QUANTUM REFERENCE FRAMES:
 A RELATIONAL PERSPECTIVE ON

NONCLASSICAL SPACETIME

Flaminia Giacomini
ETH Zurich
(previously at Perimeter Institute)
F. Giacomini, E. Castro Ruiz, Č. Brukner, Nat. Commun. 10(494), 2019
A. Vanrietvelde, P. A. Höhn, F. Giacomini, E. Castro Ruiz, Quantum 4(225), 2020
F. Giacomini, E. Castro Ruiz, Č. Brukner, Phys. Rev. Lett. 123(9), 2019
E. Castro Ruiz, F. Giacomini, A. Belenchia, Č. Brukner, Nat. Commun. 11(1), 2020
L. F. Streiter, F. Giacomini, Č. Brukner, Phys. Rev. Lett. 126(23), 2021
F. Giacomini, Č. Brukner, arXiv:2012.13754 (2020)
F. Giacomini, Quantum 5, 508 (2021)
F. Giacomini, Č. Brukner, AVS Quantum Sci. 4, 015601 (2022)
C. Cepollaro, F. Giacomini, arXiv:2112.03303 (2021)
Overstreet, Kim, Curti, Asenbaum, Kasevich, Giacomini, arXiv:2209.02214 (2022)

Quantum Gravity, Hydrodynamics and Emergent Cosmology

Quantum aspects of spacetime

What replaces the classical notion of spacetime when gravity acquires quantum properties?

HIGH ENERGIES: PLANCK-SCALE PHYSICS

LOW ENERGIES: PERTURBATIVE GRAVITY QUANTUM PARTICLES

Quantum aspects of spacetime

What replaces the classical notion of spacetime when gravity acquires quantum properties?

Quantum aspects of spacetime

What replaces the classical notion of spacetime when gravity acquires quantum properties?

HIGH ENERGIES: PLANCK-SCALE PHYSICS

Image credits: Perimeter Institute

QUANTUM SPACETIME "FUZZINESS"

- Spin foams
- Quantum Cosmology
- Modified dispersion relations
- (...)

NONCLASSICAL SPACETIME

- Quantum Time and quantum clocks
- Indefinite causal structures
- Lack of classical reference frames
- (...)

Concrete scenarios with immediate physical meaning

What are reference frames?

What are reference frames?

Reference frames are abstract entities, used to fix the point of view from which observations are carried out.

What are reference frames?

Reference frames are abstract entities, used to fix the point of view from which observations are carried out.

The laws of physics are the same regardless of the choice of the reference frame. (Principle of covariance)

What are reference frames?

Reference frames are abstract entities, used to fix the point of view from which observations are carried out.

The laws of physics are the same regardless of the choice of the reference frame. (Principle of covariance)

Translation $\quad \hat{U}_{T}=e^{\frac{i}{\hbar} X_{0} \hat{p}}$
Galilean boost $\quad \hat{U}_{B}=e^{\frac{i}{\hbar} \nu \hat{G}} \hat{G}=\hat{p} t-m \hat{x}$

What are reference frames?

Reference frames are abstract entities, used to fix the point of view from which observations are carried out.

The laws of physics are the same regardless of the choice of the reference frame. (Principle of covariance)

Translation
Galilean boost

$$
\hat{U}_{T}=e^{\frac{i}{\hbar} X_{0} \hat{p}}
$$

\bullet

$$
\hat{U}_{B}=e^{\frac{i}{\hbar} \nu \hat{G}} \hat{G}=\hat{p} t-m \hat{x}
$$

What are reference frames?

Reference frames are abstract entities, used to fix the point of view from which observations are carried out.

The laws of physics are the same regardless of the choice of the reference frame. (Principle of covariance)

Translation
$\hat{U}_{T}=e^{\frac{i}{\hbar} X_{0} \hat{P}}$
Galilean boost $\quad \hat{U}_{B}=e^{\frac{i}{\hbar} \nu \hat{G}} \hat{G}=\hat{p} t-m \hat{x}$

The reference frame enters the transformation as a parameter.

Covariance of physical laws

$$
\hat{H}^{\prime}=\hat{U} \hat{H} \hat{U}^{\dagger}+i \hbar \frac{d \hat{U}}{d t} \hat{U}^{\dagger}
$$

What are reference frames?

Reference frames are abstract entities, used to fix the point of view from which observations are carried out.

The laws of physics are the same regardless of the choice of the reference frame.
(Principle of covariance)

Translation
$\hat{U}_{T}=e^{\frac{i}{\hbar} X_{0} \hat{P}}$
Galilean boost $\quad \hat{U}_{B}=e^{\frac{i}{\hbar} \nu \hat{G}} \hat{G}=\hat{p} t-m \hat{x}$

Covariance of physical laws

$$
\hat{H}^{\prime}=\hat{U} \hat{H} \hat{U}^{\dagger}+i \hbar \frac{d \hat{U}}{d t} \hat{U}^{\dagger}
$$

Symmetry

$$
\hat{H}^{\prime}=\hat{H}
$$

What are reference frames?

What are reference frames?

What are reference frames?

What are reference frames?

What are reference frames?

A

B

What are reference frames?

A

Superpositions of spacetimes

LIGHTEST GRAVITY SOURCE: 90 mg
Article Published: 10 March 2021
Measurement of gravitational coupling between millimetre-sized masses

Toblas Westphal ${ }^{-1}$, Hans Hepach, Jeremias Pfaff \& Markus Aspelmeyer
Nature 591, 225-228 (2021) | Cite this article

HEAVIEST SUPERPOSED MASS: $10^{-20} g$ Letter | Published: 23 September 2019
Quantum superposition of molecules beyond 25 kDa
Yaakov Y, Fein, Philipp Geyer, Patrick Zwick, Filip Kialka, Sebastian Pedaline, Marcel Mayor, Stefan Gerlich \& Markus Arndt T^{-1}

Nature Physics 15, 1242-1245 (2019) | Cite this article

LARGEST SUPERPOSITION: 0.5 m
Published: 23 December 2015
Quantum superposition at the half-metre scale
T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan \& M. A. Kasevich

Nature 528, 530-533 (2015) | Cite this article
$m \cdot \Delta x \approx 10^{-25} g \cdot m \quad$ (Aspelmeyer, 2203.05587)

QUANTUM REFERENCE FRAMES IN QUANTUM MECHANICS

Quantum reference frames

Transformation to relative coordinates

$$
\begin{aligned}
& x_{A} \mapsto-q_{C} \\
& x_{B} \mapsto q_{B}-q_{C}
\end{aligned}
$$

Quantum reference frames

Transformation to relative coordinates
$x_{A} \mapsto-q_{C}$
$x_{B} \mapsto q_{B}-q_{C}$

$$
\begin{equation*}
e^{\frac{i}{\hbar} \alpha \hat{p}_{B}}|x\rangle_{B}=|x-\alpha\rangle_{B} \tag{C}
\end{equation*}
$$

Quantum reference frames

Transformation to relative coordinates
$x_{A} \mapsto-q_{C}$
$x_{B} \mapsto q_{B}-q_{C}$

$$
e^{\frac{i}{\hbar} \alpha \hat{p}_{B}}|x\rangle_{B}=|x-\alpha\rangle_{B}
$$

Quantum reference frames

Transformation to relative coordinates
$x_{A} \mapsto-q_{C}$
$x_{B} \mapsto q_{B}-q_{C}$

$$
e^{\frac{i}{\hbar} \alpha \hat{p}_{B}}|x\rangle_{B}=|x-\alpha\rangle_{B}
$$

$e^{\frac{i}{\hbar} \hat{x}_{A} \hat{P}_{B}}|\phi\rangle_{A}|\psi\rangle_{B}$

Quantum reference frames

Transformation to relative coordinates

$$
\begin{array}{ll}
x_{A} & \mapsto-q_{C} \\
x_{B} & \mapsto q_{B}-q_{C}
\end{array} \quad e^{\frac{i}{\hbar} \alpha \hat{p}_{B}}|x\rangle_{B}=|x-\alpha\rangle_{B}
$$

$$
e^{\frac{i}{\hbar} \hat{x}_{A} \hat{P}_{B}}|\phi\rangle_{A}|\psi\rangle_{B}
$$

$\hat{S}_{x}=\mathscr{P}_{A C} e^{\frac{i}{\hbar} \hat{x}_{A} \hat{p}_{B}}$

$$
\rho_{B C}^{(A)}=\hat{S}_{x} \rho_{A B}^{(C)} \hat{S}_{x}^{\dagger}
$$

$$
\mathscr{P}_{A C} \hat{x}_{A} \mathscr{P}_{A C}^{\dagger}=-\hat{q}_{C}
$$

parity-swap operator

Quantum reference frames

$$
\hat{S}_{x}=\mathscr{P}_{A C} e^{\frac{i}{\hbar} \hat{x}_{A} \hat{p}_{B}} \quad \rho_{B C}^{(A)}=\hat{S}_{x} \rho_{A B}^{(C)} \hat{S}_{x}^{\dagger}
$$

A: new reference frame;
B: quantum system; C: old reference frame

Quantum reference frames

$$
\hat{S}_{x}=\mathscr{P}_{A C} e^{\frac{i}{\hbar} \hat{x}_{A} \hat{p}_{B}} \quad \rho_{B C}^{(A)}=\hat{S}_{x} \rho_{A B}^{(C)} \hat{S}_{x}^{\dagger}
$$

From C: $|x\rangle_{A}|\phi\rangle_{B}$

FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019), arXiv:1712.07207

A: new reference frame;
B: quantum system; C: old reference frame

Quantum reference frames

$$
\hat{S}_{x}=\mathscr{P}_{A C} e^{\frac{i}{\hbar} \hat{x}_{A} \hat{p}_{B}} \quad \rho_{B C}^{(A)}=\hat{S}_{x} \rho_{A B}^{(C)} \hat{S}_{x}^{\dagger}
$$

From C: $|x\rangle_{A}|\phi\rangle_{B}$

From A: $e^{-\frac{i}{\hbar} x \hat{p}_{B}}|\phi\rangle_{B}|-x\rangle_{C}$

FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019), arXiv:1712.07207

A: new reference frame;
B: quantum system; C: old reference frame

Quantum reference frames

$$
\hat{S}_{x}=\mathscr{P}_{A C} e^{\frac{i}{\hbar} \hat{x}_{A} \hat{p}_{B}} \quad \rho_{B C}^{(A)}=\hat{S}_{x} \rho_{A B}^{(C)} \hat{S}_{x}^{\dagger}
$$

From C: $|x\rangle_{A}|\phi\rangle_{B}$

From C: $\frac{1}{\sqrt{2}}\left(\left|x_{1}\right\rangle_{A}+\left|x_{2}\right\rangle_{A}\right)|\phi\rangle_{B}$

From A: $e^{-\frac{i}{\hbar} x \hat{p}_{B}}|\phi\rangle_{B}|-x\rangle_{C}$

Quantum reference frames

$$
\hat{S}_{x}=\mathscr{P}_{A C} e^{\frac{i}{\hbar} \hat{x}_{A} \hat{p}_{B}} \quad \rho_{B C}^{(A)}=\hat{S}_{x} \rho_{A B}^{(C)} \hat{S}_{x}^{\dagger}
$$

From C: $|x\rangle_{A}|\phi\rangle_{B}$

From C: $\frac{1}{\sqrt{2}}\left(\left|x_{1}\right\rangle_{A}+\left|x_{2}\right\rangle_{A}\right)|\phi\rangle_{B}$

From A: $e^{-\frac{i}{\hbar} x \hat{p}_{B}}|\phi\rangle_{B}|-x\rangle_{C}$

From A: $\frac{1}{\sqrt{2}}\left(e^{-\frac{i}{\hbar} x_{1} \hat{p}_{B}}|\phi\rangle_{B}\left|-x_{1}\right\rangle_{C}+e^{-\frac{i}{\hbar} x_{2} \hat{p}_{B}}|\phi\rangle_{B}\left|-x_{2}\right\rangle_{C}\right)$

A: new reference frame;
B: quantum system; C: old reference frame

Extended Galilean transformations...

$$
x^{\prime}=x-X(t)
$$

Extended Galilean transformations...

$$
x^{\prime}=x-X(t)
$$

Spatial translations

$$
\begin{array}{cc}
X(t)=X_{0} & X(t)=v t \\
\hat{U}_{x} & \hat{U}_{v}
\end{array}
$$

Galilean boosts

Accelerated reference frame

$$
\begin{gathered}
X(t)=\frac{1}{2} a t^{2} \\
\hat{U}_{a}
\end{gathered}
$$

Extended Galilean transformations...

$$
x^{\prime}=x-X(t)
$$

Spatial translations

$$
X(t)=X_{0}
$$

$$
\hat{U}_{x}
$$

Galilean boosts
$X(t)=v t$
\hat{U}_{v}

$$
\hat{H}^{\prime}=\hat{U}_{i} \hat{H} \hat{U}_{i}^{\dagger}+i \hbar \frac{d \hat{U}_{i}}{d t} \hat{U}_{i}^{\dagger}
$$

Extended Galilean transformations...

$$
x^{\prime}=x-X(t)
$$

Spatial translations

$$
X(t)=X_{0}
$$

$$
\hat{U}_{x}
$$

Galilean boosts

$$
\begin{gathered}
X(t)=v t \\
\hat{U}_{v}
\end{gathered}
$$

$$
\hat{H}^{\prime}=\hat{U}_{i} \hat{H} \hat{U}_{i}^{\dagger}+i \hbar \frac{d \hat{U}_{i}}{d t} \hat{U}_{i}^{\dagger}
$$

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m} \leadsto \hat{H}^{\prime}=\frac{\hat{p}^{2}}{2 m}+m \ddot{X} \hat{x}
$$

Extended Galilean transformations...

$$
x^{\prime}=x-X(t)
$$

Spatial translations

$$
X(t)=X_{0}
$$

$$
\hat{U}_{x}
$$

Hamiltonian of the system

Galilean boosts

$$
\begin{gathered}
X(t)=v t \\
\hat{U}_{v}
\end{gathered}
$$

$\hat{H}^{\prime}=\hat{U}_{i} \hat{H} \hat{U}_{i}^{\dagger}+i \hbar \frac{d \hat{U}_{i}}{d t} \hat{U}_{i}^{\dagger}$

Accelerated reference frame

$$
\begin{gathered}
X(t)=\frac{1}{2} a t^{2} \\
\hat{U}_{a}
\end{gathered}
$$

In QRFs:
Hamiltonian of the system AND of the QRF!

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m} \frown \hat{H}^{\prime}=\frac{\hat{p}^{2}}{2 m}+m \ddot{X} \hat{x}
$$

...and their superpositions!

...and their superpositions!

$$
\begin{aligned}
& \hat{U}_{T}=\sum_{i} \hat{U}_{x_{i}} \otimes\left|x_{i}\right\rangle\left\langle x_{i}\right| \\
& \hat{U}_{G}=\sum_{i} \hat{U}_{v_{i}} \otimes\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
& \hat{U}_{A}=\sum_{i} \hat{U}_{a_{i}} \otimes\left|a_{i}\right\rangle\left\langle a_{i}\right|
\end{aligned}
$$

...and their superpositions!

$$
\begin{aligned}
& \hat{U}_{T}=\sum_{i} \hat{U}_{x_{i}} \otimes\left|x_{i}\right\rangle\left\langle x_{i}\right| \\
& \hat{U}_{G}=\sum_{i} \hat{U}_{v_{i}} \otimes\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
& \hat{U}_{A}=\sum_{i} \hat{U}_{a_{i}} \otimes\left|a_{i}\right\rangle\left\langle a_{i}\right|
\end{aligned}
$$

Controlled superposition of the transformation on some additional Hilbert space

...and their superpositions!

$$
\begin{aligned}
& \hat{U}_{T}=\sum_{i} \hat{U}_{x_{i}} \otimes\left|x_{i}\right\rangle\left\langle x_{i}\right| \\
& \hat{U}_{G}=\sum_{i} \hat{U}_{v_{i}} \otimes\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
& \hat{U}_{A}=\sum_{i} \hat{U}_{a_{i}} \otimes\left|a_{i}\right\rangle\left\langle a_{i}\right|
\end{aligned}
$$

Controlled superposition of the transformation on some additional Hilbert space

Operational meaning

Quantum Reference Frames

...and their superpositions!

$$
\begin{aligned}
& \hat{U}_{T}=\sum_{i} \hat{U}_{x_{i}} \otimes\left|x_{i}\right\rangle\left\langle x_{i}\right| \\
& \hat{U}_{G}=\sum_{i} \hat{U}_{v_{i}} \otimes\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
& \hat{U}_{A}=\sum_{i} \hat{U}_{a_{i}} \otimes\left|a_{i}\right\rangle\left\langle a_{i}\right|
\end{aligned}
$$

Controlled superposition of the transformation on some additional Hilbert space

Operational meaning

Quantum Reference Frames

How do the laws of motion change before and after the transformation? Extension of the covariance of physical laws

...and their superpositions!

$$
\begin{aligned}
& \hat{U}_{T}=\sum_{i} \hat{U}_{x_{i}} \otimes\left|x_{i}\right\rangle\left\langle x_{i}\right| \\
& \hat{U}_{G}=\sum_{i} \hat{U}_{v_{i}} \otimes\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
& \hat{U}_{A}=\sum_{i} \hat{U}_{a_{i}} \otimes\left|a_{i}\right\rangle\left\langle a_{i}\right|
\end{aligned}
$$

Controlled superposition of the transformation on some additional Hilbert space

Operational meaning

Quantum Reference Frames

How do the laws of motion change before and after the transformation? Extension of the covariance of physical laws

Superposition of translations
Superposition of Galilean boosts

...and their superpositions!

$$
\begin{aligned}
& \hat{U}_{T}=\sum_{i} \hat{U}_{x_{i}} \otimes\left|x_{i}\right\rangle\left\langle x_{i}\right| \\
& \hat{U}_{G}=\sum_{i} \hat{U}_{v_{i}} \otimes\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
& \hat{U}_{A}=\sum_{i} \hat{U}_{a_{i}} \otimes\left|a_{i}\right\rangle\left\langle a_{i}\right|
\end{aligned}
$$

Controlled superposition of the transformation on some additional Hilbert space

Operational meaning

Quantum Reference Frames

How do the laws of motion change before and after the transformation? Extension of the covariance of physical laws

Superposition of translations Superposition of Galilean boosts

Extended symmetries of the dynamics

...and their superpositions!

$$
\begin{aligned}
& \hat{U}_{T}=\sum_{i} \hat{U}_{x_{i}} \otimes\left|x_{i}\right\rangle\left\langle x_{i}\right| \\
& \hat{U}_{G}=\sum_{i} \hat{U}_{v_{i}} \otimes\left|v_{i}\right\rangle\left\langle v_{i}\right| \\
& \hat{U}_{A}=\sum_{i} \hat{U}_{a_{i}} \otimes\left|a_{i}\right\rangle\left\langle a_{i}\right|
\end{aligned}
$$

Controlled superposition of the transformation on some additional Hilbert space

Operational meaning

Quantum Reference Frames

How do the laws of motion change before and after the transformation? Extension of the covariance of physical laws

Superposition of translations
Superposition of Galilean boosts

QUANTUM REFERENCE FRAMES
 AND GRAVITY?

Equivalence Principle in QRFs

Reconciliation of EEP and Principle of Linear Superposition

Equivalence Principle in QRFs

Reconciliation of EEP and Principle of Linear Superposition

Overcomes Penrose's spontaneous

Test of the generalised EEP

Test of EEP for QRFs in atom interferometer

 with quantum clocks
Test of the generalised EEP

Test of EEP for QRFs in atom interferometer with quantum clocks

If EEP for QRF not valid, it is not possible to define time evolution in a QRF

Nonclassical spacetime

Is the superposition of gravitational fields a relative concept?

Gravitational Aharonov-Bohm experiment

S

Gravitational action difference:

$$
\Delta \phi_{G}=\frac{1}{\hbar} \int_{0}^{T} d t\left[V\left(x_{2}-x_{S}\right)-V\left(x_{1}-x_{S}\right)\right]
$$

Phase shift beyond linear regime

What we know from experiments

- Gravity is tested for masses as light as 90 mg

> Westphal, Hepach, Pfaff,Aspelmeyer, Nature (202I)

- Equivalence Principle is valid up to experimental resolution $\left(10^{-15}\right)$

MICROSCOPE Mission, September 2022

- Existence of gravitational waves
B. Abbott et al., PRL (2016)
- Gravitational phase shift between different paths
- Classical gravity (tungsten) and Quantum Theory (atom) are compatible beyond the linear regime

What we know from experiments

- Gravity is tested for masses as light as 90 mg

> Westphal, Hepach, Pfaff,Aspelmeyer, Nature (202I)

- Equivalence Principle is valid up to experimental resolution $\left(10^{-15}\right)$

MICROSCOPE Mission, September 2022

- Existence of gravitational waves
B. Abbott et al., PRL (2016)
- Gravitational phase shift between different paths
- Classical gravity (tungsten) and Quantum Theory (atom) are compatible beyond the linear regime

Which assumptions should we add to have a superposition of gravitational fields?

Three fundamental principles

I. EXISTENCE OF GRAVITATIONAL FIELDS:

Any massive particle that is well-localized at a position x_{0} sources a gravitational field \mathbf{g} with functional form $\mathbf{g}\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)$
2. FIELD ENERGY PRINCIPLE:

The phase of an interferometer is a function of the energies of the fields that interact with the interfering particle
3. QUANTUM RELATIVITY PRINCIPLE:

The laws of physics take the same form in every reference frame, including the reference frames associated with quantum particles (quantum reference frames)

Summary

Operational and relational formalism for quantum reference frames: associate a reference frame to a quantum system.

In quantum mechanics:
Frame-dependence of entanglement and superposition Generalisation of covariance
Generalisation of the weak equivalence principle
Operational definition of the rest frame of a quantum system (relativistic spin)

In gravity:

Generalisation of the Einstein Equivalence Principle Penrose decoherence

