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Why Landau theory?

Textbook lattice field theory:
@ |dentify phases by means of order parameters (observables)

@ From within a good phase, take continuum limit by tuning to 2°¢ order phase transition
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Why Landau theory?

Textbook lattice field theory:
@ |dentify phases by means of order parameters (observables)

@ From within a good phase, take continuum limit by tuning to 2°¢ order phase transition

Landau theory is a valid tool for a first analysis of phase transitions

Phase diagram can be explained in terms of order parameters (e.g. magnetization):
@ they are effectively governed by a coarse-grained free energy functional L
@ different minima of L < different phases

Two approaches:

@ bottom-up: write L as an expansion in the order parameters, constrained by the
symmetries (~ EFT)

@ top-down (difficult): derive L by explicitly coarse-graining the microscopic model, e.g.:

Tapin = 3 e PHEH = 37 $ e PHUN = 3 e~ L{Em))

{s} {m} {s;lieL, ﬁ ZJGBT S5 =m(r)} {m}
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Observables in quantum gravity

Order parameters in a gauge theory must be gauge-invariant (observables)
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Observables in quantum gravity

Order parameters in a gauge theory must be gauge-invariant (observables)

Quantum Gravity: Observables are a long-standing challenge

Diffeomorphism invariance = non-local observables [ d%z,/g O(x) J

Perhaps not a problem for construction of phase diagram: order parameters are often nonlocal
(e.g. average magnetization in the Ising model, Hausdorff dimension in dynamical triangulations)

However, they have limitations:
@ Not good for distinguishing non-homogeneous (e.g. spatially modulated) phases

@ They do not help in reconstructing a possible continuum local QFT
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Observables in quantum gravity

Order parameters in a gauge theory must be gauge-invariant (observables)

Quantum Gravity: Observables are a long-standing challenge

Diffeomorphism invariance = non-local observables [ d%z,/g O(x) J

Perhaps not a problem for construction of phase diagram: order parameters are often nonlocal
(e.g. average magnetization in the Ising model, Hausdorff dimension in dynamical triangulations)

However, they have limitations:
@ Not good for distinguishing non-homogeneous (e.g. spatially modulated) phases

@ They do not help in reconstructing a possible continuum local QFT

Wishful question:

Can we infer something about the continuum limit of our pet theory from the continuum limit of
its effective description? J
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Effective dynamics of observables

Causal Dynamical Triangulations (CDT) have a built-in foliation
= time-dependent observables O(t) are possible J

e.g. spatial volume at time ¢t = volume profiles that characterize different phases

Questions:

@ Is it possible to describe dynamics of O(t) with an effective theory (Seg[O] ~ L[O])?
(Ot1)...0(tn)) = /Dg,“, eSOt ... Otn) /D(’) et 010 (1)) ... O(tn)

@ |If so, what can we learn from it?

This talk:

Seff for the spatial volume as a Landau free energy of CDT
@ Top-down approach in 1 + 1 dimensions
@ Bottom-up approach in 2+ 1 (and 3 + 1) dimensions

= strengthen connection to Ho¥ava-Lifshitz gravity
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Causal Dynamical Triangulations in a nutshell

@ A lattice approach to the nonperturbative quantization of gravity
= discretization of spacetime with /attice cutoff = a

@ Dynamical spacetime = dynamical lattice:
random d-dimensional triangulations
(in Euclidean signature, e~ weigth = Monte Carlo simulations)
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Causal Dynamical Triangulations in a nutshell

@ A lattice approach to the nonperturbative quantization of gravity
= discretization of spacetime with /attice cutoff = a

@ Dynamical spacetime = dynamical lattice:
random d-dimensional triangulations

(in Euclidean signature, e~ weigth = Monte Carlo simulations)

@ Experience from the past (DT): no classical geometry and no 274 order phase transition for
most general class of geometries

@ Restricting the ensemble of geometries to those with a regular foliation both features are
obtained = Causal Dynamical Triangulations

[Ambjgrn, Loll - 1998 (d 2); Ambjgrn, Jurkiewicz, Loll - 2000,... (d > 2)
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The model

The statistical model of CDT is defined by the partition function

Z(kq, kqg—2) = Ze_”dN Z (7(17,> efd—2Na—2 = Ze_”dNZ(N, Kd—2)
N TINg=N N

@ d = (space + time) dimensions (but Euclidean)
@ N, = number of n-dimensional simplices (n =0, ..., d) in simplicial manifold 7
@ N, = are constrained by topological relations

= only 1 independent variable in 1 + 1 dimensions,
and only 2 independent variables in 2 + 1 and 3 4+ 1 dimensions

@ In CDT we distinguish time-like objects (connecting leaves)
and space-like objects (on a single leaf)

= one more free variable in 3 + 1 dimensions (with coupling A)

@ Monte Carlo simulations:
(1) koNg instead of kq_oNg_o;
(2) constant volume (canonical ensemble);
(3) increase Ny and look for scaling
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Emergence of a macroscopic universe

Phase diagram of CDT in 3 + 1 dimensions: [Ambjgrn, Jurkiewicz, Loll, Gérlich, Jordan]
0.8 ‘
0.6 i
0.4 T . Cus i
4 A
0.2
Cy
) s o
B ’Q‘» adruple point
0.2 ——F
0 1 B N i .

Phase Cyg:
o dH ~ 4
@ from S1 x S3 to an effective S*

@ spontaneous breaking of time translation

< “condensation of spacetime”
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Volume profile in 3+1 dimensions

Characteristic features of the condensate:
macroscopic blob/droplet surrounded by microscopic stalk

20000

15000 +

10000

(N3(@))

5000 -

-40 =30

In the bulk of the macroscopic universe:

N3/4 i
(N3()) = =2 — cos® = emergence of a classical evolution
4s9 1/4
S0

(volume profile of a 4-sphere) [ambisrm, Gorlich, Jurkiewicz, Loll - '07]
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GR minisuperspace

@ The cos3(t) profile is obtalned also as a solutionn of a GR-inspired minisuperspace model
(gij = ¢(t) gu = VS

= [d*v/g o $(1)%)

5o

1/3(t)
(®)
+ constraint: Vg = ffl dtVs(t)
2

z
2

i/D%éC@—/gﬁ%QOe*

@ c¢; > 0: unlike in GR!

Nonperturbative cure of the unboundedness, or deviation from diffeomorphism invariance?
@ Discretization

(N3(i+1 i))2
—HZ( (i +1) — Ns ()

1/3,.
N3(i) + ca2Ng (1))
(N3(1)N3(5)) (Ambjon

— Reconstructed directly from the CDT data (inside the droplet) by studying correlators
/ n et al. '08-'12-'13]
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Condensation from Balls-in-Boxes model

GR-inspired minisuperspace model explains not only the bulk evolution, but also the stalk, as
well as occurrence of other phases [Bogacz, Burda, Waclaw - 12
= Balls-in-Boxes model = discrete path integral with a constraint

M M T
ZBIB(T7 M) = Z Z ‘5M»Ei m; H g(TILj,TTLj+1)
M1=Mmin  MT=Mmin Jj=1
s .
ST LT
{m;}
{ 2(7n—n)2 m1/3+n1/3}
g(m,n) = exp{ —cy — co =
m 4+ n 2

uncorrelated fluid
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CDT in 141 dimensions

Example of top-down approach to a Landau free energy in a quantum gravity model

Zas1ya—cor(T,N2) = > 1
T(T N2)

Z Z 6N2,221mLH9 s z+1

l1=1 mp=1

= 3 e LUTN)
0!

is a balls-in-boxes (BIB) model, with [; giving the length of the spatial slice,

and (for open boundary conditions in space) reduced transfer matrix

(L 4+ lig1)!

Liy 1 =
g(li, liv1) Il 1!

Summing over Ny with a Boltzmann weight e=*2N2, we obtain:

Lgrand can.({l}§ T1 52) = 252 Z ll - Z In (g(li7 li+1))
i 2

The model is exactly solvable [ambigm, Lo - 95 and it has no droplet phase
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CDT in 141 dimensions — continuum limit

By Stirling's formula:

(ip1—1)2
Li4 L) B
g(lisliy1) = (i + biv) ~litlitie

Uittt
;! l¢+1!

Effective continuum action:

[T ()
Seﬁ[é]_/%dtm

=- Minimized by constant configuration

@ No condensation

@ Large fluctuations

@ The effective action is not a reduction of Einstein-Hilbert (topological in d = 2),
but of Horava-Lifshitz gravity in 1 4 1 dimensions [ambjorn, Glaser, Sato, Watabiki

13]
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Ho¥ava-Lifshitz gravity (and CDT)

@ HL gravity: a dynamical theory of geometries with a preferred foliation
= Reduced symmetry: foliation-preserving diffeomorphisms Diff (M)

@ Evidence for a CDT-HL relation comes from

@ Presence of a foliation

@ Analogies in phase diagram (CDT in (3 + 1)d) [ambjorn, Goerlich, Jurkiewicz, Loll - '10]
@ Short-scale spectral dimension in (2 + 1)d 0B, Henson - 0]
o Large-scale geometry (stretched sphere) in (2 4+ 1)d D, Henson - 09]

@ Minisuperspace action with positive kinetic term: no wrong sign of conformal mode!
(in (2 + 1)d, compared to kinetic term of moduli [Budd - 11])

@ Quantum Hamiltonian in (1 4 1)d [ambjorn, Glaser, Sato, Watabiki - 13
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CDT in 241 dimensions

Much easier than d = 3 4 1 (also one less coupling in the lattice action),
but richer thand =1+1

k§ (k)

crit
kg™ ko

[Ambjgrn, Jurkiewicz, Loll - '00]

= again an extended phase (dy ~ 3) with a condensation phenomenon

Note: phase transition is 15* order, but there are no propagating degrees of freedom in 3d
general relativity with spherical slices, so perhaps not a problem
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Volume profile in 241 dimensions e v

Snapshot of a typical configuration:
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Volume profile in 2+1 dimensions

DB, Henson -'14]
Average:
2000
1500 -
<
=
1000 -
500
[ 10 20 70 80 90

15/21



Volume profile in 2+1 dimensions

Scaling:

[DB, Henson -'14]
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Failure of the GR-inspired Landau free energy
@ No potential for Va(¢) in GR-inspired minisuperspace model
(gij = ¢(t) gz] = V2 fd21'\f = 47T¢2( ))

VE(t)
S —mini — 5~ t 2
(2+1)d 2G /,% Va(t)

+ constraint: Va = [ 2, dtVa(t)
3

@ Droplet solution:
2 (22 At V:
Vg(t)—{ACOS (%) , forte |- 4WA7+4734 ,
V-
0, fort € [, 4#3:4)U(+471'A’+ ]

A23
2G'V3

V:
minimized by A = 0, but this violates —VEA <

@ On-shell action:  S(241)d—mini[V2] =

g = A= 27r7'
= SetidominilVe; Al = &% >0
@ However:
S@241)d—mini[V2(t) = V3/7] =0
=- Constant configuration is the absolute minimum! )
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An HL-inspired Landau free energy oo oo
@ HL gravity (with constant lapse N):
__ 2 2 g poid _ 2
S(241)—HL = e /dtd zN/g {AK? - Ki;K" + bR — vy R*}

+ volume constraint: V3 = [ dt dsz\/g

@ Minisuperspace reduction:  g;; = ¢%(t) §i; (Va(t) = [ d%z/g = 4m¢?(t))

1 (3 . I3
S i = —= dt $ % — =+ v
= (24+1)—mini 212 _/_I {¢ ¢2 + }

2
+ volume constraint: V = V3 — 47N [dt¢%(t) =0

+ kinematic constraint: ¢(t) > €
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Competing effects

1 (3 )
Z(241)—mini = /¢ ., DAV exp{—w [ ae|o - 52]}

In the limit kK — 0 we expect the partition function (and the observables) to be dominated by
those configurations that minimize the action

@ Kinetic term favors constant solutions = for £ = 0, taking into account volume constraint
we have
Vs

(730 ) = 4T

as we saw before

@ For & > 0, potential favors configurations saturating the kinematic constraint

(ie. 6(t) = ©)

=> dominance of configurations with a stalk saturating the kinematic constraint, and a droplet
taking care of the missing volume

(Note: due to unboundedness of the action for & > 0, dominant configuration is not necessarily a
saddle point)
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Simulations of the BIB model

DB, Ryan -'16]

Minimization analysis is far from rigorous, and it relies on several assumptions
= comparison to direct Monte Carlo simulations of the BIB model is important

M M T
Zes(T,M)= > .. > On, >, my I 9(mj,mjs1)
M1=Mmin MT=Mmin Jj=1
= e SHmHs ) 5 s
{m]}
with 5
2(miy1 — my 2
g(mj,mjﬂ):exp{— (a1 =)y b2}
M1+ my M1+ my
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Phases o o o

phase diagram

Phase diagram for system with T"= 80, M = 4000: droplet (red triangles), localized (yellow
squares), antiferromagnetic (blue pentagons), correlated fluid (green hexagons).
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Phases

Typical configurations for the various phases:
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Phases o o o

Mean value (m;) as a function of ¢, for samples in the correlated phase and in the droplet phase:

correlated

(b1.b2) = (1.5, ~5.0)

2030 40 50
i

G0 70 80

droplet

(b1.b2) = (0.5.10.0)

200

100

50

010 20 30 40 50 60 70 80
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Conclusions

@ CDT is a nonperturbative lattice approach to quantum geometry, and a rather unique case
in which a minisuperspace model can be derived as effective (Landau-type) description, not
as approximation

@ In (1 + 1)d continuum limit of CDT is HL gravity

@ In (24 1)d the GR-inspired minisuperspace model has no potential term for the spatial
volume

= the droplet phase is never favorable

@ HL-inspired model succeeds very well in reproducing the spacetime condensation
of (2+1)d CDT!

@ It would be interesting to study volume fluctuations in CDT and directly extract the
effective action from there

@ In naive continuum limit (no tuning), the coupling of R? goes to zero, but a nontrivial
limit might be reached if a Lifshitz point exists

@ Relation to Lifshitz-type theories does not prevent the possibility of recovering full
diffeo-invariance by taking continuum limit in a submanifold of the theory space
(compare to recovering diffeo-invariance in functional RG)
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The End



Backup slides
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Minimization of the action — 1

Local minima

, £
e.o.m.: ¢+w2¢— g =0

(w is a Lagrange multiplier to enforce volume constraint)

It is exactly solvable (isotonic oscillator):

Bo(t) = — /(@241 — ) cos? i + ) + €
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Minimization of the action — 1

Local minima

, £
e.o.m.: ¢+w2¢— g =0

(w is a Lagrange multiplier to enforce volume constraint)

It is exactly solvable (isotonic oscillator):

Bo(t) = — /(@241 — ) cos? i + ) + €

s T

For T = T, n € N (and solving the volume constraint):

V-
= Set1)—minil¢o(t)] = % (% - 8\/5)

However, for ¢(t) = £1/4/\/w = ¢ and w = 4xNT/E/V3:

2 NT2¢

S(2+1)7mini [‘EO] == K2Va

< S(2+1)7mini [¢0 (t)]
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Minimization of the action — 2

Absolute minima

Vi@ — ™ s
3(t) = \/(275’21\1_62) cos? (wt) +-€2, fort € [—55,+55],
€, fort € [, —55) U (+55,+75]

1
27r2Ncr2)§ s £
_— , o°=

s=w = (7

1
N 2 /Va\3
Vs = V3 — dnNe2r + (272) 3 (g%) 240

The action evaluates to

2\ % AT AEN 5
(o 1) B0)] = < o (Br) - v (M 5))

K2 | 22 T 4\ 2Net 4Vs

which is smaller than for other configurations, for €2 < Vs/T.
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Minimization of the action — 3

The droplet/condensate is stable in a finite interval: T <7< T} J

@ I <7 = there is a minimal value of 7 below which the droplet is unstable:

gy 1
wV3e<\ 3
T~
2N¢
= constant configurationn dominates for 7 < 7_
(consistent with [Ambjgrn, Jurkiewicz, Loll - '00; Cooperman, Miller 13J)

@ St 1)—minil¢0] ~ =72 vs. Sa11)—mini[@(t)] ~ —T

= there is a maximal value of 7 above which the constant solution is favourable
and 74 < Tmax = V3/(47Ne?)

(for T > Tmax the constraint ¢(¢) > € is incompatible with the volume constraint)
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Fitting the data

- 50K
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Further hints for the unbounded potential?

In [Benedetti, Loll, Zamponi - '07] we obtained the following continuum Hamiltonian from a very special
model of (2+ 1)d CDT:

A 0 _3/2 0 1 1
H=-2y¥* 2 _ — 1AV
Ve 2 Ve 16y AV

to be compared with the Hamiltonian of our HL minisuperspace model:

N o o 1
A=-c(Zw2 vy )+av
<3V2 2oV, ”Vz) AV

Notice: roughly the same for G — V21/2

Maybe possible to obtain missing G from the more realistic model? (from ABAB matrix model)
Or maybe just a problem with scaling G canonically? (= Lifshitz scaling?)

Of course just a speculation, but presence of a term singular at V2 = 0 and seemingly
unbounded from below is very suggestive!

28 /21



	Appendix

