG counterpart of the Gross-Pitaevskii

approximation in the hydrodynamics of

quantum fluids.

Oriti 2112.02585, Reuter, Saueressig 2019, Kopietz et al. 2010, Finocchiaro, Oriti 2004.07361, Carrozza 1603.01902 . . .
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Scalar perturbations from (T)GFT condensates

Simplest (slightly) relationally inhomogeneous system

Observables

notation: (·, ·) =

∫
d

4
χdφdgI

F
ra

m
e

X̂µ = (ϕ̂†, χµϕ̂) Π̂µ = −i(ϕ̂†, ∂µϕ̂)

V
o

l.

Only isotropic info: V̂ = (ϕ̂†,V [ϕ̂])

M
a

t.

Φ̂ = (ϕ̂†, φϕ̂) Π̂φ = −i(ϕ̂†, ∂φϕ̂)

States

I CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099
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Scalar perturbations from (T)GFT condensates

Simplest (slightly) relationally inhomogeneous system

Classical

I 4 MCM reference fields (χ0
, χ

i ), with

Lorentz/Euclidean invariant Sχ in field space.

I 1 MCM matter field φ dominating the e.m.

budget and relationally inhomog. wrt. χi .
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notation: (·, ·) =
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LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099
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Scalar perturbations from (T)GFT condensates

Simplest (slightly) relationally inhomogeneous system

Classical Quantum

I 4 MCM reference fields (χ0
, χ

i ), with

Lorentz/Euclidean invariant Sχ in field space.

I 1 MCM matter field φ dominating the e.m.

budget and relationally inhomog. wrt. χi .

I (T)GFT field: ϕ(gI , χ
µ
, φ), depends on 5χi

discretized scalar variables.

I EPRL-like or extended BC model with SGFT

respecting the classical matter symmetries.

Observables

notation: (·, ·) =
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I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099
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Scalar perturbations from (T)GFT condensates

Simplest (slightly) relationally inhomogeneous system

Classical Quantum

I 4 MCM reference fields (χ0
, χ

i ), with

Lorentz/Euclidean invariant Sχ in field space.

I 1 MCM matter field φ dominating the e.m.

budget and relationally inhomog. wrt. χi .

I (T)GFT field: ϕ(gI , χ
µ
, φ), depends on 5χi

discretized scalar variables.

I EPRL-like or extended BC model with SGFT

respecting the classical matter symmetries.
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LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099
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Scalar perturbations from (T)GFT condensates

Observables

notation: (·, ·) =

∫
d

4
χdφdgI

F
ra

m
e

X̂µ = (ϕ̂†, χµϕ̂) Π̂µ = −i(ϕ̂†, ∂µϕ̂)

V
o

l.

Only isotropic info: V̂ = (ϕ̂†,V [ϕ̂])

M
a

t.

Φ̂ = (ϕ̂†, φϕ̂) Π̂φ = −i(ϕ̂†, ∂φϕ̂)

States

I CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Late times volume and matter dynamics

I Averaged q.e.o.m. −→ coupled differential equations for ρ and θ.

I Decoupling for a range of values of CPSs and large N (late times).

Dynamic equations

for 〈V̂ 〉σ , 〈Φ̂〉σ

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099
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Scalar perturbations from (T)GFT condensates

Observables

notation: (·, ·) =

∫
d

4
χdφdgI

F
ra

m
e

X̂µ = (ϕ̂†, χµϕ̂) Π̂µ = −i(ϕ̂†, ∂µϕ̂)

V
o

l.

Only isotropic info: V̂ = (ϕ̂†,V [ϕ̂])

M
a

t.

Φ̂ = (ϕ̂†, φϕ̂) Π̂φ = −i(ϕ̂†, ∂φϕ̂)

States

I CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Late times volume and matter dynamics

I Averaged q.e.o.m. −→ coupled differential equations for ρ and θ.

I Decoupling for a range of values of CPSs and large N (late times).

Dynamic equations

for 〈V̂ 〉σ , 〈Φ̂〉σ

Background

I Matching with GR (assuming peaking on

matter momenta).

I Emergent matter and G defined in terms

of microscopic parameters.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099
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Scalar perturbations from (T)GFT condensates

Observables

notation: (·, ·) =

∫
d

4
χdφdgI

F
ra

m
e

X̂µ = (ϕ̂†, χµϕ̂) Π̂µ = −i(ϕ̂†, ∂µϕ̂)

V
o

l.

Only isotropic info: V̂ = (ϕ̂†,V [ϕ̂])

M
a

t.

Φ̂ = (ϕ̂†, φϕ̂) Π̂φ = −i(ϕ̂†, ∂φϕ̂)

States

I CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Late times volume and matter dynamics

I Averaged q.e.o.m. −→ coupled differential equations for ρ and θ.

I Decoupling for a range of values of CPSs and large N (late times).

Dynamic equations

for 〈V̂ 〉σ , 〈Φ̂〉σ

Background Perturbations

I Matching with GR (assuming peaking on

matter momenta).

I Emergent matter and G defined in terms

of microscopic parameters.

I Super-horizon GR matching.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099
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Scalar perturbations from (T)GFT condensates

Observables

notation: (·, ·) =

∫
d

4
χdφdgI

F
ra

m
e

X̂µ = (ϕ̂†, χµϕ̂) Π̂µ = −i(ϕ̂†, ∂µϕ̂)

V
o

l.

Only isotropic info: V̂ = (ϕ̂†,V [ϕ̂])

M
a

t.

Φ̂ = (ϕ̂†, φϕ̂) Π̂φ = −i(ϕ̂†, ∂φϕ̂)

States

I CPSs around χµ = xµ, with

• η: Isotropic peaking on rods;

• σ̃: Isotropic distribution of geometric data.

I Small relational σ̃-inhomogeneities (σ̃ = ρe iθ):

ρ = ρ̄(·, χ0) + δρ(·, χµ), θ = θ̄(·, χ0) + δθ(·, χµ).

Late times volume and matter dynamics

I Averaged q.e.o.m. −→ coupled differential equations for ρ and θ.

I Decoupling for a range of values of CPSs and large N (late times).

Dynamic equations

for 〈V̂ 〉σ , 〈Φ̂〉σ

Background Perturbations

I Matching with GR (assuming peaking on

matter momenta).

I Emergent matter and G defined in terms

of microscopic parameters.

I Super-horizon GR matching.

I No matching for intermediate modes (because of

different coupling with bkg effective metric)!

I Effective metric signature determined by CPSs.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099
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Volume at late times
B

a
ck

g
ro

u
n

d

Classical Quantum

I Harmonic gauge: N = a3.

I Negligible contribution of reference matter.

(V̄ ′/V̄ )2 = 12πGπ
(c)
φ

(V̄ ′/V̄ )′ = 0

I Wavefunction peaked on πφ = π̃φ.

I Domination of single spin υo .

I µυo (πφ) ' cυoπφ, with 4c2
υo

= 12πG .

(V̄ ′/V̄ )2 = 12πG π̃φ (V̄ ′/V̄ )′ = 0

g
P

er
tu

rb
a

ti
o

n
sg Classical Quantum

I First order harmonic gauge.

I Negligible contribution of reference matter.

I Define V (x) =
√

det qij ≡ V̄ + δV .

δV ′′ − 6HδV ′ + 9H2
δV − V̄ 4/3∇2

δV = 0 .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single υo : δV ≡ 2ρ̄υo δρυo .

I µυo (πφ) ' cυoπφ, with 4c2
υo

= 12πG .

δV ′′ − 3HδV ′ + Re(α2)∇2
δV = 0 .

Super-horizon pSub-horizonp

I Matches the classical solution δV ∝ V̄ . I Same diff. structure but different powers of V̄ .

No matching with GR for arbitrary modes.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099;
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Matter at late times
B

a
ck

g
ro

u
n

d

Classical Quantum

I Harmonic gauge: N = a3.

I Negligible contribution of ref. matter.

φ̄
′′ = 0 ,

π
(c)
φ = const. .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single υo .

〈Π̂φ〉σ̄ = π̃φN̄ ,

〈Φ〉σ̄ =

[
−∂πφ

[
Qυo
µυo

]
+ Qυo

∂πφµυo

µυo
x0

]
πφ=π̃φ

pMatching conditionsp

I π
(c)
φ ≡ 〈Π̂φ〉σ̄ /N̄ = π̃φ.

I Peaking in πφ −→ peaking in matter field momenta.

I φ ≡ 〈Φ̂〉σ̄ = −c−1
υo

+ π̃φx
0, Qυo ' π

2
φ!

I Emergent G related to matter content!

P
er

tu
rb

a
ti

o
n

s

Classical Quantum

I First order harmonic gauge.

I Negligible contribution of ref. matter.

δφ
′′ − V̄ 4/3∇2

δφ = 0 .

I Wavefunction peaked on πφ = π̃φ.

I Domination of single spin υo : δV ≡ 2ρ̄υo δρυo .

δφ = δV/V̄ + N̄[∂πφθυo ]πφ=π̃φ
.

I Matching at super-horizon scales I No matching for intermediate scales.

LM, Oriti 2112.12677; Gerhart, Oriti, Wilson-Ewing 1805.03099;
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Scalar perturbations from causal (T)GFT condensates

(giaoModel (giaoStates

I Spacelike and timelike tetrahedra,

generated respectively by (gI ∈ SL(2,C)):

ϕ̂+(gI ,X+, χ
µ
, ·) , X+ ∈ H

3
,

ϕ̂−(gI ,X−, χ
µ
, ·) , X− ∈ H

1,2
.

I Causal properties of the frame encoded in

K = K+ +K−, with K± = (ϕ∗±,K±ϕ±):

K+ = K+(gI , g
′
I ; (χ0 − χ′0)2

, ·),

K− = K−(gI , g
′
I ; |χi − χ′i |2, ·).

|ψ〉 = Nψ exp(σ̂⊗ I + I⊗ τ̂ + δ̂Φ⊗ I + δ̂Ψ + I⊗ δ̂Ξ) |0〉

Background:

I Two-sectors condensation: σ̂ = (σ, ϕ̂†+), τ̂ = (τ, ϕ̂†−);

I σ peaked on time, τ on space and time;

I σ̃ and τ̃ only time dependent (homogeneity).

Perturbations: nearest neighbour two-body correlations

δ̂Φ = (δΦ, ϕ̂†2
+ ) δ̂Ψ = (δΨ, ϕ̂†+⊗ϕ̂

†
−) δ̂Ξ = (δΞ, ϕ̂†2

− ).

V
o

lu
m

e
d

yn
a

m
ic

s 〈V̂ 〉ψ = V̄ (x0) + δV̄ (x0) + δV (x0
, x) .

I δV̄ ∼ (δΦ, (σ∗)2) (bkg quantum correction).

I δV̄ ∼ (δΨ, σ∗τ∗) (inhomogeneities).

I Only two mean-field equations.

Move beyond mean-field?

Physical implications of δV̄ ?

δV ′′ + c1δV
′ + c2δV

′′ + f (x0)∇2
δV = 0 .

I Isotropy and single spin approximation.

3 Structure of equation essentially fixed.

3 Matching for sub-horizon modes possible

with appropriate choice of τ .

Values of c1 and c2 to be detrmined.

Jercher, LM, Pithis (to appear)
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Interactions: inflation and running couplings
yI

n
te

ra
ct

io
n

sy

(ciaoPerturbative analysis

U =
(
U, φl [ϕ

∗
, ϕ]
)
, φl [ϕ

∗
, ϕ] ∼

{
φ
l+1 (phase dependent interactions)

(φ∗)(l+1)/2
φ

(l+1)/2 (modulus interactions)

I l + 1 order of interaction (l = 4 simplicial).

I U = U(·, ψ) only if V
(c)
ψ 6= 0.

I Effective dynamics from mean-field approx.

I Perturbative analysis: small interactions.

In
te

ra
ct

in
g

sc
a

la
r

(ciaoIncluding more realistic matter: running couplings(

C
la

ssica
l

Q
u

a
n

tu
m

H2 =
8πG

3

(
π

2
ψ/π

2
χ + (V 2

/π
2
χ)V

(c)
ψ

)
,

0 = ψ
′′ + (V 2

/π
2
χ)V

(c)
ψ,ψ .

H2 = c1 + c2V
2V

(q)
ψ ,

0 = ψ
′′ + c3χ

2V 2V
(q)
ψ,ψ .

I V
(c)
ψ classical scalar potential: V

(c)
ψ ∼ anψ

n.

I V
(q)
ψ quantum scalar effective potential:

V
(q)
ψ =

{
V

(c)
ψ (modulus int.)

V (c)F (phase int., F trig. function)

I GR matching: l = 5 and running couplings:

G → G/χ2, πψ → πψχ, an → χ
2an.

g
A

cc
el

er
a

ti
o

n
g

(ciaoGeometric inflation

I l = 5 generate cosmic acceleration.

I Modulus interactions produce a de Sitter

phase (no graceful exit).

I Phase int. produce quantum gravity induced

trig. potential: V = c1 sin(ωχ) + c2 cos(ωχ).

Detailed slow-roll analysis?

Ladstätter, LM, Oriti (to appear)
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