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Problem set 6

Tutorial 6.1 Sound waves in a fluid

The macroscopic properties of a fluid are characterized in terms of a few fields, e.g., the mass density
p(7,t), the mass current density j(7,t¢), the fluid velocity ¢(7,t), and the pressure p(7,t). Euler’s
equations specify the field equations; the first set encodes the conservation of mass and momentum,

Op+Vijk=0, 0Ogr+ Vi1l =0. (%)

The mass current density is connected to the fluid velocity by j(7,t) = p(7,t)%(7,t), and II;; denotes
the momentum current tensor

Iy = pvgv; — ok = pogv; + Poky ()

which closes the equations. The term pugv; is the contribution to momentum current by the inertia
of the flow (the terms responsible for turbulence). The quantity oy = —pdy + o}, is known as stress
tensor, p denotes the pressure; last o}, encompasses the (bulk and shear) viscous forces, i.e. dissipative
processes, which are neglected in Euler’s equations, o}, = 0.

a) Demonstrate that

p(7,t) = po = const, U(F,t) =0, and p(7,t)=po= const
constitutes a solution of the field equations. Show that the linearized field equations for small
perturbations dp = p — pg, ¥, and dp = p — po to this reference state read
0¢6p + poVivy =0, poOivy = —V0p.
Introduce the isothermal compressibility k7 that reflects the pressure increase due to compression
at constant temperature to linear order, dp = dp/pokr.
b) Derive a local conservation law, dyu + div S = 0, for the energy density

u(r ) = 2o 1) + gép(ﬁ t)?

for suitably chosen A relying on the approximations introduced so far. Determine the energy
current density S(Z,1).

¢) Show that the linearized field equations allow for monochromatic longitudinal waves in ¢ and
scalar waves in dp(7, ).



Tutorial 6.2 Polaritons

Consider the constitutive equation of the Lorentz-Drude model,

25 = L5 - 2B/ = Wy o
0fP(Z,t) + =0 P(Z,t) + wgP(Z,t) = 4—E(:1c,t) ,
T T
with the relaxation time 7, characteristic frequency wg and the plasma frequency wy,.
a) Perform a spatio-temporal Fourier transform and determine the complex susceptibility x(w),
with P(k,w) = x(w)E(k,w), as well as the dielectric function £(w) = 1 + 4mx(w).
b) Argue that the longitudinal modes follow from the zero of the dielectric function, e(ws) = 0,
and determine the complex frequency wy in the case of weak damping.

c¢) Ignoring the damping, 7 — oo, determine the dispersion relation of the transverse modes.

d) Explain without calculation, in what frequency regime the damping is most important.

Problem 6.3 Doppler effect

Consider again the ideal fluid of Tutorial 6.1.

a) Convince yourself that a fluid moving at constant velocity (7, t) = ¥y with constant density
and pressure constitutes a valid solution of the field equations (%) and (xx). Linearize the
field equations around this new reference state relying again on the thermodynamic relation
op = dp/pokr-

b) Demonstrate the existence of monochromatic plane density waves and discuss the dispersion
relation w = w(E) with respect to the direction of the wave propagation k to the fluid velocity
and interpret your result.

Problem 6.4 Elastic waves

Small deformations of an isotropic elastic medium are described in terms of the vector field of displace-
ments 4(Z, t), the velocities ¥(Z,t), and the symmetric stress tensor field o;;(Z,t). The linearized field
equations read

atul-(:f, t) = Ui(f, t) and Qoatvi(f, t) = deij(l_", t) .

The field equations are closed with Hooke’s law as constitutive equation,
. 2 .
Oij = Kéij divu + p Viuj —}—Vjui — géw divu | .

Here g9 > 0 is the mass density, u > 0 denotes the shear modulus and K > 0 the bulk modulus; the
inverse of K gives the compressibility.
a) Perform a spatio-temporal Fourier transform and show that the medium supports longitudinal
as well as transverse waves. Derive the corresponding dispersion relations and compare the
different sound velocities.

b) Argue that in the limit of zero shear modulus, g = 0, one recovers the hydrodynamics of an
ideal fluid introduced in Tutorial 6.1.



Problem 6.5 Debye-Hiickel and Thomas-Fermi theory

As a natural extension of Drude’s theory of metals, consider the constitutive equation
1. 2
0,V (7, 1) + J(md)( t) + cg grad p" V(7 1) = LE(7 1) .

Here the new term c3 grad pUd) (7 1) describes a restoring force similar to Euler’s theory of fluids.
The material is characterized by the velocity cp, the relaxation time 7, and the plasma frequency wj,.
Derived quantities are the screening length \g = c¢p/w, and the conductivity o = wf,T JAm.

a) Formulate a continuity equation for the scalar field

_27r

w2

FED (702 + o (7,7
p

and specify the corresponding source term. Derive a conservation law for the total energy density
consisting of the energy density of matter and the electromagnetic fields.

b) Consider an external charge @ located at the origin 7y = 0 of the medium. Discuss the induced
charge density p("¥(7), the electric field E(7), and the displacement field D(7) for the static
case. Introduce an appropriate limit to recover the properties of an ideal conductor.

Hint: Since the question involves a calculation from Problem 4.3, you may refer to this result.

c¢) Neglecting dissipation, 7 — 0o, the material supports longitudinal and transverse waves. Discuss
the monochromatic plane waves; in particular, derive the dispersion relation of the longitudinal
plasma oscillations and the transverse modes.

Due date: Tuesday, 6/5/07, at 9 a.m.



