SoSe 2007 6/1/07

Prof. Dr. E. Frey Dr. T. Franosch

Lehrstuhl für Statistische Physik Biologische Physik & Weiche Materie Arnold-Sommerfeld-Zentrum für Theoretische Physik Department für Physik

T II: Elektrodynamik (Prof. E. Frey)

Problem set 7

Tutorial 7.1 Wine cellar

A good wine cellar should be isolated from atmospheric temperature fluctuations and therefore is often located in a cave. Temperature gradients generate a heat flux according to Fourier's law,

$$\vec{j}(\vec{x},t) = -\kappa \,\vec{\nabla} T(\vec{x},t),$$

where κ denotes the heat conductivity of the rock.

a) Relying on energy conservation, derive the heat diffusion equation

$$\partial_t T(\vec{x}, t) = D \,\nabla^2 T(\vec{x}, t)$$

with the thermal diffusion coefficient $D = \kappa/\rho c$. The energy density is given by $u(\vec{x}, t) = \rho c T(\vec{x}, t)$ with mass density ρ and specific heat c of the rock.

b) For simplicity, restrict to the one-dimensional problem across a homogeneous layer of rock, with the atmosphere/rock interface at x = 0. Find the steady-state solution of the diffusion equation for a harmonic temperature oscillation of the atmosphere, i.e., boundary conditions

$$T(x = 0, t) = T_0 + \Delta T \cos(\omega t).$$

Give a sketch of the solution and discuss its features.

Hint: Use the Ansatz $T(x,t) = T_0 + \operatorname{Re}[\vartheta(x) e^{-i\omega t}]$ with a time-dependent part that follows the external stimulus with a phase shift, i.e., the amplitude $\vartheta(x)$ is complex in general.

Tutorial 7.2 Uncertainty relation

An important consequence of the Fourier transform is the uncertainty relation which states for the widths of a general wave packet that

$$\Delta x \, \Delta k \ge \frac{1}{2} \, ;$$

f the rock.

here the squared width Δx^2 of a wave packet $\Phi(x)$ centered at x_c and the squared width Δk^2 of its Fourier transform are defined as

$$(\Delta x)^2 = \int dx \, (x - x_c)^2 |\Phi(x)|^2 / \int dx \, |\Phi(x)|^2$$

and

$$(\Delta k)^2 = \int \frac{\mathrm{d}k}{2\pi} \left(k - k_c\right)^2 |\widehat{\Phi}(k)|^2 / \int \frac{\mathrm{d}k}{2\pi} |\widehat{\Phi}(k)|^2.$$

Show that a Gaussian wave packet has minimal uncertainty, i.e. $\Delta x \Delta k = 1/2$, and it is the only wave form with this property.

Note: The proof of the uncertainty relation is based on the Cauchy-Schwarz inequality

$$||f|| \cdot ||g|| \ge |(f,g)|$$

for vectors f, g from a Hilbert space with scalar product (., .) and derived norm $||f|| = (f, f)^{1/2}$. Equality holds if and only if f and g are linearly dependent.

Tutorial 7.3 Gaussian wave packet

Consider a light pulse propagating in a dispersive medium. The wave numbers of the pulse are concentrated around a value k_c according to a Gaussian distribution. Then the electric field of the pulse is given by its Fourier representation

$$E(x,t) = \int \frac{\mathrm{d}k}{2\pi} \mathrm{e}^{\mathrm{i}kx - \mathrm{i}\omega(k)t} \exp\left[-\frac{(k-k_c)^2 \sigma^2}{2}\right].$$

In the vicinity of k_c , the dispersion relation of the medium may be expanded in a Taylor series,

$$\omega(k) = \omega_c + (k - k_c) v_g - \frac{1}{2} (k - k_c)^2 \beta_g$$

with coefficients $\omega_c = \omega(k_c)$, $v_g = \omega'(k_c)$, and $\beta = -\omega''(k_c)$. Calculate the intensity $I(t) \propto |E(x,t)|^2$ and interpret the result.

Problem 7.4 Reflection of an electromagnetic wave at a conducting mirror

A plane polarized electromagnetic wave of frequency ω in free space is incident normally on the flat surface of a nonpermeable medium of conductivity $\sigma \geq 0$ and a constant background susceptibility $\chi_m > 0$.

a) First consider the medium. Show that for harmonically time-varying fields, $\vec{E}(t) = \text{Re} \,\vec{E}_{\omega} e^{-i\omega t}$ etc., the polarization $\vec{P} = \chi_m \vec{E}$ and the current density $\vec{j} = \sigma \vec{E}$ in Ampère's equation can be eliminated in favor of a complex dielectric permittivity,

$$\vec{\nabla} \times \vec{H}_{\omega} = \frac{-\mathrm{i}\omega}{c} \varepsilon(\omega) \vec{E}_{\omega}$$
 with $\varepsilon(\omega) = \varepsilon_m + \frac{4\pi \mathrm{i}\sigma}{\omega}$, $\varepsilon_m = 1 + 4\pi \chi_m$.

b) The incident wave is partially reflected and absorbed by the medium. Choosing the z-axis perpendicularly to the flat surface, a suitable Ansatz for the electric field is given by

$$E_{\omega}(z) = E_{i} \begin{cases} e^{ikz} + r e^{-ikz} & \text{for } z < 0 \text{ (empty space)}, \\ t e^{iqz} e^{-\kappa z} & \text{for } z > 0 \text{ (medium)}. \end{cases}$$

Determine the wave numbers q, k as well as the decay rate κ by solving the corresponding wave equations.

- c) Formulate appropriate matching conditions for the electromagnetic fields at the interface (z = 0)and determine the *reflection amplitude* r and the *transmission amplitude* t. Calculate the reflection coefficient $R = |r|^2$ and the transmission coefficient T = 1 - R.
- d) Evaluate the time averaged Poynting vector

$$\langle S \rangle = \frac{1}{2} \operatorname{Re} \left(\frac{c}{4\pi} \vec{E}_{\omega} \times \vec{H}_{\omega}^* \right) \,.$$

in both half spaces and interpret your result.

- e) Specialize your results for the case of good conductor $\sigma \gg \omega \varepsilon_m$, i.e., ε_m can be neglected, and discuss the decay rate κ and the reflection coefficient R. Argue that the displacement current is small compared the current density \vec{j} in this case and show that the electromagnetic fields in the medium fulfill diffusion equations rather than wave equations.
- f) In the opposite limit of a poor conductor, $\sigma \ll \omega \varepsilon_m$, the decay rate becomes large to the wavelength of the incident wave. Determine the absorption length κ^{-1} and the reflection coefficient R in this case.

Hints: The parts a-d can be solved independently of each other. The calculation of b) may be done for general complex $\varepsilon(\omega)$; the results of c) should be expressed in terms of q, k and κ , the Poynting vector in d) in terms of R and κ ; part e) is similar to the problem of the wine cellar and was discussed in parts in the lecture.

Problem 7.5 Paraxial beams

Consider a monochromatic beam of angular frequency $\omega = kc$ propagating essentially along the positive z-direction.

a) Argue that the components of the electric field allow for a representation as

$$E(\vec{x}_{\perp}, z; t) = \mathrm{e}^{-\mathrm{i}\omega t} \int \frac{\mathrm{d}^2 \vec{k}_{\perp}}{(2\pi)^2} \, a(\vec{k}_{\perp}) \exp(\mathrm{i} \vec{k}_{\perp} \vec{x}_{\perp} + \mathrm{i} k_{\parallel} z) \,,$$

where $k_{\parallel} = (k^2 - \vec{k}_{\perp}^2)^{1/2}$ is to be eliminated in favor of \vec{k}_{\perp} .

b) The complex amplitudes $a(\vec{k}_{\perp})$ are assumed to contribute only for $|\vec{k}_{\perp}| \ll k$. Expanding the square root, $k_{\parallel} \simeq k - \vec{k}_{\perp}^2/2k$ to leading order in k_{\perp}/k , show that the field assumes the following form

$$E(\vec{x}_{\perp}, z; t) = e^{ikz - i\omega t} \mathcal{E}(\vec{x}_{\perp}, z) ,$$

where the envelope function \mathcal{E} is slowly varying along z on the scale of a wavelength, $\partial_z \mathcal{E} \ll k \mathcal{E}$. Relate the envelope to the amplitudes $a(\vec{k}_{\perp})$. Show that the envelope satisfies a field equation of the Schrödinger type,

$$\mathrm{i}\partial_z \mathcal{E}(\vec{x}_\perp, z) = -\frac{1}{2k} \nabla_\perp^2 \mathcal{E}(\vec{x}_\perp, z)$$

In particular, the field equation is first order in the z-direction.

c) Evaluate the electric field $E(\vec{x}_{\perp}, z; t)$ for a Gaussian amplitude function

$$a(\vec{k}_{\perp}) \propto \exp\left(-\frac{1}{4}w_0^2\vec{k}_{\perp}^2\right), \qquad w_0 > 0,$$

and show that the intensity $I \propto |E|^2$ exhibits a Gaussian profile in the perpendicular direction \vec{x}_{\perp} and a width that depends on z. Where is the width minimal?

Due date: Tuesday, 6/12/2007, at 9 a.m.