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Problem set 9

Tutorial 9.1 Method of image charges

A point chargeQ in vacuum is located a distance d away from a plane interface separating a semi-in�nite
dielectric medium from the vacuum. For de�niteness choose coordinates such that z > 0 corresponds
to the vacuum and z < 0 to the dielectric medium.

a) Give reasons for the existence of a scalar electrostatic potential ϕ with ~E = −~∇ϕ. Derive the
corresponding Laplace equations on both sides of the interface and formulate the appropriate
matching conditions.

b) Introduce appropriate image charges to solve the electrostatic problem. Use symmetry argu-
ments to choose a promising Ansatz. Determine the electrostatic potential ϕ, the corresponding
electric �eld ~E and the displacement �eld ~D.

c) Show that the case of a metallic half space is included in the problem in a particular limit.
Discuss the leading behavior of the �elds far away from the point charge and distinguish the
case of a dielectric and a metal.

d) Determine the induced surface charge σind and calculate the interaction energy of the external
point charge Q and the surface charge distribution. What force does the dielectric medium exert
on the external charge?

Tutorial 9.2 Analytic functions

In two dimensions, the theory of analytic functions provides powerful methods to solve the Laplace
equation.

a) Show that the real ϕ(x, y) and imaginary part ψ(x, y) of a holomorphic function,

f :

{
C → C
z = x+ iy 7→ f(z) = ϕ(x, y) + iψ(x, y) ,

are harmonic in the euclidian plane E2. The functions ϕ and ψ are referred to as conjugate
potentials.

b) Demonstrate that the �eld lines corresponding to the vector �eld ~E = −~∇ϕ coincide with lines
of equal potential of ψ(x, y) = const and vice versa.



Problem 9.3 Analytic functions � continued

c) Identifying the complex plane C with the two-dimensional real plane R2, an analytic function
f : U ⊂ C → C, z = x + iy 7→ f(z) = ϕ(x, y) + iψ(x, y) induces an angle-preserving map
(conformal map) (x, y) 7→ (ϕ(x, y), ψ(x, y)) of the real plane, i.e., the Jacobian

J =

(
∂ϕ/∂x ∂ϕ/∂y

∂ψ/∂x ∂ψ/∂y

)
ful�lls J T · J = Ω2

(
1 0
0 1

)
,

with some real function Ω = Ω(x, y). Show that for an analytic function the Cauchy-Riemann
equations guarantee this property.

d) Discuss and sketch the �eld lines and lines of equal potential of ϕ(x, y) = Re f(x+ iy) for

(i) f(z) = ln z,

(ii) f(z) = ln
z − d

z + d
, d ∈ R .

To what physical problem of electrostatics do these potentials correspond to? Determine also
the charges. Use elementary geometry to prove that in the second case the lines of equipotential
constitute Apollonian circles.

Hint: The divergence theorem for a two-dimensional vector �eld ~A(~x) and an area F reads∫
F

~∇ · ~A(~x) dF =
∫

∂F

~A(~x) · ~nd`.

Problem 9.4 Spherical harmonics

A function u : E3 → C operating on the three-dimensional euclidian space E3 is called homogeneous of
degree ` ≥ 0 if u(λ~r) = λ`u(~r) for scalars λ ∈ R. The set of such homogeneous functions is denoted by
H` and constitutes a vector space. The elements u`(~r) ∈ H` are polynomials of the form

u`(~r) =
∑
ijk

(i+j+k)=`

cijkx
iyjzk

with arbitrary coe�cients cijk ∈ C. The sum is restricted such that the total degree equals i+j+k = `.
a) Determine the dimension of the complex vector spaces H` using combinatorial arguments.

b) The Laplace operator restricted to H` acts as a linear mapping ∇2 : H` → H`−2 for ` ≥ 2.
The corresponding null space of the Laplace operator, ker(∇2

∣∣H`) = {u ∈ H` : ∇2u = 0},
consists of the homogeneous polynomials that are harmonic, i.e., they satisfy Laplace's equation.
Determine the dimension of the null space, dim ker(∇2

∣∣H`), assuming the Laplace operator is
onto (surjective), ∇2(H`) = H`−2.

c) Find an explicit basis for ker(∇2)|H` for the case of ` = 2 and ` = 3, i.e., of all quadratic and
cubic harmonic polynomials.

Hint: Basically, you have to solve the equation ∇2u`(~r) = 0 for u` ∈ H` yielding conditions on the
coe�cients cijk.

d) For a harmonic polynomial u` ∈ H`, the function Y`(ϑ, φ) = u`(~x/r) is referred to as a spherical

harmonic. Here the cartesian coordinates are to be eliminated in favor of spherical coordinates
(x, y, z) = r(sinϑ cosφ, sinϑ sinφ, cosϑ). In particular, r`Y`(ϑ, φ) is a solution of the Laplace
equation. Using the representation of the Laplace operator in spherical coordinates,

∇2 =
1
r2

∂

∂r

(
r2
∂

∂r

)
+

1
r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1
r2 sin2 ϑ

∂2

∂φ2
,



conclude that a spherical harmonic is an eigenfunction of the angular momentum operator,

~L2Y`(ϑ, φ) := − 1
sinϑ

∂

∂ϑ

(
sinϑ

∂Y`

∂ϑ

)
− 1

sin2 ϑ

∂2Y`

∂φ2
,

and determine the eigenvalue.

Problem 9.5 AFM tip enhanced near-�eld optics

The resolution of conventional light microscopy is limited due to di�raction by the wavelength λ of the
light source and the numerical aperture. To image smaller structures a number of near-�eld optical
methods has been introduced. In 'apertureless SNOM' (scanning near-�eld optical microscopy) a
nanoscale tip enhances incident light in the immediate neighborhood of the tip apex.
As a minimal model we assume that the tip acts as an antenna that picks up the incident light. The

reaction of the tip is considered as an oscillating dipole in front of an in�nite half space of complex
dielectric response ε(ω) = ε′(ω) + iε′′(ω). Since the distance of the tip from the surface d is much
smaller than the wavelength, d � λ (near zone), retardation e�ects can be ignored, and a quasistatic
approximation is appropriate.

F. Keilmann, J. Electron Microsc. (Tokyo) 53,
187 (2004).

Then, the problem reduces to an electostatic dipole ~pω

located a distance d from a dielectric material. The electric
�eld is determined by

~∇× ~Eω(~r) = 0 , ~∇ · ~Dω(~r) = 0 ,

together with the constitutive equations for matter,
Dω(~r) = ε(ω)Eω(~r) for z < 0, and vacuum Dω(~r) = Eω(~r)
for z > 0.

a) Formulate appropriate conditions of continuity of the
�elds across the interface.

b) Determine the (quasi-)static electric potential ϕω(~r)
by introducing appropriate image dipoles, and calcu-
late the electric �eld ~Eω(~r) = −~∇ϕω(~r).

c) Calculate the induced surface charge σω(~r) and dis-
tinguish the case where the dipole is perpendicular
or parallel to the plane.

d) For distances d� r � λ, the electric �eld in vacuum appears as a single dipole �eld originating
from both the real and the induced dipole, ~p e�

ω = ~pω + ~p ind
ω . Since both dipoles are induced by

the incident electromagnetic wave, the e�ective dipole moment is related to the �eld amplitude
by an e�ective polarizability αe�. The dipole at the tip reads ~pω = α~Etot

ω , where α is the
polarizability of the tip, and ~Etot

ω denotes the electric �eld of the incident wave ~Eω as well as
the �eld of the mirror dipole. Show that if ~Eω is perpendicular to the plane, the e�ective dipole
moment is given by

~p e�
ω = αe� ~Eω , αe� =

α(1 + β)
1− aβ/4d3

with the dielectric response function of the sample β = [ε(ω)− 1]/[ε(ω) + 1].
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