
Real-Space Renormalisation
Decimation & Blocking

by Alejandro Zielinski

June 16, 2009

Abstract

Real-Space Renormalisation produces a growing number of new long-ranged interaction
terms. Therefore only approximations to the exact Renormalisation Group Equations can be
calculated. A systematic way to do that is to use the method of blocking on finite lattices.

Definitions
All the following will refer to Ising Systems, consisting of discrete spins σ on a lattice that can be
oriented in two directions σ = ±1.

Decimation is the process of reducing the number of degrees of freedom.
This can happen in many ways, an example is

Z =
N

Tr
σ

{
e−βH{σ}

}
=
N ′

Tr
σ′

N ′′

Tr
σ′′

{
e−βH{σ

′,σ′′}
}

=
N ′

Tr
σ′

{
e−βH

′{σ′}
}

where Z is the partition sum, Tr is the trace operator for N sites σ, β = (kBT )−1 and H is the
Hamiltonian. H′{σ′} shall have the same structure as the original Hamiltonian H{σ}.

Blocking is the process of grouping spins to blocks.
This means that a certain number of spins σ of the original lattice are grouped together to a

block-spin σ′:

e−βH
′{σ′} =

N

Tr
σ

{
P (σ′, σ)e−βH{σ}

}
whereH′{σ′} shall again have the same structure asH{σ}, and where P (σ′, σ) is called blocking

function and shall have the following properties:

P (σ′, σ) ≥ 0 ∀σ′, σ and
N

Tr
σ′

{
P (σ′, σ)

}
= 1

From the second condition follows

Z ′ =
N ′

Tr
σ′

{
e−βH

′{σ′}
}

=
N ′

Tr
σ′

N

Tr
σ

{
P (σ′, σ)e−βH{σ}

}
=
N

Tr
σ

{
e−βH{σ}

}
= Z

which means that the partition sum does not change. This implies that the thermodynamic
behaviour is the same.

The blocking function often has the following additional property, which makes actual compu-
tations easier

P (σ′, σ) =
N ′∏
i

P (σ′i, σij )
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meaning that the block spins σ′i only depend on the spins σij in the correspondent block.

Easy examples for the one dimensional Ising chain, where three spins σ are blocked together,
are the Majority Rule

P (σ′i, σi1 , σi2 , σi3) =

{
1 if σ′i · (σi1 + σi2 + σi3) > 0
0 otherwise

or the simple chosing of the middle spin

P (σ′i, σi1 , σi2 , σi3) = δσ′
i,σi2

(1)

The latter opens the possibility to do some calculations analytically.

One dimensional Ising Chain
A block spin transformation with the blocking function of equation (1) is explicitly done now.

If it is done with a nearest neighbour interaction Hamiltonian −βH{σ} = K
∑
j σjσj+1 one

will have to introduce a constant offset to the free energy. As the Hamiltonians shall have identical
structure, the starting Hamiltonian is chosen as

−βH{σ} = A+K

N∑
j

σjσj+1

and therefore:

Z =
N

Tr
σ

{
eA+K

∑
j σjσj+1

}
=

N

Tr
σ

N ′

Tr
σ′

{
eA

N ′∏
i

δσ′
i,σi2

eK
∑

j σjσj+1

}

=
N ′

Tr
σ′

{
eA

N ′∏
i

∑
σi3

∑
σi+11

eK(σ′
iσi3+σi3σi+11+σi+11σ

′
i+1)
}

because each σ′i contributes in the same way

=
N ′

Tr
σ′

{N ′∏
i

exp
[
A+ ln

(
eK(σ′

i+1+σ′
i+1) + eK(σ′

i−1−σ′
i+1) + eK(−σ′

i−1+σ′
i+1) + eK(−σ′

i+1−σ′
i+1)
)]}

by carrying out the sums and introducing the identity exp
[
ln
(
. . .
)]

!=
N ′

Tr
σ′

{N ′∏
i

exp
[
A′ +K ′σ′iσ

′
i+1

]}
=

N ′

Tr
σ′

{
eA

′+K′ ∑
i σ

′
iσ

′
i+1

}
The values of K ′ and A′ can be obtained by comparing all possible values of the exponentials:

σi σi+1 A+ ln
(
. . .
)

A′ +K ′σ′iσ
′
i+1

+
−

+
− A+ ln

(
e3K + 3e−K

)
A′ +K ′

+
−

−
+ A+ ln

(
3eK + e−3K

)
A′ −K ′
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Therefore, the Renormalisation Group Equation {A,K} → {A′,K ′} for this transforma-
tion is

A′ =
1
2

ln(10 + 6 cosh 4K) +A

K ′ =
1
2

ln
(e3K + 3e−K

3eK + e−3K

)
The constant A only affects itself, and not the real coupling constant K. It only produces

a constant offset for the free energy and leaves its derivatives untouched. It is irrelevant for
the following procedures, namely the finding of fixpoints and the calculation of potential critical
exponents, but this is not done here. Instead, a deeper look into the finding of Renormalisation
Group Equations is taken.

Two dimensional quadratic Ising lattice
When working in Real-Space, which simply means that it is not the Fourier-Space, a big prob-
lem arises in systems with more than one dimension. The transformation creates longer ranged
interaction terms. This will be shown now:

Consider a quadratic lattice and a blocking function similar to equation (1), only with two
spins: P (σ′i, σi1 , σi2) = δσ′

i,σi1

Figure 1: Part of the infinite lattice. The blocks contain two sites. The spins labeled with i, j, k
and l span the new lattice, indicated in green.

Starting with a clean nearest neighbour interaction Hamiltonian, ignoring the constant free
eneregy shift A,

−βH{σ} = K
∑
<ij>

σiσj

one gets:
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Z =
N

Tr
σ

{
exp
[
K
∑
<ij>

σiσj

]}

=
N

Tr
σ

N ′

Tr
σ′

{N ′∏
i′

δσ′
i′ ,σi′1

exp
[
K
∑
<ij>

σiσj

]}

=
N ′

Tr
σ′

{N ′∏
i

∑
σi2

exp
[
Kσi2(σ

′
i + σ′j + σ′k + σ′l)

]}
because again each σ′i contributes in the same way. The four σ′ are ordered quadratically.

=
N ′

Tr
σ′

{N ′∏
i

exp
[
ln
(
2 cosh

(
K(σ′i + σ′j + σ′k + σ′l)

))]}
!=

N ′

Tr
σ′

{N ′∏
i

exp
[
A′ +

K ′

2

4∑
<mn>i

σ′mσ
′
n

]
· exp

[
L′

2∑
�mn�i

σ′mσ
′
n +M ′σ′iσ

′
jσ
′
kσ
′
l

]}
By comparing all possible values of the exponentials it is easily shown that new interaction
terms L′ and M ′ need to be introduced to find a solution. The index i indicates
that the sums run over the (next-) nearest neighbours correspondent to the spin σ′i.

=
N ′

Tr
σ′

{
exp
[
A′ +K ′

∑
<ij>

σ′iσ
′
j

]
· exp

[
L′
∑
�ij�

σ′iσ
′
j +M ′

∑
[[ij]]

σ′iσ
′
jσ
′
kσ
′
l

]}
where the term with M ′ is called plaquette interaction.

This is not self-consistent, as {K} → {K ′, L′,M ′}. So, the starting Hamiltonian should already
include these three couplings, but then even more interaction terms would be generated. Starting
only with nearest and next nearest neighbour couplings, therefore ignoring the plaquette interac-
tion, one already reaches infinite range interaction in a single step. This is shown now. Starting
with

−βH{σ} = K
∑
<ij>

σiσj + L
∑
�ij�

σiσj

the partition sum transforms

Z =
N

Tr
σ

N ′

Tr
σ′

{N ′∏
i′

δσ′
i′ ,σi′1

exp
[
K
∑
<ij>

σiσj + L
∑
�ij�

σiσj

]}

6=
N ′

Tr
σ′

{N ′∏
i

∑
σi2

exp
[
Kσi2(σ

′
i + σ′j + σ′k + σ′l) +

L
2

(σ′iσ
′
j + σ′jσ

′
k + σ′kσ

′
l + σ′lσ

′
i

]
·

· exp
[
Lσi2(σj2 + σl2)

]}
where the last exponential indicates the next nearest neighbour interaction with spins that
have to be summed over. The factorization does not work here as this last term would require
an infinite number of new interaction terms.

Ignoring every interaction besides K ′ and L′ one gets an approximation to the exact Renor-
malisation Group Equation {K,L} → {K ′, L′}:

K ′ =
1
4

ln(cosh 4K) + L

L′ =
1
8

ln(cosh 4K)
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A systematic approach
The approximation above was obtained in a rather random way. A more systematic approach to
find approximative Renormalisation Group Equations is to consider finite lattices. (The above
examples contained numbers of spin sites N and N ′, but the calculations were done independent
of them. All above holds for the thermodynamic limit N →∞.)

Now, consider a lattice with exactly 16 spins, that are to be grouped together into 4 block
spins, with periodic boundary conditions.

Figure 2: Finite lattice with 16 sites. The new lattice consists of 4 spins, indicated in green.

The blocking function can be defined in many ways, but it is important that the spin symmetries
are conserved. This means that if all original spins are flipped, the block-spins need to flip as well:

{σ} → −{σ} =⇒ {σ′} → −{σ′}

This can be achieved by defining

σ′i =

{
1 for (+ + ++), (+ + +−), (+ +−+), (+−++), (−+ ++), (+−+−), (+ +−−), (+−−+)
−1 for the flipped combinations

This system can be solved exactly by carrying out the trace explicitly

e−βH
′{σ′} =

N

Tr
σ

{
P (σ′, σ)e−βH{σ}

}
where the 216 = 65536 summands can be handled by modern computers. The number of

block-spins defines the number of possible interactions. If odd couplings are abscent, the possible
couplings are the same as above, namely {A′,K ′, L′,M ′}.

This procedure of numerically calculating the Renormalisation Group Equation in a finite
system can be done for arbitrary lattice forms and dimensions, and therefore provides a systematic
approach.
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