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Exercise 4 – Lyapunov functions

This exercise is a continuation of Exercise 2. This time, we will analyse two variations of
the one-dimensional harmonic oscillator and study the changes in the phase space. We
will then introduce the concept of Lyapunov function, useful to study the global stability
of a fixed point. The one-dimensional harmonic oscillator (aka the Hookian spring) is
characterized by the following equations of motion:
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a) Hookian springs are nice to calculate but a real spring will not have a perfectly
constant spring constant k. Assume that the spring has a small nonlinear contribution
a > 0 such that the force exerted follows Fspring = −(kx + ax3). How does this change
the trajectories from the linear case? What stays qualitatively the same?

b) Back to our Hookian spring. In this exercise part, consider that the mass will move
in some fluid and experience Stokes drag. Write down the modified equation of motion
and plot the trajectory of the damped oscillator in phase space with initial condition
v(0) = 0 and x(0) = 1. Does the behaviour look qualitatively different for different initial
conditions?

You can prove that a fixed point is globally stable if you find a strict Lyapunov function:

Given a dynamical system ∂tu⃗ = f⃗(u⃗) with equilibrium solution u⃗ = 0, the scalar and
differentiable function V (u⃗) is called a Lyapunov function, if the following holds

1. V (u⃗) > 0 for all u⃗ ̸= 0 and V (0) = 0,

2. gradu (V (u⃗)) · f(u⃗) ≤ 0 for all points u⃗ in phase space; it is called a strict Lyapunov
function if gradu (V (u⃗)) · f(u⃗) < 0 or all u⃗ ̸= 0.

c) Explain why the existence of a strict Lyapunov function ensures that u⃗ = 0 is a
globally stable fixed point, i.e. starting from any initial condition, the system will end up



at u⃗ = 0. Find a (strict) Lyapunov function for the damped harmonic oscillator from the
previous exercise part. What is its physical interpretation?

Identifying a Lyapunov function is a powerful method in nonlinear dynamics, since it
characterizes the long-term behavior of the system. However, there is no recipe for finding
Lyapunov functions.

To see this, let’s have a look at a system from a different context. The Lotka-Volterra
model describes predator-prey interactions between a predator species a and a prey species
b. The extended Lotka-Volterra equations are

∂t
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)
=
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2

−ab+ βb− γbb
2

)
, (1)

where we assume β, δ, γa, γb ≥ 0.

d) Interpret the different terms in the evolution equations.

e) One might have come up with an ansatz of the form V (a, b) = p1 [a− a∗ log(a)] +
p2 [b− b∗ log(b)] as Lyapunov function for this system. Here, a∗, b∗ > 0 denote the non-
zero equilibrium solution of the system. Determine the parameters p1, p2 such that this
function is indeed a Lyapunov function for the above system. In which case is it a strict
Lyapunov function? Plot trajectories in phase-space when V (a, b) is a (strict) Lyapunov
function. How do the two cases differ?

Hint: Separate terms with and without γa, γb. Rewrite the terms that are left using a∗, b∗.

Exercise 5 – Population of fish

Assume a population of n fish in a pond can be described by the logistic growth equation:

∂tn = µbn

(
1− n

Kb

)
, (2)

where Kb and µb are constant parameters.

a) Interpret the meaning of each term.

b) :Now we want to consider a population of these fish, following equation 2.] Consider
a population of n fish that is assumed to grow according to this logistic growth law.
Extend the logistic growth equation by an additional term which accounts for a constant
harvesting denoted by H which is independent of the population size n (this provides a
simple model of a fishery.) Show that the system can be rewritten in dimensionless form
as

∂τu = u(1− u)− h (3)

for suitably defined dimensionless quantities u, τ, and h.

c) Find fixed points (∂τu
∗ = 0) of Eq.(3) in terms of h.



d) Sketch y = −u2 and y = h− u on the same graph for different values of h and mark
the fixed points.

e) If an arbitrary point (u ̸= u∗) is taken as the initial condition, the system will evolve
according to the sign of ∂τu. If ∂τu is positive, u increases over time and vice versa. This
trend of temporal evolution is called flow and it can be marked by arrows on the u-axis.
In Fig. 1 you can find an example of velocity flow for h = 3. Sketch the velocity flow for
different values of h. The system bifurcates (qualitative changes its flow behavior) at a
certain value hc. Find hc. Sketch the bifurcation diagram, identify the bifurcation and
determine the stability of the fixed points in each plot.
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Figure 1: An example of a flow plot for h = 3, −u2 < h− u. Here, ∂τu is always negative: The flow (red
arrows) is always pointing to the negative direction, i.e. the population size is always decreasing.

f) Discuss the long-term behavior of the fish population for h < hc and h > hc, and
give the biological interpretation in each case.

Exercise 6 – Outbreak of an insect in a forest

In this exercise, we will consider a simple model developed by Ludwig et al.1 for an
outbreak of an insect, called spruce budworm, in a forest. Budworms eat the foliage of
a balsam fir forest and, during an outbreak, they can defoliate most trees in about five
years. We will only consider the time evolution of the budworm population n(t) and
assume the foliage of the forest to be constant. The time evolution of n(t) is given by
logistic growth and a phenomenological death term that accounts for predation p(n) by
birds.

∂tn = µbn

(
1− n

Kb

)
− p(n) , (4)

where

p(n) =
an2

b2 + n2
(5)

and µb, Kb, a, b > 0 are parameters.

a) Why might the assumption of constant foliage be a valid simplification? What is the
functional role of each of the model’s parameters?

1Ludwig, Donald, Dixon D. Jones, and Crawford S. Holling. ”Qualitative analysis of insect outbreak
systems: the spruce budworm and forest.” The Journal of Animal Ecology (1978): 315-332.



b) Rescale the system to the following nondimensional form:

∂τu = µu
(
1− u

K

)
− u2

1 + u2
. (6)

What are u, µ,K and τ in terms of n, t, µb, Kb, a, b?

c) Show by a graphical analysis that there are at most four fixed points u0, u1, u2, u3.
Determine the number of fixed points and their stability for all possible choices of µ and
K. Argue which of those fixed points could be associated with the refuge, outbreak, and
threshold state of the system. Discuss the possibility of bistability for different parameter
configurations.

d) Next we want to compute the curves (K,µ) that parametrize the critical points
where the refuge state ceases to exist (by undergoing a saddle-node bifurcation with the
threshold of the system). Show that the critical points are given by the parametric form

µu =
2u3

(1 + u2)2
, Ku =

2u3

u2 − 1
. (7)

e) Use Mathematica to plot the bifurcation curves in (K,µ)-space and the surfaces
of all stationary states u(K,µ) in (K,µ, u)-space. How would you expect forest growth
to affect the parameters? In this context, discuss the possibility of hysteresis effects.

Your solutions should be handed in in moodle by Wednesday,
October 29nd 2025, 10 am.


