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Exercise 9 — Source degradation model

A key aspect of protein pattern formation is bulk-boundary coupling. In a cell, the bulk is
the cytosol inside the cell, and on its boundary is the cell membrane. In this problem, we
consider a lower dimensional conceptual analog of this, where the bulk is a one-dimensional
line of length h and the boundary are its endpoints at z = 0 and z = h. This endpoints
are coupled to the dynamic in the cytosol through boundary conditions at z = 0 and
2z =h.

The cytosol (bulk) dynamics is, as is often the case, dominated by diffusion, with diffusion
constant D., whereas the membrane is reactive. Proteins bind to the membrane at z = 0
with a rate ko,, which has units [length/time]. At the other end z = h, the system is
closed.
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Figure 1: Schematic of the modeled system in Exercise 9.

To model this spatially extended system, we now need to use partial differential equations
(PDEs) instead of ordinary differential equations (ODEs). Still, there might be conditions
under which we can approximate the bulk density at a certain position by the average (or
well-mixed) bulk density, which reduces the system to ODEs again.

In this exercise we will explore under which conditions we are allowed to make this ap-
proximation. To this end, we’ll start with the fully spatially extended system and derive
which conditions need to be fulfilled to allow for an approximation by a well-mixed system.
The dynamics of the density of proteins in the bulk is given by the diffusion equation



Oic(z,t) = D,NV?c(2,1). (1)

a) Write down the corresponding boundary conditions at z = 0 and at z = h and give
an expression of the dynamics of the membrane bound proteins d;m.

Hint: the particle flux J(z,t) in the bulk is defined by Oyc(z,t) = —V.J(z,1).

b) In case we can neglect the diffusive dynamics in the bulk, we can reduce the diffusion
equation to an ODE for the density at z = 0, ¢(t) = ¢(0,t). To this end, define the average
bulk density, ¢(t) and assume ¢(t) =~ ¢(t) to arrive at

Kon
0ic(t) = ——¢(t).
h
Solve this equation. What is the steady state? And what is the relaxation time to arrive

at steady state?

c) Since the diffusion equation (/1)) is analytically solvable, we can also explicitly show un-
der which assumptions the diffusion in the bulk can be neglected. To this end, we want to
get an expression for the wavelength of the gradients and compare these to the bulk size h.

Use the separation ansatz c(z,t) = ¢(t)((z) and the separation variable o to get

dub(t) = —oo() 2)
D.V%(2) = —o¢(2). (3)

Use the equation for ((z) to find the dispersion relation, which is the explicit expression
of o as a function of ¢. Find a solution for both ¢(t) and ((z) that already satisfies the
boundary condition at z = h.

Hint: The dispersion relations describe how a frequency o depends on the wave number
q, i.e. is the function o(q). To find it, Fourier transform in the equations both the time
(to obtain a frequency o) and the space (to obtain a wave number q).

d) Use the boundary condition at z = 0 to derive the eigenvalue condition

h
hq; tan(hg;) = =
with oy, = D./kon. This equation can only be solved analytically in certain limits. Con-
sider the limits h < [, and h > [,,. For these limits, find the smallest eigenvalue ¢,
corresponding relaxation time 7 and wavelength A\, = i—?. Compare the relaxation time

with the time scale you found in part b).

Hint: Look at the separation of variables in problem part c) to find an expression of the
relaxation time 1 as a function of oy.

e) Use dimensional analysis and the insights gained from the previous problem parts to
get an expression for the length scale of the bulk gradients [,,, the timescale of cytosolic



mixing 74 and the typical time a protein suspended in the bulk needs to attach to the
membrane 7,,. Use these quantities to give an argument under which conditions the
diffusive dynamics, i.e. gradients, can be neglected.

Exercise 10 — Allen-Cahn equation with external field

In this exercise, we will examine the behavior of the Allen-Cahn model with an external
field in one dimension. The general form of the equation is

0o = KV — f'(9), (4)

where we have set the kinetic coefficient A = 1 (c.f. lecture) and f(¢) is a double-well
potential given by Bragg-Williams (mean-field) approximation,

F(8) = =56" + 76" — ho, (5)

with h an external magnetic field and ¢ corresponds to the magnetization in a magnetic
system. Note that this exercise is an extension of the analysis of the Allen-Cahn equation
from the lecture notes.

a) Rescale the equation to the form
Oit> = K20 — 0 | A6 — 16+ 1)* — ho | (6)

where 7, 7, ¢ and h are the corresponding rescaled variables to t, z, ¢ and h. Use the
. . . 2 . 7 .
rescaled form given in the lecture with A = iqﬁ? = .- Find h. In the following, rename

it t—x, 06— ¢and h — h

b) What are the possible fixed points of the spatially uniform system? Solve the fixed-
point equation graphically. For fixed field h and bifurcation-parameter r, what kind of
bifurcation do you observe in the non-rescaled system? At which value r. does it occur?
Draw a bifurcation diagram.

c) Recall the linear stability analysis from the lecture, with the dispersion relation

o(q) = —kq* — "(¢7). (7)

Calculate f”(¢) and discuss your result.

d) We will now calculate the front velocity for an interface connecting ¢ = ¢, (the
higher fixed point in the homogeneous system) at x — —oo with ¢ = ¢_ (the lower fixed
point in the homogeneous system) at  — oo for small values of the field h, which we will
choose h > 0 in the following. In order to do so, rewrite Eq. @ in the co-moving frame
such that ¢(z,t) = ¢(z — ((t)) and show that

@awzméf, ®)



where Af = f(¢-) — f(¢4) and v = k [~_(0.¢)?dz. Sketch the interface connecting ¢
to ¢_. If h is small, the minima of the potential at ¢ are roughly equal to the values at
zero field, ¢ (h) = ¢4 |p—o. With this in mind, show that

o(t) = v R 9)

Into which direction does the interface move?

e) Now, consider a curved interface and n a normal vector on the interface. Then, the
gradient on the interface can be written as

Vo =mn0,¢, (10)

where 0,¢ is the derivative directed along the interface normal and z is the coordinate in
normal direction (c.f. lecture). Then, one has

V2 =020+ 0.0V -n (11)

Restate the problem in exercise part d) for a gently curved interface of ¢, enclosing ¢_
in 2D or 3D and show that h
v:—V-n—i—Q/-i(bs . (12)
f)/
When does this ansatz break down? In the lecture it was shown that all droplets will
vanish. Does this still hold?

Exercise 11 — Fisher-KPP equation

a) In this exercise, we consider a model that describes the spreading of a population
u(x,t) through space. The model consists of an interplay between diffusion dynamics and
local logistic growth:

Ou(x,t) = DV?*u+ pu(z,t) (1 - u(f{’t)) (13)

with diffusion constant D > 0, linear growth/reproduction rate g > 0, and carrying

capacity K. Show that by rescaling time, space, and the density u(z,t), one obtains the
following dimensionless form of the Fisher-KPP equation:

Oy = Oz + u(1 — u). (14)

b) It is, however, instructive to study the dimensionful equation , which we will con-
sider throughout the exercise. Additionally, we specialize to a one-dimensional system.
Identify the homogeneous stationary solutions of equation [13|and study their stability un-
der a small plane-wave perturbation of the form e***+?(@*  Derive the dispersion relations
o(q) in each case and classify stability.

c) For the rest of the exercise, we consider as initial condition of the Fisher-KPP equa-
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Figure 2: Left: the initial condition of the Fisher equation is a small perturbation localized in the center.
Right: the initial perturbation grows and saturates at u = K, and the density u forms traveling fronts
that move in the direction indicated by the blue arrow.

tion the configuration where u(x,t) = 0 everywhere, apart from a small perturbation
placed in the center (see figure[2)). Argue why this perturbation will grow until u(z,t) = K
and then spread through space in the form of a traveling front.

From dimensional analysis, argue that the traveling front connecting u = K to u = 0
travels with speed ¢ ~ /Dy and has characteristic width ¢ ~ \/D/p.

d) In this exercise part, we will seek a traveling wave front of the form u(x,t) = a(&)
with £ = x — ¢t being the new coordinate of the moving frame, and ¢ the constant speed
of the traveling front. Here, a is the front solution that connects the two fixed points:

a6 > o0) =K, a(§— —o0)=0. (15)
Show that a satisfies
Da" +cad' + pa(l —a/K) =0,

and rewrite it as the first-order system
a =b, Db = —cb— pa(l — a/K). (16)

Find the fixed points and the Jacobian of the equation above. Compute the eigenvalues
at the fixed points. Finally, from the stability of the fixed points, argue why the velocity
must satisfy ¢ > 2v/Du. Hint: the trajectory in phase space—with a and b as azes—that
connects the two fized points exactly determines the shape of the interface.

e) We now consider equation [17|in the region of space where u(x, t) is still approximately
zero, i.e., far away from the traveling front. Linearize the equation around the fixed point
u* = 0 and show that its time evolution follows:

+°°d . .
u(é,t) = / L guaeliacto (@l (g), (17)

o 2T

where £ = x — ct, 0(q) = u — D¢?, and 1y(q) is the Fourier transform of the density at
t=0.



f) Take now the limit ¢ — oo of expression [17] and discuss the condition on ¢ such that
the density does not diverge at large times. To perform the integral, use the saddle point
approximation, which states that:

/ dz g(z) e 1) ~ g(xg)e /170, (18)

where f(z), g() are arbitrary functions and zy is a saddle point of f(z), i.e., - f(z)]4, = 0.
The two conditions that you should obtain from requiring that u(§,t — oo) does not

diverge are:

=0’ and c¢= M
c= (QS) d [m[qs]

where ¢, is the saddle point, and Re and Im denote the real and imaginary parts of an
expression. Show that solving these two equations yields ¢ = 2/ Dp.

Your solutions should be handed in in moodle by Wednesday,
November 12t* 2025, 10 am.




