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Exercise 14 – The LSW theory of Ostwald ripening

Coarsening describes the continuous growth of the typical length scale in a system. In the
Cahn-Hilliard model, coarsening proceeds by Ostwald ripening: larger droplets grow at
the expense of smaller droplets which ultimately collapse and vanish. In this exercise, the
goal will be to determine the long-time behavior of this system and derive the coarsening
law, that is the time evolution of the typical droplet size.

In 1961, I. Lifshitz and V. Slyozov as well as C. Wagner developed a beautiful mean-
field theory to describe the Ostwald-ripening process in an ensemble of sparsely dispersed
droplets. Assuming a small supersaturation, the droplet radii are small compared to the
separation of the droplets. LSW theory therefore assumes that between the droplets (far
away from each single one), the system can be described by a uniform concentration
c∞(t) = c−+ ϵ(t) which may vary over time (a reservoir). c− denotes the bulk equilibrium
concentration of the low-density phase and ϵ(t) the supersaturation. Each single droplet
is assumed to only interact with this uniform background concentration. In this case, you
learned in the lecture that the radius Ri of the i-th droplet evolves as
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Here, D−
eff describes the effective diffusion constant in the low-density phase, c+ the bulk

equilibrium concentration in the high-density phase and ℓ−γ the capillary length in the
low-density phase.

Using the system volume V , mass conservation implies for the supersaturation
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where c̄ > c− is the average concentration in the system and the approximation holds for
sparsely dispersed droplets.

To study the dynamics of the ensemble of droplets, we will follow the LSW treatment
and analyse the evolution of the droplet-size distribution P (R3, t). P (R3, t)dR3 gives the
number density of droplets with a volume in 4

3
π[R3, R3 + dR3] in the system at time t.



a) Rescale time to find that the dynamics of Ri is given by:

∂tR
3 = 3

(
R

Rc

− 1

)
. (3)

How is Rc(t) define and what is his interpretation?

b) Argue that the evolution of P (R3, t) is given by

∂tP (R
3, t) = −∂R3

[
(∂tR

3)P (R3, t)
]
, (4)

Hint: Consider the evolution of the individual droplets in the ensemble. What is the change
of the number of droplets with sizes R3 in the interval [R3

0, R
3
0 + δR3] in an infinitesimal

time interval dt? Note that, by assumption, a droplet of radius R > 0 cannot suddenly
vanish or be created, i.e. there must be a corresponding conservation law and continuity
equation.

c) Rewrite the condition on the supersaturation into a condition on Rc(t) using the
droplet-size distribution P . You should find

c̄− c− =
ℓ−γ c−

Rc(t)
+ (c+ − c−)
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∫ ∞
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dR3R3P (R3, t). (5)

d) (Bonus part) Nondimensionalize the system by introducing the relative droplet size
z(t) = R(t)3/Rc(t)

3 and the new time variable τ = log (Rc(t)
3/Rc(0)

3). Why can we use
τ to describe the time? How is the distribution ϕ(z, τ) = P (R3(z), t(τ)) related to the
distribution P (R3, t)? Write down the evolution equation for ϕ in the form

∂τϕ(z, τ) = −∂z [v(z, τ)ϕ(z, τ)] . (6)

You should find

v(z, τ) = −z + 3

∂tRc(t)3

(
z

1
3 − 1

)
. (7)

Determine also the constraint on the total mass eq. 5 in terms of τ, z, ϕ.

e) (Bonus part) Let us now pick one droplet from the ensemble that started at an initial
relative size z(0) = y and evolved to relative size z(τ, y). Starting from Eq. (6), what
is the equation determining the time evolution of z for this droplet? Use an argument
similar to the one to derive Eq. (1). What can you say about droplets of initial relative
size y < y0(τ) where y0 fulfils z(τ, y0(τ)) = 0?

Denote the initial relative size distribution of the droplets by ϕ0(y). Use the evolution
of the droplets z(τ, y) to express the total mass M of the droplets using ϕ0 and y0. The
total mass M of the droplets is given by

M(τ) =
4

3
πV Rc(0)

3eτ
∫ ∞

0

dz zϕ(z, τ).

f) (Bonus part) After sufficiently long time, we expect that the relative droplet-size
distribution ϕ is independent of the initial size distribution. So the two free quantities to



determine are the evolution of Rc(t) and ϕ(z, τ) (see Eqs. (6),(7)). Argue first about the
long-time behavior of Rc(t). Let us define γ(τ) = 3/ (∂tRc(t)

3) to simplify the expression
for v(z, τ). Why can we only have γ(τ) → ∞, 0, const. for τ → ∞? Now we exclude the
first two possibilities:

• For the first case argue that the total mass in the droplets would diverge as τ → ∞.

• For the second case show that the total mass in the droplets vanishes. As v < 0 for
large enough times, all relative droplet sizes z will become small and we can expand
v(z, τ) ≈ −γ(τ)− z. Solve for z(τ, y) (in terms of γ), find y0(τ) = 3t(τ)/Rc(0)

3 and
estimate that the total droplet mass vanishes (M → 0). This violates the constraint
on the supersaturation.

g) (Bonus part) Let us denote the asymtotic constant γ∗ such that γ(τ) → γ∗ as τ → ∞.
Use this to determine the asymptotic coarsening law

Rc(t)
3 −Rc(0)

3 =
3

γ∗
t. (8)

Asymptotically we thus find the so-called LSW scaling Rc ∼ t
1
3 . Remember that we

rescaled the time t. Reverting back, we find the same dependence on the parameters as
in the lecture.

h) (Bonus part) Together with the coarsening law we find that the relative droplet-size
distribution ϕ converges towards an asymptotic distribution. Use the mass-conservation
(supersaturation) constraint to argue that for τ → ∞ the total mass of the droplets has
to become constant. Make the ansatz ϕ(z, τ) = N(τ)ψ(z) with normalization chosen as∫∞
0

dzψ(z) = 1. Determine N(τ) and the asymptotic equation determining ψ(z). Given
this form, why do we say that asymptotically the droplet-size distribution shows scaling?
What is special about the shape of the droplet-size distribution?

i) (Bonus part) To fully finish up the treatment, we still need to determine the value of
γ∗. For this purpose, consider again the evolution of the single droplets ∂τz = v(z, τ →
∞), now in the asymptotic regime where γ(τ) ≈ γ∗. Plot the three distinct cases of the
flow for the droplets that arise when tuning γ∗. The flow has a bifurcation at a critical
value γ∗ = γc. Explain why values γ∗ ≶ γc violate mass conservation asymptotically.
Argue that γ(τ) has to approach γc from below.

Determine the asymptotic value γ∗ = γc and show that the normalized asymptotic distri-
bution is given by

ψ(z) =

{
− 1

v(z,∞)
exp

[∫ z

0
dz′ 1

v(z′,∞)

]
, z < zmax

0, z > zmax

. (9)

Here zmax fulfils v(zmax,∞) = 0.

Denoting the exponent by Ψ(z), calculate ∂zΨ and use it to find

⟨z
1
3 − 1⟩ = 0. (10)

Use this relation to translate the coarsening law found for Rc(t) into the coarsening law
for the average droplet radius ⟨R⟩(t). Plot the normalized distribution of R/Rc.



Exercise 15 – The LSW theory in d spatial dimensions

In the previous exercise, we analyzed the LSW theory in d = 3 dimensions. The goal
of this exercise is to generalize the previous treatment and extend the result to the case
of an arbitrary spatial dimension d. We will also derive the LSW result with a different
approach.

As in the previous exercise, we rescale time such that the single-droplet kinetics of the
radius obey

Ṙ(R, t) =
1

R

(
1

Rc(t)
− 1

R

)
, (11)

where Rc(t) =
ℓ−γ c−
ϵ(t)

is the critical radius, which depends on the supersaturation ϵ(t). Note
that the dynamics of the droplet radius do not depend on dimensionality.

In this exercise, we consider the probability distribution P (R, t) of droplet radii (note
that in the previous exercise we instead considered the probability distribution of droplet
volumes, P (R3, t)).

a) Write down the time evolution of P (R, t) together with the mass conservation in the
system. Show that, at large times, the constraint on the total mass takes the form∫ ∞

0

dRRdP (R, t) = const. (12)

b) Following the previous exercise, we now seek a scaling solution for the probability
distribution P (R, t). Argue why the ansatz

P (R, t) =
1

Rα
c (t)

Φ(x) , x :=
R

Rc(t)
, (13)

is appropriate, and find the exponent α that ensures total mass conservation.

c) Insert this ansatz into the continuity equation for P (R, t). By exploiting the sepa-
ration of variables, find one equation governing the dynamics of Rc(t) and one for the
profile Φ(x). What information is contained in the time-dependent equation for the crit-
ical radius?

Show that
d

dt
R3

c(t) = const,

hence

Rc(t) ∝ t1/3 ⇒ z =
1

3
.

You should find the following equation that governs the shape of Φ(x):

−
[
(d+ 1)Φ + xΦ′

]
+ γ∗ ∂x

[(
1
x
− 1

x2

)
Φ
]
= 0. (14)

How is γ∗ defined?



d) Now specialize to dimension d = 3. Show that this equation can be exactly mapped
to the profile equation for Ψ(z) found in the previous exercise, where z = (R/Rc)

3 = x3.

Recall that the equation for Ψ(z) is

Ψ(z) = ∂z

(
[−z + δ(z1/3 − 1)]Ψ(z)

)
. (15)

For the solution of this differential equation,see Exercise 14 i).

Exercise 16 – Non-reciprocal Cahn-Hillard equation

Consider a system described by two scalar fields ϕ1, ϕ2. Their time evolution is governed
by a free-energy F =

∫
ddx[f(ϕ1, ϕ2) +

K
2
(∇ϕ1)

2 + K
2
(∇ϕ2)

2]. Recall the two types of
gradient dynamics governed by a free energy that were studied in class:

Allen-Cahn type: ∂tϕ1/2 = −Γ
δF

δϕ1/2

, (16)

Cahn-Hillard type: ∂tϕ1/2 = Γ∇2 δF

δϕ1/2

. (17)

a) Which underlying assumption were made for the two dynamics? Write the time
evolution of the fields ϕ1, ϕ2 explicitly in the two cases.

b) Continue this exercise by assuming a Cahn-Hillard type of time-evolution. We can
generalize the equations by introducing a new term proportional to α(ϕ1, ϕ2) in the system:

∂tϕ1 = Γ∇2

(
δF

δϕ1

+ α(ϕ1, ϕ2)ϕ2

)
(18)

∂tϕ2 = Γ∇2

(
δF

δϕ2

− α(ϕ1, ϕ2)ϕ1

)
(19)

The new term introduces a non-reciprocity in the system, which can be interpreted as
follows: assuming α > 0, the field ϕ2 increases the local chemical potential of the field ϕ1,
such that it wants to avoid region of high ϕ2. The field ϕ1 decreases the local chemical
potential of the field ϕ2, such that it is attracted towards regions of high ϕ1. Argue why
the non-reciprocity leads to the existence of traveling waves in the system. What type of
pattern would you expect in the reciprocal case instead, where the new introduced terms
have the same sign?

c) Next, we consider the following form of non-reciprocal term α(ϕ1, ϕ2) = α0 − α1|ϕ|2
and free energy density f(ϕ1, ϕ2) = −1/2|ϕ|2 + 1/4|ϕ|4 where |ϕ|2 = ϕ2

1 + ϕ2
2.

What are the minima (ϕ0
1, ϕ

0
2) of the local free energy f(ϕ1, ϕ2)? Perform a linear stability

analysis around one of the minima, which is also symmetric ϕ0
1 = ϕ0

2 by expanding in
small deviation: ϕ1 = ϕ0

1 + δϕ1 and ϕ2 = ϕ0
2 + δϕ2.

Find the parameter regimes such that the non-reciprocity α(ϕ1, ϕ2) makes the steady state
unstable.



d) Equations (18) and (19) can be rewritten equivalently as an equation for a complex
field ϕ = ϕ1 + iϕ2 with an amplitude |ϕ| =

√
ϕ2
1 + ϕ2

2 and a phase θ = tan−1(ϕ1

ϕ2
). Find

the time evolution for the complex field ϕ.

Hint: your result should read ∂tϕ = Γ∇2 (−(1 + iα0)ϕ+ (1 + iα1)|ϕ|2ϕ−K∇2ϕ).

e) Next, we focus on the existence of traveling waves in the system. Show that the
Ansatz ϕq = ρqe

i(qṙ−ω(q)t) can solve the non-reciprocal Cahn-Hillard equation and find
the explicit value of ω(q) and ρq. Interpret the reason why ω(q → 0) → 0 and discuss
meaning of the sign of ω(q).

f) Simulate equations (18)-(19) given on the provided Mathematica template and list
the type of patterns you observe. Use the parameter sets provided in Table 1.

α0 α1 ϕ1,0 ϕ2,0

1 5 0.25 0.25
5 2 0.2 0.2
4 4 0.25 0.25
4 4 0 0

Table 1: Parameter values for the simulations.

Your solutions should be handed in in moodle by Wednesday,
November 26 th 2025, 10 am.


