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Motivation

@ idea: introduce the cutoff in the propagator

@ renormalization flow in the vicinity of the Wilson-Fisher fixed

point
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@ Exact renormalization group equations (ERGE)

© Local potential approximation (LPA)
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Exact renormalization group equations (ERGE)

Introduction

@ What does ,exact” mean?

o ,continuous” (not discrete) realization of Wilson RG
transformation of action

@ no approximations or expansions with respect to some small
parameter are made

o formulation: differential form known since 1970 s

e complexity: integro-differential equation
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Exact renormalization group equations (ERGE)

Representations of ERGE

André Betz

Representation
o functional equation
e infinite set of partial differential equations for couplings
o infinite hierachy of ordinary differential equations for scaling
fields
no unique form: ERGE characterized by introduction of
momentum cutoff A

physical content: embody same physics at large distances and
in continuums limit also at small distances



Exact renormalization group equations (ERGE)

Notations

Notation and language of field theory
@ momentum cutoff A

@ scalar field ¢(x), x coordinate vector in euclidian space of
dimension d

e Fourier transformation ¢(x f ppe™ with f f(

@ action S[¢] = %
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Exact renormalization group equations (ERGE)

Functionals

@ generating functional Z[J] of Green s function
21 =2 [ Doexp{-Sl6] +4-0)

with J - ¢ = [ d9xJ(x)¢(x),
@ correlation functions
5(MZ[J]

(90a) - ¢(xa)) = 6J(x1) - 6J(x2)

@ generating functional W/[J] of connected Green s function
WI[J] = InZ[J]

e’ = Z, W minus free energy
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Exact renormalization group equations (ERGE)

Principle of derivation of ERGE

@ two step Wilson procedure
@ decimation: integration of fluctuations ¢(p) over a range
e 'A < |p| < A which leaves Z invariant
@ rescaling: change of length scale by e~*to restore original scale
A of the system p — efp

2= [ popexni-stal} =25 T [ Dopexei-5l6)
p<A p<e—tA
with
o~ = [] [ Doen(-sle)
e—tA<p<A
@ condsidering infinitesimal change of t provides evolution
equation for S
oS

S = E = gDiIS + gTraS
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Exact renormalization group equations (ERGE)

Polchinski “s version of ERGE

o derived his own smooth cutoff version of ERGE
e introduced general ultraviolet cutoff function f(p?/A?)
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Exact renormalization group equations (ERGE)

Polchinski “s version of ERGE

derived his own smooth cutoff version of ERGE

o introduced general ultraviolet cutoff function £(p?/A?)

André Betz

Polchinski s ERGE obtained from requirement that coarsening
step leaves

Za= [ 52 el 5(0.87%0) + Vi)

invariant
definition of the propagator with cutoff function

1
A(g;\) = ?f(qz//@)
notation

(6.9) = / A6 (x)ib(x) = / bt (6. A7) = (A16, 1)
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Exact renormalization group equations (ERGE)

Splitting theorem

o idea: A = A1+
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Exact renormalization group equations (ERGE)

Splitting theorem

o idea: A = A4 +A2
@ changing Ato A= 5 W|th ¢ > 1 leads to

A1 = A(g; ) = (2A(gl; A)

DNy =A—1y
@ goal: decimation by integrating parts with A,

@ new effective action

Zn = ?T‘be—%(@Aflaﬁ)e—VeW]

Ay

e Veld] — o3(5502(N35) o~ VIg]
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Exact renormalization group equations (ERGE)

Repetition of functional methods

@ ordinary linearization §f = dfdx
e functional case 6F = (5¢, ®), 0F = Flp + 0¢] — F[¢]

@ ,functional” taylor-expansion

oF[9]
x 09(x)

0%Fl¢]
//5¢5 5<Z>(y (x)Y(y)dxdy + - - -

Flo + 1] = e38) Flg]

Flop + 9] = Flo] + | = J9(x)dx

@ short notation
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Exact renormalization group equations (ERGE)

Hint
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Exact renormalization group equations (ERGE)

Gauss integration

o 2 T 42
/ g @ g2 = \/>eb /a, a>0
oo a
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Exact renormalization group equations (ERGE)

Polchinski s ERGE

@ ...we finally ended up with an integro-differential equation for
the exact renormalization flow of V[¢]

Ao U d (6 SVl ovald]
Nan Valdl =5 XyAdAA2<5¢<x) 6¢>(x)> 5(y)
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Exact renormalization group equations (ERGE)

Polchinski s ERGE

@ ...we finally ended up with an integro-differential equation for
the exact renormalization flow of V[¢]

Ao U d (6 SVl ovald]
Nan Valdl =5 XyAdAA2<5¢ua 6¢@>> 5(y)

@ solution Vp[¢] is functional represented by

5"V o .
{6¢(Xl) T 5¢(Xn) ‘d):O N VA (Xl’ T ’X”) n=1

for Vgl = X0 & [ VAP (xt, - xa)(31) -+ - S(xn)

.....
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Exact renormalization group equations (ERGE)

Sharp and smooth cutoffs

@ sharp cutoffs
o sharp/hard cutoffs introduce nonlocal interactions in position
space
o difficulties induced by sharp cutoff circumvented by considering
Legendre transform
@ smooth cutoffs
e ,incomplete” integration in which large momenta are more
completely integrated than small momenta
o differences between sharp and smooth cutoffs disappear under
local potential approximation
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Exact renormalization group equations (ERGE)

History

@ Wegner-Houghton's sharp cutoff version of ERGE in 1973

e Wilson & Kogut, smooth cutoff version of ERGE in 1974

@ Nicoll & Chang, ERGE for Legendre effective action in 1977
@ Polchinski‘s smooth cutoff version of ERGE in 1984
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Local potential approximation (LPA)

Introduction

@ idea: consider constant field and neglect all non-trivial
momentum dependencies

@ derivative expansion of non-pertubative flow equation in Oth
order

o still involves infinite number of degrees of freedom

e nonlinear differential equation for (local) potential V)
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Local potential approximation (LPA)

Local potential approximation for Polchinski’s ERGE

o LPA-Ansatz

alol = [ o)) = [ S0

i=0
@ notation
OV — vy (d(x 752\//\ = vy (d(x X —
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Local potential approximation (LPA)

Local potential approximation for Polchinski’s ERGE

o LPA-Ansatz

alol = [ o)) = [ S0

i=0
@ notation
OV — vy (d(x 752\//\ = vy (d(x X —

e inserting in Polchinski’s ERGE

| honn(609) = 5 | oA (60 A6(0)

X Xy

_;/AmAmmwﬂaw)

X
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Local potential approximation (LPA)

Approximations for propagators

o first propagator

2 I3
NOAA(x —y; N) = Aa,\/ %f(%)elq(x—y)
q9° A

= _2/\—2/f/((72)eiCI(X—)/)
q N

~ —20A"2f (1)3(x —y) = A 2Bé(x —y); —2f (1) =B >0
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Local potential approximation (LPA)

Approximations for propagators

o first propagator

2 I3
NOAA(x —y; N) = Aa,\/ %f(%)elq(x—y)
q9° A

= _2/\—2/f/((72)eiCI(X—)/)
q N

~ —20A"2f (1)3(x —y) = A 2Bé(x —y); —2f (1) =B >0

@ second propagator

2
AOAA(0; A) = —2A 2 /q f'(%) =N2A>0
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Local potential approximation (LPA)

@ inserting approximation for propagators in the Polchinski s

ERGE
[ nonin() =5 | [ valob)n2B0x = y)a(60)
X xJy

1"

A e)
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Local potential approximation (LPA)

@ inserting approximation for propagators in the Polchinski s
ERGE

!

[ nonin() =5 | [ valob)n2B0x = y)a(60)
xJy

X
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Local potential approximation (LPA)

@ inserting approximation for propagators in the Polchinski s
ERGE

!

[ nonin() =5 | [ valob)n2B0x = y)a(60)
xJy

X

1"

A e)

! / N2BV2(6(x) — 3 / AT Avy (6(x)

X

@ considering the integrand

1 !/ "
AOAvA = 5{/\*213\/,\2 —A24A0,0)
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Local potential approximation (LPA)

Introducing dimensionless quantities

o first substitution ¢ — v/A ¢ and vp — gv,\

A 1 A1\?, 1\?%2 .,
Ny =vp = —={A°B () vii — N924 (> v
/\B A} 2{ B\/Z A \/Z /\}
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Local potential approximation (LPA)

Introducing dimensionless quantities

o first substitution ¢ — v/A ¢ and vp — gv,\

A 1 A1\?, 1\?%2 .,
Ny =vp = —={A°B () vii — N924 (> v
/\B A} 2{ B\/Z A \/Z /\}

@ yields
]. / "
/\3/\V/\ = §{A72VA2 — /\d72 V/\}
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Local potential approximation (LPA)

Introducing dimensionless quantities

@ dimensionless field and potential

dx = NI=D2¢ 0 yp(9) = Aup(¢C(N)
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Local potential approximation (LPA)

Introducing dimensionless quantities

@ dimensionless field and potential

dx = NI=D2¢ 0 yp(9) = Aup(¢C(N)

o left-hand side
NOAVA() = NOAAT un(C(N))

0 1 O¢(N)
_Ad d d+1

)
= Ad/\%w\ + dN9up — /\d—g Uy
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Local potential approximation (LPA)

Renormalization flow equation of up(()

@ right-hand side

2 2
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Local potential approximation (LPA)

Renormalization flow equation of up(()

@ right-hand side

_1 -2 0 d ? d—2 82 d
_2{/\ (8¢A u/\> —A 0(152/\

up}

:%{Afz (Ad>2 (/\ (d— 2)/2) _Ad- 2(/\ (d— 2)/2) 0

André Betz LMU



Local potential approximation (LPA)

Renormalization flow equation of up(()

@ right-hand side

_1 -2 0 d ? d—2 82 d
_2{/\ (8¢A u/\> —A 0(152/\

up}

:%{Afz (Ad>2 (/\ (d— 2)/2) _Ad- 2(/\ (d— 2)/2) 0

1
= E{Adu AdUA}
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Local potential approximation (LPA)

Renormalization flow equation of up(()

@ right-hand side

_1 -2 0 d ? d—2 82 d
_2{/\ (8¢A u/\> —A 0(152/\

up}

= %{/\*2 (/\d>2 (/\ (d— 2)/2> _Ad-2 (Af(dfz)/2)2 0
= %{/\du /\du,\}

e ERGE flow for dimensionless potential up(()

0 1., 14 d—2
Aeeup = Zuf 4+ ~uy — d - up +

N 2 2 CUp
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Local potential approximation (LPA)

Quest for fixed points

@ condition for fixed points

9 .
aiAU—O

@ and we get an ordinary differential equation for u*(()

1 £/ 1 &
EU/\ +§U/\ —d'U/\+

-2

Cuy =0

@ symmetry
u(¢) = u™(=0)

@ initial conditions

u*(0) = ug, u*'(0)=0
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on group equations (ERGE Local potential approximation (LPA)

List of fixed points

@ Gaussian fixed point
ug(¢) =0
@ High temperature fixed point
. 1
uir(¢) = ¢~ g
o Wilson-Fisher fixed point
ue(C) ~ ¢%, ¢ — o

@ numerical ,shooting” method
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Local potential approximation (LPA)

Visualization of renormalization flow trajectories

@ truncate higher powers of the field and consider only
u(¢) = uo + u2¢* + uaC*
@ one gets an ordinary differential equations for uy and ug
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Local potential approximation (LPA)

@ linearize near fixed point
up = u* 4+ ur(N)

@ inserting in our renormalization flow equation and neglecting
higher derivatives

/ ! ]. 1" d 2C
N—u uuy— —uy — U u
N B R B 1
@ Ansatz
u1(GN) = Ay ((), with eigenvalue w
w>0: limp_ou =0; irrelevant pertubation
@ cases w < 0: limp_gu; =o00; relevant pertubation
w=0: limp_gu =7; marginal pertubation
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Local potential approximation (LPA)

Numerical example in d = 3

@ only one relevant eigenvalue for Wilson-Fisher fixed point in
d=3
@ we can perform a 7-like pertubation

@ calculation of critical exponents

1
W= —, VIpA ~ 0.65
v
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Local potential approximation (LPA)

Comparison of different approximation methods

] Method \ v \ w ‘
Lattice calculation 0.6305
e-expansion at O(e°) 0.6310 | 0.81
Six loop pertubation series 0.6300 | 0.79
Local potential approximation (Pol.) | 0.6496 | 0.6557
LPA Variation method 0.6347 | 0.6093
Local potential approximation (Leg.) | 0.6604 | 0.6285

’ Momentum expansion at O(p?) \ 0.620 | 0.898

Tabelle: Exponents for three dimensional one component Z>-invariant
scalar field theory
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Local potential approximation (LPA)

Thank you for your attention.
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