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Exercise 12 — Cahn-Hilliard equation with an additional
reaction term

In the lecture you studied a binary mixture in which each individual species is preserved.
Now we want to introduce a chemical reaction into the system such that the total number
of particles is preserved, but the individual species are not. The simplest reaction to
consider is the transformation between species. i.e,

A= B. (1)

In this situation, the dynamics of local concentration of the A-particle is governed by the
Cahn-Hilliard equation, modified by an additional reaction term

dic = TV2p(c) — Ap(e), (2)

where A and T" are positive Onsager coefficients. (Note: This model is like adding model
A and model B together.) The chemical potential given by u(c) = 6.F [¢] /dc. F[c] is the
Ginzburg-Landau free energy functional for a binary mixture

K
Fld= [ a0+ 557, (3

Rd 2
with f(c) = —£(c—ce)’*+%(c—c.)" and ¢, is a positive constant (the critical concentration).
a) To simplify the equations we consider density deviations ¢ from the critical density

¢ = v (c — c.), where v is the molecular volume. By rescaling ¢ = a¢’, show that the
eq.(2) can be rewritten as

at¢/ — (F/VZ o A/) (_(b/ + ¢/3 o filv2¢/) ) (4)
What assumption is made in this rescaling?

Rename ¢/ — ¢, I' = T', A’ = A, ¥ — k, and continue.

b) First, let us study the stability of the homogeneous state. In the Cahn-Hilliard
equation, all homogeneous states are stationary. Does the additional reaction term affect
this property? Linearize Eq. with respect to the homogeneous density ¢, find the



dispersion relation, and discuss your result. Compare your result to the results from
model A and B.

c) Let us now investigate the stability of an inhomogeneous state (phase separated state).

Show that the interfacial solution ¢;(z) = tanh (,/i:ﬂ) is a steady state of the 1D
system.

d) To investigate the stability of an inhomogeneous state, one can check how a small
perturbation d¢(x) on the interface profile affects the free energy. Show that the variation
of the free energy with respect to the interfacial profile given by dF = F [¢1(x) + 0 (x)] —
F [¢1(x)] to the lowest order is

6F = | d {w (3¢7(x) — 1) + g (Voo (x))?] . (5)

Rd

To obtain this result, you need to expand the Ginzburg-Landau functional to the second
order. Explain why.

e) Show that in 1D, a small translational perturbation (¢ = ¢1(x + €), for small ¢)
with respect to interfacial profile does not increase the total free energy. Why is this
perturbation forbidden if reaction terms are absent? What does the result tell you about
the stability of the interfacial profile?

f) We would like to investigate the stability of a droplet. Assume that there is a high
concentration droplet surrounded by a low concentration bulk. From the lecture, you
have learned that due to the surface tension and the curved interface of the droplet, the
concentration inside (¢y,) and outside (¢oy) is elevated with respect to the local minima

¢in/0ut - d):lz + 5¢:|: )

where ¢, = 1 and ¢_ = —1. Assume that the deviations are small and there is a length
scale separation (width of droplet interface is small compared to scale of density variation).

Show that eq. can be reduced to
Op0¢ = (2T + kA)V25p — 2N6h- (6)

for the small deviations inside and outside the droplet. Explain why the equation for the
small deviation is the same inside and outside the droplet.

g) Next, we want to use the previously defined eq. @ to determine the stationary
radial profile for a constant radius R of the 3-dimensional droplet in the weak reaction
limit I > A. First, sketch the radial profile of the droplet to determine the boundary
conditions d¢ (0), ¢4 (R), 0¢_(R) and d¢_(o0). Then use spherical coordinates to show
that in the weak reaction limit I' > A the radial profile of the droplet is approximately

Gin = ¢4 + ddar (7)

¢out ~ ¢— + 5¢GT ? (8)



Using your result from part b), explain how the boundary condition §¢_ (00) would change
without any reactions present.
Hint: Use the Gibbs—Thomson relation from the lecture

0 dx
5¢GT = 7R )
where éiﬂ = (¢+—<;f;;i}/'(¢i) 15 the capillary length, to determine the boundary conditions.

h) The goal of this last exercise is to determine the radial velocity of the droplet. For
this purpose use the stationary radial profile derived in the previous exercise with varying
droplet radius R(t). Using the flux balance at the interface, show that in the weak reaction
limit I' > A the radial velocity as a function of the droplet size is given by

_ Thoo

QR(1) = g g

i) Sketch the radial velocity from the previous part. Compare it to the result derived
in the lecture, where you neglected the reaction terms. What is the qualitative difference
in the observed droplet behavior?

Exercise 13 — Cahn-Hilliard equation with active reac-
tion
In the previous exercise, the conversion between A and B was driven by thermal equi-
librium, meaning it was passive and always minimized the free energy. In contrast, in
this exercise, the conversion between A and B is active, driven by an external factor, e.g,
consumption of ATP. You will observe in this exercise that fluctuations only grow in a
narrow range of length scales, which imply a possible length scale controlling mechanism.
Consider the reaction between A and B with forward and backward reaction rates k1, and
ko respectively.

A :: B. (10)

The dynamics of the local concentration of A (¢4 = ¢a/v) is governed by the Cahn-Hillard
equation, modified by a mass-action reaction term.

Oicp = FV25F{CA} — kicq + kocp (11)
5CA
=TV?(f'(c) — kV%¢) — ke + k(1 — ¢) (12)

We dropped the subscript ” A” in the equation and can write cg as (1 —c¢). For simplicity,
we assume that the forward and backward reactions have the same rate: k; = ko = k and
set the molecular volume to v = 1.

a) As before, consider the following Ginzburg-Landau free energy functional with a crit-
1

ical density ¢, = 3

F@==Fe= 3P+ =" (13)



Linearize Eq. with respect to the homogeneous density ¢, find the dispersion relation,
and discuss your result.

b) From the exercise, you now understand that the reactions select the initial length
scale for growth. However, to fully comprehend the later stages of phase separation,
where nonlinearities become significant, we need to investigate the coarsening process
by solving the complete nonlinear equation numerically. Use the provided Mathematica
notebook with the parameters r = 1, v = 5, I' = 1, and x = 0.5. For simplicity, we
consider here the one-dimensional systemﬂ Initiate the system at ¢ = 0.5 4+ d¢, where dc
is some random fluctuations preset in the notebook. Observe and describe the dynamics
in the presence of the reaction.

c) With the same parameter, start the simulation with the initial state as a single droplet,
what do you observe now?

d) In the absence of reactions, the 1D Cahn-Hillard system grows logarithmically at late
times. i.e, The droplet size growth as

L(t) ~ [In(t))". (14)

In the presence of reactions, the droplet size reaches a steady-state. From dimensional
analysis, [t] ~ 1/[k]. Therefore, the steady-state droplet size should follow the scaling
law

Loo ~ [In(1/k)]" . (15)

Try a few values of k € [1074,3-1074,1073,3-1073,0.001,0.01,0.03,0.1] and show the
relation between steady-state droplet size and k& numerically.

Your solutions should be handed in in moodle by Wednesday,
November 19" 2025, 10 am.

IFor snapshots of the two-dimensional system and more detailed information, consider the reference
paper (https://journals.aps.org/prl/abstract,/10.1103/PhysRevLett.74.2034)).




