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Exercise 17 – Linear Stability of the Keller–Segel Model

Consider the Keller–Segel model for chemotaxis, which you have seen in the lecture.
This model describes a coarse-grained density of living cells which produce a chemical
they are themselves attracted towards (a chemoattractant). The chemoattractant can
decay over time, but the total number of cells is assumed to be constant. Both the
cells (density ρ(x, t)) and the chemical (concentration c(x, t)) can diffuse in space, with
diffusion constants D and Dc respectively, leading to the following set of equations:

∂ρ(x, t)

∂t
= D∇ (∇ρ(x, t)− χ(c)ρ(x, t)∇c(x, t)) , (1)

∂c(x, t)

∂t
= α(ρ)− λc(x, t) +Dc∇2c(x, t) , (2)

where χ(c) describes the chemotactic sensitivity, α(ρ) is the chemoattractant production
rate and λ is the chemoattractant decay rate. In contrast to what you have already seen in
the lecture, we want to discuss different sensitivity and production models in this exercise.

Thus, we set

χ(c) =
χ0

1 + c/c̃
, α(ρ) = α0

ρ

1 + βρ
. (3)

a) Explain the structure of the terms χ(c) and α(ρ) and the meaning of all constants.
Why are these terms sensible assumptions in biological systems?

b) Show that the system admits a spatially homogeneous steady state

ρ(x, t) = ρ0, c(x, t) = c0 , (4)

and calculate the relation that has to hold between ρ0 and c0.

c) Perform a linear stability analysis of the homogeneous steady state. For simplicity
we assume c̃ = c0 for all following exercise parts. Consider small perturbations:

ρ(x, t) = ρ0 + δρ(x, t), c(x, t) = c0 + δc(x, t), (5)

and linearize the equations to first order in δρ and δc.



d)

Assume solutions of the form

δρ(x, t) ∼ eσteikx , δc(x, t) ∼ eσteikx (6)

and derive the dispersion relation σ(k).

e) Determine the condition under which the homogeneous state becomes linearly un-
stable. That is, find the values of ρ0 and χ0 (in terms of other parameters) for which
Re(σ(k)) > 0 for some k ̸= 0. Plot and interpret your dispersion relation.

f) Discuss the physical interpretation of this instability in terms of chemotactic aggrega-
tion. And compare this result to a linear production and sensitivity (see lecture notes).

Exercise 18 – Active Model B and Pseudopotentials

Note that this exercise counts as two exercises (2P) since it is quite lenghty.

Active matter equations contain terms which cannot be obtained minimizing any free
energy, as the system is dissipating energy. The consequence is that a stationary state
in active matter does not correspond to some minimum of a free energy, and finding its
explicit form can be challenging.

However, it is sometimes possible to introduce pseuso-thermodynamical variables, which
allows us to use the well-known tools for the thermodynamical case despite the lack of any
physical correspondance. In this exercise, you will see how to introduce pseudo-variables
for active model B and active model B+ and calculate the value of the binodal densities
for active model B+.

We consider a density ϕ that follows the dynamics of active model B+. The dynamic
equation for ϕ consist of an equilibrium flux derived from a free energy functional F and
an additional active contribution

∂tϕ = −∇ · J , (7)

J = −∇[
δF
δϕ

+ λ(∇ϕ)2] + ξ(∇2ϕ)∇ϕ , (8)

F =

∫
ddx f(ϕ) +

K

2
(∇ϕ)2. (9)

a) How are the equations for active model B (AMB) and passive model B related to
active model B+ (AMB+) (in D-dimensions)?

b) Argue why the current in active model B+ cannot be written in terms of a total
derivative for dimension greater than one. Argue how this allows for the existence of
active currents in the steady state. How are the equations for active model B and active
model B+ related in 1D?



First, we consider a phase separated system into a low ϕ(∞) = ϕ− and high density
ϕ(−∞) = ϕ+ phase with a flat interface so we can consider the 1-dimensional equations.

c) We start by revisiting the tools for the passive phase separating system so we can
later apply this to our active system. For a passive system showing phase separation (pas-
sive model B), the two thermodynamical variables that have to remain constant across
a stationary interface are the pressure P = µϕ − f(ϕ), ensuring mechanical equilibrium,
and the chemical potential µ, ensuring that there is no particle flux across the interface.
Show that in 1D (flat interface) these two variable are constant in passive model B.

Hint: To show that the pressure is constant, multiply the chemical potential µ = δF
δϕ

by
∂xϕ and then integrate it over space.

d) Show that the nonequilibrium chemical potential

µAMB
neq =

δF
δϕ

+ λ(∇ϕ)2 (10)

also remains constant across a stationary and flat interface in active model B (AMB)
(1D), while the pressure P is not constant.

e) To generalize the concept of mechanical equilibrium in active model B, we introduce
a pseudo-density ψ and pseudo-potential g(ψ) which obey the following relations:

df(ϕ)

dϕ
=
dg(ψ)

dψ
, K∂2ϕψ = −2λ∂ϕψ (11)

Show that with this change of variables, the pseudo-pressure P̃ = µψ − g(ψ) is constant
across the interface.

Hint: Show first that

∂xψ
(
K∂2xϕ− λ(∂xϕ)

2
)
= ∂x

(
K∂ϕψ

2
(∂xϕ)

2

)
. (12)

Then multiply equation 10 by ∂xψ and then integrate it over space as you did in part a).

f) Use your result from (b) and (e) to define the relations for the pseudopotential for
active model B+ in 1D.

g) * This exercise is voluntary but demonstrates the idea nicely.*
We want to use the derived conditions for the pseudopotential and the nonequilibrium
chemical potential to numerically determine the binodals for active model B+. We assume
that the free energy functional is given by

F [ϕ] =

∫
ddx

(
−A
2
ϕ2 +

A

4
ϕ4 +

K

2
(∇ϕ)2

)
, (13)

with A = 1
4
and K = 1.



Determine the values for ϕ± following the provided mathematica notebook.

In the last parts of this exercise we consider a curved interface and calculate the cor-
rections to the previously derived condition for the pseudopotential for active model B+
(Remember the Laplace pressure for a curved interface in passive model B). For this we
consider a high density droplet ϕ(r = 0) = ϕ+ of radius R in a low density environment
ϕ(r = ∞) = ϕ−. Remember from exercise (b) that the current in active model B+ can
not be written in terms of a total derivative in dimensions greater than one. Thus, de-
riving the nonequilibrium potential µAMB+

neq for dimensions greater than 1 is a little more
envolved.

h) In order to derive the nonequilibrium chemical potential we use the Helmholtz de-
composition of a vector to rewrite the current into a gradient and curl contribution:
J = −∇µAMB+

neq +∇×A. For this, calculate µAMB+
neq for the case of a spherical symmetric

droplet. Show that the term proportional to ξ introduces a non-locality into the nonequi-
librium chemical potential. Argue why the dynamics of ϕ is governed only by the chemical
potential µAMB+

neq and not by the curl A.

Hint: Interpret the problem in analogy to electrostatics, where the current J is the electric
field E, ∇ · E the electric charge, while µ is the electric potential V . The correspond-
ing equations of electrostatics are equivalent: E = −∇V . For a spherically symmetric
configuration of the charge, the electric potential V can be calculated as follows

V (r) = −
∫ ∞

r

dsE(s) . (14)

Your result for the chemical potential should read

µAMB+
neq (r) =

δF

δϕ
+ (λ− ξ

2
)(∇ϕ)2 + ξ(d− 1)

∫ ∞

r

dr′
(∂r′ϕ(r

′))2

r′
. (15)

i) Using the nonequilibrium chemical potential derived in the previous exercise, find the
relations that the pseudo-pressure (use the definition of the pseudo-potential derived in
(f)) and non-equilibrium chemical potential satisfy at a stationary curved interface.

Your result for the pseudo-pressure relation should read

P̃ (ϕ+) = P̃ (ϕ−) +
(d− 1)

R
σneq (16)

with the nonequilibrium tension

σneq =
K

ξ − 2λ

(
ξe

ξ−2λ
K

ϕ(0)

∫ ∞

0

dr(∂rϕ)
2 − 2λ

∫ ∞

0

dr(∂rϕ)
2e

ξ−2λ
K

ϕ(r)

)
. (17)

Proceed as follows:
1) Similar as in (e): multiply eq. 15 by ∂rψ and integrate over the radius. Use spherically
symmetric coordinates.
Note that the hint from (e) can also be used here when replacing λ→ λ− ξ

2

∂rψ

(
K∂2rϕ− (λ− ξ

2
)(∂rϕ)

2

)
= ∂r

(
K∂ϕψ

2
(∂rϕ)

2

)
. (18)



3) Use a sharp interface approximation∫ ∞

r

ds(∂sϕ(s))
2f(s) ≈ Θ(R− r)f(R)

∫ ∞

0

ds(∂sϕ(s))
2 (19)

where Θ(R− r) is the Heaviside theta.
4) Insert the value of ψ(ϕ), found by solving the equation for the pseudovariables

ψ(ϕ) =
K

ξ − 2λ
exp

(
ξ − 2λ

K
ϕ

)
. (20)

j) Can the derived nonequilibrium tension σneq become negative? What does this imply
for the radial dynamics of the droplet?

Hint: We can use the result known from the equilibrium theory (LSW) and simply replace
the equilibrium tension σeq with its non-equilibrium value σneq

∂tR ∝ σneq
R

(
1

R∗ − 1

R

)
. (21)

Your solutions should be handed in in moodle by Wednesday,
December 3 rd 2025, 10 am.


