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Problem set 6

Tutorial 6.1 Sound waves in a �uid

The macroscopic properties of a �uid are characterized in terms of a few �elds, e.g., the mass density
ρ(~r, t), the mass current density ~j(~r, t), the �uid velocity ~v(~r, t), and the pressure p(~r, t). Euler's
equations specify the �eld equations; the �rst set encodes the conservation of mass and momentum,

∂tρ +∇k jk = 0 , ∂tjk +∇l Πkl = 0 . (∗)

The mass current density is connected to the �uid velocity by ~j(~r, t) = ρ(~r, t)~v(~r, t), and Πkl denotes
the momentum current tensor

Πkl = ρvkvl − σkl = ρvkvl + pδkl , (∗∗)

which closes the equations. The term ρvkvl is the contribution to momentum current by the inertia
of the �ow (the terms responsible for turbulence). The quantity σkl = −pδkl + σ′

kl is known as stress
tensor, p denotes the pressure; last σ′

kl encompasses the (bulk and shear) viscous forces, i.e. dissipative
processes, which are neglected in Euler's equations, σ′

kl = 0.
a) Demonstrate that

ρ(~r, t) = ρ0 = const , ~v(~r, t) = 0, and p(~r, t) = p0 = const

constitutes a solution of the �eld equations. Show that the linearized �eld equations for small
perturbations δρ = ρ− ρ0, ~v, and δp = p− p0 to this reference state read

∂tδρ + ρ0∇kvk = 0 , ρ0∂tvk = −∇kδp .

Introduce the isothermal compressibility κT that re�ects the pressure increase due to compression
at constant temperature to linear order, δp = δρ/ρ0κT .

b) Derive a local conservation law, ∂tu + div ~S = 0, for the energy density

u(~r, t) =
ρ0

2
~v(~r, t)2 +

A

2
δρ(~r, t)2

for suitably chosen A relying on the approximations introduced so far. Determine the energy
current density ~S(~x, t).

c) Show that the linearized �eld equations allow for monochromatic longitudinal waves in ~v and
scalar waves in δρ(~r, t).



Tutorial 6.2 Polaritons

Consider the constitutive equation of the Lorentz-Drude model,

∂2
t
~P (~x, t) +

1
τ
∂t

~P (~x, t) + ω2
0
~P (~x, t) =

ω2
p

4π
~E(~x, t) ,

with the relaxation time τ , characteristic frequency ω0 and the plasma frequency ωp.
a) Perform a spatio-temporal Fourier transform and determine the complex susceptibility χ(ω),

with ~P (~k, ω) = χ(ω) ~E(~k, ω), as well as the dielectric function ε(ω) = 1 + 4πχ(ω).
b) Argue that the longitudinal modes follow from the zero of the dielectric function, ε(ω∗) = 0,

and determine the complex frequency ω∗ in the case of weak damping.

c) Ignoring the damping, τ →∞, determine the dispersion relation of the transverse modes.

d) Explain without calculation, in what frequency regime the damping is most important.

Problem 6.3 Doppler e�ect

Consider again the ideal �uid of Tutorial 6.1.
a) Convince yourself that a �uid moving at constant velocity ~v(~r, t) = ~v0 with constant density

and pressure constitutes a valid solution of the �eld equations (∗) and (∗∗). Linearize the
�eld equations around this new reference state relying again on the thermodynamic relation
δp = δρ/ρ0κT .

b) Demonstrate the existence of monochromatic plane density waves and discuss the dispersion
relation ω = ω(~k) with respect to the direction of the wave propagation ~k to the �uid velocity ~v0

and interpret your result.

Problem 6.4 Elastic waves

Small deformations of an isotropic elastic medium are described in terms of the vector �eld of displace-
ments ~u(~x, t), the velocities ~v(~x, t), and the symmetric stress tensor �eld σij(~x, t). The linearized �eld
equations read

∂tui(~x, t) = vi(~x, t) and %0∂tvi(~x, t) = ∇jσij(~x, t) .

The �eld equations are closed with Hooke's law as constitutive equation,

σij = Kδij div u + µ

(
∇iuj +∇jui −

2
3
δij div u

)
.

Here %0 > 0 is the mass density, µ > 0 denotes the shear modulus and K > 0 the bulk modulus; the
inverse of K gives the compressibility.

a) Perform a spatio-temporal Fourier transform and show that the medium supports longitudinal
as well as transverse waves. Derive the corresponding dispersion relations and compare the
di�erent sound velocities.

b) Argue that in the limit of zero shear modulus, µ = 0, one recovers the hydrodynamics of an
ideal �uid introduced in Tutorial 6.1.



Problem 6.5 Debye-Hückel and Thomas-Fermi theory

As a natural extension of Drude's theory of metals, consider the constitutive equation

∂t
~j(ind)(~r, t) +

1
τ
~j(ind)(~r, t) + c2

0 grad ρ(ind)(~r, t) =
ω2

p

4π
~E(~r, t) .

Here the new term c2
0 grad ρ(ind)(~r, t) describes a restoring force similar to Euler's theory of �uids.

The material is characterized by the velocity c0, the relaxation time τ , and the plasma frequency ωp.
Derived quantities are the screening length λ0 = c0/ωp and the conductivity σ = ω2

pτ/4π.
a) Formulate a continuity equation for the scalar �eld

uM(~r, t) =
2π

ω2
p

[
~j(ind)(~r, t)2 + c2

0ρ
(ind)(~r, t)2

]
,

and specify the corresponding source term. Derive a conservation law for the total energy density
consisting of the energy density of matter and the electromagnetic �elds.

b) Consider an external charge Q located at the origin ~r0 = 0 of the medium. Discuss the induced
charge density ρ(ind)(~r), the electric �eld ~E(~r), and the displacement �eld ~D(~r) for the static
case. Introduce an appropriate limit to recover the properties of an ideal conductor.

Hint: Since the question involves a calculation from Problem 4.3, you may refer to this result.

c) Neglecting dissipation, τ →∞, the material supports longitudinal and transverse waves. Discuss
the monochromatic plane waves; in particular, derive the dispersion relation of the longitudinal
plasma oscillations and the transverse modes.

Due date: Tuesday, 6/5/07, at 9 a.m.


