
Self-organization and pattern formation

Sheet 6

Exercise 17 – Linear Stability of the Keller–Segel Model

Consider the Keller–Segel model for chemotaxis, which you have seen in the lecture. This model describes a coarse-grained density of living cells which produce a chemical they are themselves attracted towards (a *chemoattractant*). The chemoattractant can decay over time, but the total number of cells is assumed to be constant. Both the cells (density $\rho(x, t)$) and the chemical (concentration $c(x, t)$) can diffuse in space, with diffusion constants D and D_c respectively, leading to the following set of equations:

$$\frac{\partial \rho(x, t)}{\partial t} = D \nabla (\nabla \rho(x, t) - \chi(c) \rho(x, t) \nabla c(x, t)), \quad (1)$$

$$\frac{\partial c(x, t)}{\partial t} = \alpha(\rho) - \lambda c(x, t) + D_c \nabla^2 c(x, t), \quad (2)$$

where $\chi(c)$ describes the chemotactic sensitivity, $\alpha(\rho)$ is the chemoattractant production rate and λ is the chemoattractant decay rate. In contrast to what you have already seen in the lecture, we want to discuss different sensitivity and production models in this exercise.

Thus, we set

$$\chi(c) = \frac{\chi_0}{1 + c/\tilde{c}}, \quad \alpha(\rho) = \alpha_0 \frac{\rho}{1 + \beta \rho}. \quad (3)$$

a) Explain the structure of the terms $\chi(c)$ and $\alpha(\rho)$ and the meaning of all constants. Why are these terms sensible assumptions in biological systems?

b) Show that the system admits a spatially homogeneous steady state

$$\rho(x, t) = \rho_0, \quad c(x, t) = c_0, \quad (4)$$

and calculate the relation that has to hold between ρ_0 and c_0 .

c) Perform a linear stability analysis of the homogeneous steady state. For simplicity we assume $\tilde{c} = c_0$ for all following exercise parts. Consider small perturbations:

$$\rho(x, t) = \rho_0 + \delta \rho(x, t), \quad c(x, t) = c_0 + \delta c(x, t), \quad (5)$$

and linearize the equations to first order in $\delta \rho$ and δc .

d)

Assume solutions of the form

$$\delta\rho(x, t) \sim e^{\sigma t} e^{ikx}, \delta c(x, t) \sim e^{\sigma t} e^{ikx} \quad (6)$$

and derive the dispersion relation $\sigma(k)$.

- e) Determine the condition under which the homogeneous state becomes linearly unstable. That is, find the values of ρ_0 and χ_0 (in terms of other parameters) for which $\text{Re}(\sigma(k)) > 0$ for some $k \neq 0$. Plot and interpret your dispersion relation.
- f) Discuss the physical interpretation of this instability in terms of chemotactic aggregation. And compare this result to a linear production and sensitivity (see lecture notes).

Exercise 18 – Active Model B and Pseudopotentials

Note that this exercise counts as two exercises (2P) since it is quite lengthy.

Active matter equations contain terms which cannot be obtained minimizing any free energy, as the system is dissipating energy. The consequence is that a stationary state in active matter does not correspond to some minimum of a free energy, and finding its explicit form can be challenging.

However, it is sometimes possible to introduce pseudo-thermodynamical variables, which allows us to use the well-known tools for the thermodynamical case despite the lack of any physical correspondence. In this exercise, you will see how to introduce pseudo-variables for active model B and active model B+ and calculate the value of the binodal densities for active model B+.

We consider a density ϕ that follows the dynamics of active model B+. The dynamic equation for ϕ consists of an equilibrium flux derived from a free energy functional \mathcal{F} and an additional active contribution

$$\partial_t \phi = -\nabla \cdot J, \quad (7)$$

$$J = -\nabla \left[\frac{\delta \mathcal{F}}{\delta \phi} + \lambda (\nabla \phi)^2 \right] + \xi (\nabla^2 \phi) \nabla \phi, \quad (8)$$

$$\mathcal{F} = \int d^d x f(\phi) + \frac{K}{2} (\nabla \phi)^2. \quad (9)$$

- a) How are the equations for active model B (AMB) and passive model B related to active model B+ (AMB+) (in D-dimensions)?
- b) Argue why the current in active model B+ cannot be written in terms of a total derivative for dimension greater than one. Argue how this allows for the existence of active currents in the steady state. How are the equations for active model B and active model B+ related in 1D?

First, we consider a phase separated system into a low $\phi(\infty) = \phi_-$ and high density $\phi(-\infty) = \phi_+$ phase with a flat interface so we can consider the 1-dimensional equations.

c) We start by revisiting the tools for the passive phase separating system so we can later apply this to our active system. For a passive system showing phase separation (passive model B), the two thermodynamical variables that have to remain constant across a stationary interface are the pressure $P = \mu\phi - f(\phi)$, ensuring mechanical equilibrium, and the chemical potential μ , ensuring that there is no particle flux across the interface. Show that in 1D (flat interface) these two variable are constant in passive model B.

Hint: To show that the pressure is constant, multiply the chemical potential $\mu = \frac{\delta\mathcal{F}}{\delta\phi}$ by $\partial_x\phi$ and then integrate it over space.

d) Show that the nonequilibrium chemical potential

$$\mu_{\text{neq}}^{\text{AMB}} = \frac{\delta\mathcal{F}}{\delta\phi} + \lambda(\nabla\phi)^2 \quad (10)$$

also remains constant across a stationary and flat interface in active model B (AMB) (1D), while the pressure P is not constant.

e) To generalize the concept of mechanical equilibrium in active model B, we introduce a pseudo-density ψ and pseudo-potential $g(\psi)$ which obey the following relations:

$$\frac{df(\phi)}{d\phi} = \frac{dg(\psi)}{d\psi}, \quad K\partial_\phi^2\psi = -2\lambda\partial_\phi\psi \quad (11)$$

Show that with this change of variables, the pseudo-pressure $\tilde{P} = \mu\psi - g(\psi)$ is constant across the interface.

Hint: Show first that

$$\partial_x\psi (K\partial_x^2\phi - \lambda(\partial_x\phi)^2) = \partial_x \left(\frac{K\partial_\phi\psi}{2} (\partial_x\phi)^2 \right). \quad (12)$$

Then multiply equation 10 by $\partial_x\psi$ and then integrate it over space as you did in part a).

f) Use your result from (b) and (e) to define the relations for the pseudopotential for active model B+ in 1D.

g) * *This exercise is voluntary but demonstrates the idea nicely.**

We want to use the derived conditions for the pseudopotential and the nonequilibrium chemical potential to numerically determine the binodals for active model B+. We assume that the free energy functional is given by

$$F[\phi] = \int d^d x \left(-\frac{A}{2}\phi^2 + \frac{A}{4}\phi^4 + \frac{K}{2}(\nabla\phi)^2 \right), \quad (13)$$

with $A = \frac{1}{4}$ and $K = 1$.

Determine the values for ϕ_{\pm} following the provided mathematica notebook.

In the last parts of this exercise we consider a curved interface and calculate the corrections to the previously derived condition for the pseudopotential for active model B+ (Remember the Laplace pressure for a curved interface in passive model B). For this we consider a high density droplet $\phi(r = 0) = \phi_+$ of radius R in a low density environment $\phi(r = \infty) = \phi_-$. Remember from exercise (b) that the current in active model B+ can not be written in terms of a total derivative in dimensions greater than one. Thus, deriving the nonequilibrium potential $\mu_{\text{neq}}^{\text{AMB}+}$ for dimensions greater than 1 is a little more involved.

h) In order to derive the nonequilibrium chemical potential we use the Helmholtz decomposition of a vector to rewrite the current into a gradient and curl contribution: $J = -\nabla\mu_{\text{neq}}^{\text{AMB}+} + \nabla \times A$. For this, calculate $\mu_{\text{neq}}^{\text{AMB}+}$ for the case of a spherical symmetric droplet. Show that the term proportional to ξ introduces a non-locality into the nonequilibrium chemical potential. Argue why the dynamics of ϕ is governed only by the chemical potential $\mu_{\text{neq}}^{\text{AMB}+}$ and not by the curl A .

Hint: Interpret the problem in analogy to electrostatics, where the current J is the electric field E , $\nabla \cdot E$ the electric charge, while μ is the electric potential V . The corresponding equations of electrostatics are equivalent: $E = -\nabla V$. For a spherically symmetric configuration of the charge, the electric potential V can be calculated as follows

$$V(r) = - \int_r^{\infty} ds E(s). \quad (14)$$

Your result for the chemical potential should read

$$\mu_{\text{neq}}^{\text{AMB}+}(r) = \frac{\delta F}{\delta \phi} + \left(\lambda - \frac{\xi}{2}\right)(\nabla\phi)^2 + \xi(d-1) \int_r^{\infty} dr' \frac{(\partial_{r'}\phi(r'))^2}{r'}. \quad (15)$$

i) Using the nonequilibrium chemical potential derived in the previous exercise, find the relations that the pseudo-pressure (use the definition of the pseudo-potential derived in (f)) and non-equilibrium chemical potential satisfy at a stationary curved interface.

Your result for the pseudo-pressure relation should read

$$\tilde{P}(\phi_+) = \tilde{P}(\phi_-) + \frac{(d-1)}{R} \sigma_{\text{neq}} \quad (16)$$

with the nonequilibrium tension

$$\sigma_{\text{neq}} = \frac{K}{\xi - 2\lambda} \left(\xi e^{\frac{\xi-2\lambda}{K}\phi(0)} \int_0^{\infty} dr (\partial_r \phi)^2 - 2\lambda \int_0^{\infty} dr (\partial_r \phi)^2 e^{\frac{\xi-2\lambda}{K}\phi(r)} \right). \quad (17)$$

Proceed as follows:

1) *Similar as in (e): multiply eq. 15 by $\partial_r \psi$ and integrate over the radius. Use spherically symmetric coordinates.*

Note that the hint from (e) can also be used here when replacing $\lambda \rightarrow \lambda - \frac{\xi}{2}$

$$\partial_r \psi \left(K \partial_r^2 \phi - \left(\lambda - \frac{\xi}{2}\right) (\partial_r \phi)^2 \right) = \partial_r \left(\frac{K \partial_r \psi}{2} (\partial_r \phi)^2 \right). \quad (18)$$

3) Use a sharp interface approximation

$$\int_r^\infty ds (\partial_s \phi(s))^2 f(s) \approx \Theta(R-r) f(R) \int_0^\infty ds (\partial_s \phi(s))^2 \quad (19)$$

where $\Theta(R-r)$ is the Heaviside theta.

4) Insert the value of $\psi(\phi)$, found by solving the equation for the pseudovariables

$$\psi(\phi) = \frac{K}{\xi - 2\lambda} \exp\left(\frac{\xi - 2\lambda}{K}\phi\right). \quad (20)$$

j) Can the derived nonequilibrium tension σ_{neq} become negative? What does this imply for the radial dynamics of the droplet?

Hint: We can use the result known from the equilibrium theory (LSW) and simply replace the equilibrium tension σ_{eq} with its non-equilibrium value σ_{neq}

$$\partial_t R \propto \frac{\sigma_{\text{neq}}}{R} \left(\frac{1}{R^*} - \frac{1}{R} \right). \quad (21)$$

Your solutions should be handed in in moodle by **Wednesday, December 3rd 2025, 10 am.**