

LEVERHULME TRUST _____

Analog models of pre-heating and the back-reaction effect

Salvatore Giulio Butera

School of Physics & Astronomy University of Glasgow

Quantum Gravity, Hydrodynamics and Emergent Cosmology - Munich, 8 December 2022

Outline

The back-reaction problem

Analog models of gravity

Analog of cosmological pre-heating

Outline

The back-reaction problem

Analog models of gravity

Analog of cosmological pre-heating

Quantum fields in curved spacetime

See books: Birrell & Davies; Parker & Toms; Fulling *QFT in curved spacetime* (CUP)

Existing theories

Existing theories

Zeldovich & Starobinsky 72; Parker & Fulling 73; Hu & Parker 78; Fischetti Hartle & Hu 79; Hartle & Hu 79, 80; Hartle 80; ...

Calzetta & Hu 94; Hu & Sinha 95; Hu & Matacz 95; Hu Roura & Verdaguer 04; ... (See also Hu & Verdaguer, *Liv. Rev. Rel. 08*; Hu & Verdaguer, *Class. Quant. Grav. 03*)

Top-down approach

Microscopic theory

Analog models of gravity

QFT in effective spacetime

Analog of cosmological pre-heating

A fish black hole

A fish black hole

Effective spacetime

In the case of (i) irrotational flow (no viscosity)

Velocity
$$\checkmark v \equiv - oldsymbol{
abla} S$$
 Velocity potentia

and (ii) barotropic medium

Density $\rightarrow \rho = \rho(p)$

Linear excitations evolve as a field in curved spacetime:

$$S=S_0+\epsilon S_1$$
 , etc.

Eq. of motion:
$$\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\mu}} \left(\sqrt{-g} g^{\mu\nu} \frac{\partial S_{1}}{\partial x^{\nu}} \right) = 0$$

Background density Background velocity
Metric:
$$g_{\mu\nu} = \frac{\rho_{0}}{c_{0}} \begin{pmatrix} -\left(c_{0}^{2} - v_{0}^{2}\right) & -v_{j_{0}}^{\prime} \\ -v_{i_{0}} & \delta_{i_{j}} \end{pmatrix}$$

Speed of sound

White hole in the sea

W. G. Unruh. , *PRL* **46**, 1351 (1981) C. Barcelo' et al. , *Liv. Rev. Rel.* **14**, 3 (2011)

Hydrodynamic equations of the analog system

Effective field equation

$$\frac{1}{\sqrt{-g}}\frac{\partial}{\partial x^{\mu}}\left(\sqrt{-g}g^{\mu\nu}\frac{\partial S_{1}}{\partial x^{\nu}}\right) = 0$$

In the lab

Surface waves in water

G. Rousseaux et al., NJP (2010)

Superconducting circuits

P. D. Nation et al., *RMP* (2012)

Rings of trapped ions

B. Horstmann et al., PRL (2010)

BECs of ultra-cold atoms

M. H. Anderson et al., Science (1995)

Quantum fluids of light

D. Gerace et al., PRB (2012)

Nonlinear optical systems

T. G. Philbin et al., Science (2008)

In the lab

Observation of the dynamical Casimir effect in a superconducting circuit

C. M. Wilson et al. , Nature 479, 376-379 (2011)

Rotational superradiant scattering in a vortex flow

A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab

S. Eckel et al. , PRX 8, 021021 (2018)

Observation of thermal Hawking radiation and its temperature in an analogue black hole

J. Steinhauer et al. , Nature 12, 688 (2019)

Analogue models of gravity Back-reaction Action QFT in curved spacetime Excitation fields Effective spacetime Quantum Fields **Back-reaction** Hydrodynamic equations ? Effective field equation of the analog system $\frac{1}{\sqrt{-g}}\frac{\partial}{\partial x^{\mu}}\left(\sqrt{-g}g^{\mu\nu}\frac{\partial S_1}{\partial x^{\nu}}\right) = 0$ See: WARNING! R. Balbinot et al., PRL 94, 161302 (2005) The microscopic Schutzhold et al. PRD 72 105005 (2005) physics is different S. Weinfurtner et al. PRL **126** 041105 (2021)

Back-reaction

Analog models of gravity

Analog of cosmological pre-heating

Based on: <u>S. Butera</u> and I. Carusotto , *arXiv: 2207.00311* (2022) <u>S. Butera</u> and I. Carusotto , *PRD* **104** 083503 (2021)

Figure: N. Yoshida, The First Generation of Stars and Blackholes in the Universe (2021) https://media.ed.ac.uk/media/1_fe4wdyse

Pre-heating in the early Universe The back-reaction problem

Explosive creation of matter at the end of inflation \rightarrow Creates the hot soup that feeds the standard Big Bang evolution

Figure: N. Yoshida, The First Generation of Stars and Blackholes in the Universe (2021) https://media.ed.ac.uk/media/1_fe4wdyse

Pre-heating in the early Universe

The back-reaction problem

Why we need an analogue simulator?

- The objective is study the dynamics of the inflaton field, induced by the creation of matter: **back-reaction** problem.
- It is a non-perturbative effect. Interaction are strong and **quantum effects are important**.
- We have a clear understanding of the microscopic dynamics of analogue systems, and we can perform table-top experiments.

(See experiments at BEC-Center in Trento, Italy)

• The characteristic effects of the back-reaction are **universal** and the basic mechanism are qualitatively the same.

Schematic of physical processes

The analogue system 2D BEC

- Degrees-of-freedom
- Inflaton field ----- (High energy) Transverse modes
- Matter field ---- (Low energy) Longitudinal modes

The analogue system 2D BEC

- Degrees-of-freedom
- Inflaton field \longrightarrow (High energy) Transverse modes Matter field \longrightarrow (Low energy) Longitudinal modes

• Inflaton oscillations

Excite the transverse modes

The analogue system 2D BEC

- Degrees-of-freedom
- Inflaton field \longrightarrow (High energy) Transverse modes Matter field \longrightarrow (Low energy) Longitudinal modes

• Inflaton oscillations

Excite the transverse modes

• Inflaton ←→ matter interaction

Collisional atomic interactions

<u>S. Butera</u> and I. Carusotto , *arXiv:2207.00311* (2022)

The method

Semiclassical phase-space representation

Characteristic function

$$\chi_S(z, z^*) \equiv \operatorname{Tr}\left(\hat{\rho}e^{iz^*\hat{b}^{\dagger} + iz\hat{b}}\right)$$

Wigner function (quasi-probability distribution)

$$W(\beta,\beta^*) \equiv \frac{1}{\pi^2} \int d^2 z \, \chi_S(z,z^*) e^{-iz^*\beta^*} e^{-iz\beta}$$

Symmetric averages

$$\left\langle \left(\hat{b}^{\dagger \, p} \hat{b}^{q} \right)_{S} \right\rangle = \int d^{2}\beta \, W(\beta, \beta^{*}) \beta^{* \, p} \beta^{q}$$

The method

Semiclassical phase-space representation

Dynamics of the BEC in the phase space

$$i\hbar\frac{d\hat{\rho}}{dt} = [\hat{H},\hat{\rho}] \qquad \Longrightarrow \qquad \frac{\partial W(\psi,\psi^*)}{\partial t} = i\int dx \left\{\frac{\delta}{\delta\psi} \left[h\psi + g(|\psi|^2 - 1)\psi\right] - \frac{1}{4}\frac{\delta^3}{\delta^2\psi\delta\psi^*}\psi\right\} W(\psi,\psi^*) + \text{c.c.}$$

$$\underbrace{\text{Meanfield}}_{\text{Meanfield}} \qquad \underbrace{\text{Quantum fluctuations}}_{\text{Quantum fluctuations}}$$

• BEC Hamiltonian

$$\hat{H} = \int dx \,\hat{\psi}^{\dagger} h \psi + \frac{g}{2} \int dx \,\hat{\psi}^{\dagger} \hat{\psi}^{\dagger} \hat{\psi} \hat{\psi}$$

The method

Semiclassical phase-space representation

Dynamics of the BEC in the phase space

$$\frac{\partial W(\psi,\psi^*)}{\partial t} = i \int dx \, \left\{ \frac{\delta}{\delta\psi} \left[h\psi + g(|\psi|^2 - 1)\psi \right] - \frac{1}{4} \frac{\delta^3}{\delta^2\psi\delta\psi^*}\psi \right\} W(\psi,\psi^*) + \text{c.c.}$$
Meanfield
Quantum fluctuations

• The system evolves classically, according to the Gross-Pitaevskii equation

$$i\hbar\frac{\partial\psi}{\partial t} = h\psi + g|\psi|^2\psi$$

• Quantum fluctuations are accounted for **only** in the initial condition.

Steel et al., PRA 58 4824 (1998)

Bogoliubov modes evolution

Bogoliubov modes evolution

Bogoliubov modes evolution

See also: S.Weinfurtner et al. , arXiv:2207.02199 (2022)

Results

Trento experiments

Dissipation

Effect of the back-reaction that can be captured by a semiclassical theory

<u>S. Butera</u> and I. Carusotto , *arXiv:2207.00311* (2022)

Decoherence

Effect of the back-reaction beyond the semiclassical level (that is due to quantum fluctuations)

Transverse BEC size

$$w(x,t) \equiv \frac{\int_0^{L_y} dy |\psi(\mathbf{r},t)|^2 y^2}{\int_0^{L_y} dy |\psi(\mathbf{r},t)|^2}$$

<u>S. Butera</u> and I. Carusotto , *arXiv:2207.00311* (2022)

Spatial correlation of the transverse oscillations

$$C_w(X;t) \equiv \left\langle \frac{\delta w(x,t) \delta w(x+X,t)}{\bar{w}^2(0)} \right\rangle_W$$

•
$$\delta w(x,t) = w(x,t) - \bar{w}(0)$$

S. Butera and I. Carusotto , arXiv:2207.00311 (2022)

Tripartite entanglement

Linear entanglement entropy of the breathing mode:

$$S_0^b \equiv Tr(\hat{\rho}_{b,0}^2) = \pi \int d^2\beta W_{b,0}(\beta,\beta^*)$$

• Pure state:

$$S_{b,0} = Tr(\hat{\rho}_{b,0}^2) = Tr(\hat{\rho}_{b,0}) = 1$$

• Mixed state:

 $S_{b,0} < 1$

Wigner distribution of the breathing mode

Conclusions

- Analogue models are a powerful quantum simulation platform that can be used to investigate the physics of the back-reactions.
- Despite the microscopic physics of analogue systems is expected to be different from the (unknown) physics of gravity at the Planck scale, the qualitative, mesoscopic effects of the back-reaction are universal.
- We used a 2D BEC as analogue simulator of the pre-heating of the early universe, identifying the inflaton dofs in the transverse breathing mode, while the matter dofs in the longitudinal modes.
- We observed the test field effect of the parametric excitations of the vacuum fluctuations of the longitudinal modes, induced by the transverse modes oscillations of the system.
- We observed back-reaction effects in
 - 1. Damping (<u>semiclassical</u>)
 - 2. Decoherence (beyond semiclassical <u>quantum fluctuations</u>)
 - 3. Entanglement (beyond semiclassical <u>quantum fluctuations</u>)

of the transverse modes oscillations.

Acknowledgments

In collaboration with:

lacopo Carusotto (INO-CNR BEC Centre - Trento, Italy)

Acknowledgments

In collaboration with:

Iacopo Carusotto (INO-CNR BEC Centre - Trento, Italy)

Thank you! 🙂

S. Butera and I. Carusotto , arXiv:2207.00311 (2022)

Hawking radiation

flow

 \rightarrow

Supersonic

flow

 \rightarrow

Sonic horizon

Figure: Quanta Magazine, 25 June 2019

Detecting Hawking radiation in a BEC

Density correlations

$$g^{(2)} = \frac{\langle : \hat{n}(x)\hat{n}(x')\rangle}{\langle \hat{n}(x)\rangle \langle \hat{n}(x')\rangle} - 1$$

Pre-heating in the early Universe Analogue BEC system

Back-reaction from analogue of Pre-heating

Dissipation

Bogoliubov-de Gennes

