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Problem set 7

Problem 7.1 scaling hypothesis
Close to a continuous phase transitions, various observables depend singularly on thermodynamic control parame-

ters. Using the language of magnets, one defines critical exponents for the magentization (order parameter) m in the
low-temperature phase, m ∼ (−τ)β with the reduced temperature τ = (T − Tc)/Tc, the divergence of the zero-field
susceptibility, χ(T ) ∼ |τ |−γ , and the anomalous behavior of the specific heat C ∼ |τ |−α. Furthermore, directly at the
critical temperature T = Tc, the equation of state becomes singular, m ∼ h1/δ, where h denotes the magnetic field
(field conjugate to the order parameter).

1. The expectation that there should be relations between these exponents is formulated in terms of the scaling
hypothesis. The key assumptions is that the free energy density acquires a singular contribution that can be
written as

fsing = |τ |2−αY±
(
h|τ |−∆

)
.

In particular, fsing does not depend separately on temperature and magnetic field but only on a single scaling
variable x = h|τ |−∆. The scaling functions Y±(·) are different for temperatures above (τ > 0) and below (τ < 0)
the transition point. They are assumed to be analytic, in particular they may be Taylor expanded for small
arguments

Y±(x) ≈ Y±(0) + Y′
±(0)x + . . . .

Using thermodynamic arguments, show that this hypothesis implies

(a) the specific heat acquires the expected behavior.
(b) the exponent for the order parameter is given by β = 2 − α − ∆.
(c) the susceptibility exponent fulfills the relation γ = ∆ − β.
(d) the equation of state is singular with δ = ∆/β.

2. In a similar spirit, the order parameter correlation function, G(~r; τ, h) = 〈m(~r)m(~0)〉, assumes the scaling form

G(~r ; τ, h) =
1

rd−2+η
G±

(
r/ξ, h|τ |−∆

)
,

in terms of the divergent correlation length, ξ ∼ |τ |−ν . In particular, distances are measured only relative to ξ.
By the fluctuation-response theorem, the susceptibility is connected to the correlation function by

χ =
∫

dd~r G(~r ; τ, h) ,

Demonstrate that the scaling hypothesis implies the exponent relation γ = (2 − η)ν. Compare all exponent
relations obtained so far with the mean-field prediction.



3. A hyperscaling relation assumes that the singular contribution to the free energy density arises due to fluctua-
tions. Then up to factor of order unity, one expects in zero field

fsing ' kBT
ξd

V
, volume of the system: V .

i.e. the effective degrees of freedom are correlated regions of linear dimension ξ, and each freedom contributes
kBT to the free energy. Show that this implies dν = 2 − α. Since this relation involves the dimension of the
system, whereas the mean-field exponent are universal, the hyperscaling relation is valid within mean-field only
for a special value of d = dc, where dc is referred to as critical dimension. Determine dc.

Problem 7.2 One-dimensional Ising model
The partition sum of the one-dimensional Ising model can be written in a symmetric form

Z =
∑

{σl=±1}

exp
(
−H̄[{σl}]

)
, H̄[{σl}] =

∑
l

(
−Kσlσl+1 −

L

2
(σl + σl+1) + C

)

Here the temperature has been absorbed in the parameters K = βJ and L = βH. Furthermore a constant C has
been added which will be useful in the following analysis.

1. Trace out every second spin degree of freedom, and show that the effective hamiltonian for the remaining spins
can be written in the same form as above, provided the parameters K, L, C are replaced by new ones. Find the
mappings

K ′ = K ′(K, L, C) , L′ = L′(K, L, C), , C ′ = C ′(K, L, C) .

These relations constitute the renormalization procedure.

2. Introduce suitable variables that capture possible strong coupling behavior

x = e−4K , y = e−2L , w = e−4C ,

and show that the recursion relation translates to

x′ =
x(1 + y)2

(x + y)(1 + xy)
, y′ =

y(x + y)
1 + xy

, w′ =
w2xy2

(1 + y)2(x + y)(1 + xy)
.

Discuss the behavior of the mapping close to its non-trivial fixed point.


