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Exercise 6 – Bogdanov-Takens bifurcation

In the Lecture and previous exercises, we’ve explored saddle-node and Hopf bifurcations.
The upcoming pair of exercises will delve into scenarios where these bifurcations converge
at a specific location within the parameter space. Such convergence points, often referred
to as organizational centers, play a pivotal role in shaping the phase space structure. They
embody the essential characteristics of the phase space structure that emerge due to the
bifurcation. Analyzing the dynamics in both parameter space and phase space around
these points is crucial, a process known as ”unfolding the bifurcation.” This concept is
analogous to the cusp bifurcation discussed in the lecture.

Consider the following two dimensional system

∂tx(t) = y(t) := f(x, y),

∂ty(t) = a+ by(t) + x(t)2 − x(t)y(t) := g(x, y) .
(1)

Use the provided Mathematica notebook to explore the dynamics of the system described
in equation (1). Visualize the nullclines, flow, invariant manifolds, and trajectories, ad-
justing the parameters a and b using the ‘Manipulate[]‘ function. This hands-on approach
will help you control the presence of saddle-node and Hopf bifurcations. Throughout this
exercise, we will develop a bifurcation diagram based on these parameters to systemati-
cally classify the system’s behavior across different regimes.

a) Derive an expression for the fixed points and corresponding eigenvalues of this two-
component dynamic system.

b) Identify the relationship between a and b that leads to a saddle-node bifurcation.
Sketch the corresponding bifurcation line in parameter space and mark the number of
fixed points in each region.

c) Show that one fixed point is consistently a saddle. The other fixed point experiences
a Hopf bifurcation. Establish the conditions for a and b that lead to Hopf bifurcation and
illustrate the Hopf bifurcation line on your sketch.

d) At which point in parameter space do the Hopf bifurcation and the saddle-node
meet? This bifurcation is called the Bogdanov-Takens bifurcation.



e) Pick a and b such that you have a limit cycle (e.g. a = −0.2 and b = −0.4) and
slowly increase b with the given Mathematica notebook. The system now undergoes a
Homoclinic bifurcation. Describe the behavior of the system before, after and at the
bifurcation, in particular what happens to the limit cycle. Describe how the fixed points,
their stability throughout this bifurcation.

f) Use the Mathematica notebook to approximate the bifurcation line for the Homoclinic
bifurcation, i.e. pick values for a between −0.5 and −0.02 and and the corresponding value
for b for which the Homoclinic bifurcation occurs. Include your approximated bifurcation
line in your sketch.

Exercise 7 – Bogdanov-Takens bifurcation: Unfolding
the homoclinic orbit

To analyze the homoclinic bifurcation of the system more closely, we apply a blow-up
transformation in the vicinity of the Hopf bifurcation. This rescaling “zooms in” on the
parameter region near the Bogdanov–Takens point. The goal of the blow-up is to separate
contributions of different order: after rescaling, one obtains a leading-order system that
captures the essential bifurcation structure, while higher-order terms appear as small
perturbations. In this way, the dominant dynamics (such as the homoclinic orbit) can be
studied independently from small corrections. The parameters are transformed as follows:

a → −4ε4, b → µε2.

a) Argue how this transformation makes sense from your observation in the last exercise.
Then find the appropriate scaling factors for x, y, and t to derive the following system of
equations:

∂t̃x̃ = ỹ,

∂t̃ỹ = −4 + x̃2 + εỹ(µ− x̃).
(2)

Find x̃, ỹ, and t̃, respectively.

b) For convenience, we rename t̃ → t, x̃ → x, and ỹ → y for the rest of the exercise.
For ε → 0 you can interpret the dynamics (2) as a energy conserving system of a fric-
tionless mass point moving in a potential V = 4x − x3/3. Use the expression for the
total energy E = y2/2 + V (x) to sketch the possible orbits of the conservative system in
(x, y)-phase space. Find the energy of the homoclinic orbit which starts and ends exactly
at the local maximum of V (x). Show that xh(t) = 2(1 − 3/ cosh(t)2) is the homoclinic
trajectory of (2) for ε = 0.

c) As discussed in the previous exercise, for the singular point ε = 0, the dynamics (2)
can be interpreted as a energy conserving system of a frictionless mass point moving in a
potential V = 4x−x3/3. Any (however small) value of ε will break this property, because
the driving/friction-term εy(µ − x) will perturb the orbits over time. In particular, the
homoclinic orbit (whereµ = µh, you don’t need to find the value of µh in this part) of the
energy conserving system will in general be perturbed such that it does return exactly
to the maximum of V (x), i.e. picks up a net energy difference as it traverses the orbit.



Figure 1: This figure is adapted from Novak, B. and Tyson, J. J. (2008). Nature Reviews, 9(12), 981-991.
Left: Schematic representation of a negative-feedback loop in which mRNA and protein regulate each
other’s synthesis and degradation. The dynamics of this system are described by a set of kinetic equations
that capture how the feedback strength and molecular interactions can lead to oscillatory behavior. Right:
Simulated sustained oscillations in mRNA and protein concentrations corresponding to the parameter
set that produces a limit cycle solution. These oscillations illustrate how feedback and nonlinearity can
generate rhythmic gene expression in a self-sustained manner.

Sketch a situation where it gains some energy and a situation where it looses some net
energy difference along the trajectory.

d) We can use the analogy to a mass point moving in a potential to determine the
homoclinic bifurcation line: The homoclinic orbit only remains homoclinic (return to
it’s starting point) if the energy picked up due to the driving/friction-term along the
homoclinic orbit vanishes. First, show that

δE = ε

∫ ∞

−∞
dt(∂txh)

2(µ− xh) (3)

is the energy picked up due to the driving/friction-term along the homoclinic orbit xh(t).
Then, use the condition δE = 0 to determine the critical value µcrit for which the homo-
clinic orbit occurs.

Hint : Use Mathematica to evaluate the net energy integral.

e) Transform the parameters back to the original parameter space (a, b) to add your
approximation of the homoclinic bifurcation line to the bifurcation diagram. Are your
values found in the last exercise agrees with the approximation?

Exercise 8 – Biochemical Oscillations

Biochemical oscillations, play crucial roles in various biological processes like metabolism,
cell signaling, and growth. In this exercise, we will study a gene-regulatory-network
(GRN) able to describe how circadian rhythms arise in the expression of a protein through
phase space analysis and oscillations. We consider two concentrations: the mRNA con-
centration M and the protein concentration P .

a) The first key ingredient to obtain an oscillator is a protein P that represses the
transcription of its own gene (for example, PER in the circadian control system of fruit



flies1). Transcription is modulated by a signal density S. Another key ingredient is that
the protein P can be degraded by a protease, denoted E. The time evolution equations
for the mRNA M and the protein P reads:

dM

dt
= k1S

Kd

Kd + P
− k2M (4)

dP

dt
= k3M − k4E

P

Km + P
(5)

See Fig. 1 for a visualization of the key ingredients. What are the meanings of the differ-
ent coefficients k1, k2, k3, k4, Kd and Km?

Hint: Consider the two limits of P → ∞ and P → 0 when interpreting the meaning
of the various terms. You might find it useful to look up Michaelis-Menten kinetics.

b) Assume, for simplification, that k1 = k2 and k3 = k4 and Kd = Km. Show that you
can nondimensionalize the equations, such that you get a set of equations of the form

dX

dτ
= S

1

1 + Y
−X , (6)

dY

dτ
= k̃X − k̃E

Y

1 + Y
. (7)

What are the rescaled parameters k̃, τ , X and Y in terms of the old parameters.

c) How many fixed point do Eqs.(6), (7) have? Solve for the fixed points and classify
them by using the trace determinant criteria from the lecture.

d) Sketch the phase portrait of the system, by sketching the nullclines by hand. Then use
the provided mathematica file, to plot the two nullclines and additionally study the sign
of the time derivatives of X and Y and plot a few trajectories in phase space. Are there
oscillations? If yes, are these dampened or sustained? Argue how you can connect the
stability of the fixed point found above with the oscillations being dampened or sustained.

e) To sustain the oscillations, we must introduce a positive feedback parameter into
the system. In particular, we assume that protein P , in addition to binding to its own
gene regulatory site and downregulating its own expression, can bind to protease E and
thereby inhibit its activity. Biologically, this is motivated by the fact that proteins often
regulate their own degradation by binding to and transiently inactivating the proteases
responsible for their turnover. Such sequestration reduces the effective protease activity
when the protein concentration is high, thereby introducing a positive feedback that can
help sustain oscillations. The new equations read:

dM

dt
= k1S

Kp
d

Kp
d + P p

− k2M (8)

dP

dt
= k3M − k5P − k4E

P

Km + P +K1P 2
(9)

1Tyson, J. J., Hong, C. I., Thron, C. D., and Novak, B. (1999)). A simple model of circadian rhythms
based on dimerization and proteolysis of PER and TIM. Biophysical journal, 77(5), 2411–2417.



The term describing the transcription of the mRNA is now raised to the p-order, indicating
whether Y binds to the DNA sequence as a monomer, dimer or trimer and so on. In what
limit does the newly introduced terms inhibit the activity of E? Can you motivate the
additional terms in the equations?

f) Numerically find the fixed points of (8), (9). Using the provided mathematica file,
plot the two nullclines and study the sign of the time derivatives of M and P , plot a few
trajectories in phase space. Using the Poincaré-Bendixon theorem, the stability of the
fixed point and the qualitative behavior of the vector field argue whether you expect a
limit cycle or not. Make a comparison with the Rho GTPases phase space studied in the
lecture.

Your solutions should be handed in in moodle by Wednesday,
November 05th 2025, 10 am.


