SoSe 2007 5/18/07

Prof. Dr. E. Frey Dr. T. Franosch

Lehrstuhl für Statistische Physik Biologische Physik & Weiche Materie Arnold-Sommerfeld-Zentrum für Theoretische Physik Department für Physik

T II: Elektrodynamik (Prof. E. Frev)

Tutorial 5.1 Wave equation in one dimension

Consider the scalar field u(x,t) that fulfills the one-dimensional wave equation in infinite space

$$\left[\frac{\partial^2}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right] u(x,t) = 0 \,, \qquad -\infty < x < \infty.$$

The solution is completely specified by imposing initial conditions for the field, u(x, t = 0) = F(x), as well as its time derivative, $\partial_t u(x, t = 0) = G(x)$.

a) Show, e.g. by a Fourier transform, that the most general solution of the wave equation was given by d'Alembert,

$$u(x,t) = u_{+}(x-ct) + u_{-}(x+ct)$$

with arbitrary functions $u_+(\cdot)$ and $u_-(\cdot)$. Then determine the solution u(x,t) that fulfills the initial conditions.

b) Can you invent a generalization of the methods of images to solve the one-dimensional wave equation in a half space x > 0, with boundary condition u(x = 0, t) = 0?

Tutorial 5.2 Drude-Hall model

As an extension of Drude's theory of conductors consider the induced current density $\vec{j}^{(\text{ind})}(\vec{r},t)$ in the presence of a constant and uniform external magnetic field $\vec{B} = B\hat{e}_z$. Motivate the constitutive equation

$$\partial_t \vec{j}^{(\rm ind)}(\vec{r},t) + \frac{1}{\tau} \vec{j}^{(\rm ind)}(\vec{r},t) - \frac{e}{m^* c} \vec{B} \times \vec{j}^{(\rm ind)}(\vec{r},t) = \frac{\omega_p^2}{4\pi} \vec{E}(\vec{r},t) \,, \qquad \omega_p^2 = \frac{4\pi n e^2}{m^*} \,,$$

where m^* denotes the effective mass of the conduction electrons (charge -e), τ a characteristic relaxation time, and n the density of conduction electrons. The characteristic frequency ω_p is referred to as plasma frequency.

a) Perform a temporal Fourier transform, convention $\vec{E}(\vec{r},\omega) = \int e^{i\omega t} \vec{E}(\vec{r},t) dt$. Show that the response becomes local in the frequency domain,

$$j_k^{(\text{ind})}(\vec{r},\omega) = \sigma_{kl}(\omega) \cdot E_l(\vec{r},\omega),$$

and determine the dynamic magneto-conductivity tensor $\sigma_{kl}(\omega)$.

b) Specialize to d.c. fields, i.e. $\omega = 0$, and discuss the Hall resistivity.

Problem 5.3 Spherical waves

Consider solutions of the scalar three-dimensional wave equation

$$\left[\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right] \psi(\vec{r}, t) = 0,$$

where the field is spherically symmetric, i.e. $\psi(\vec{r}, t) = \psi(r, t)$ with $r = |\vec{r}|$.

- a) Show that the substitution $\psi(r,t) = u(r,t)/r$ leads to a one-dimensional wave equation for u(r,t). Impose appropriate boundary conditions on u such that the scalar field ψ remains finite at the origin.
- b) Using d'Alembert's solution for the one-dimensional case, determine the spherical symmetric solution of the wave equation that fulfills the initial conditions

$$\psi(r,t=0) = F(r)$$
 and $\frac{\partial}{\partial t}\psi(r,t=0) = G(r)$ for $r > 0$

Problem 5.4 Nuclear magnetic resonance

Nuclear magnetic resonance spectroscopy uses the magnetic moment of the nuclei of certain atoms to study physical, chemical, and biological properties of matter. The magnetization \vec{M} due to the spin of the nuclei obeys the *Bloch* equations

$$\dot{\vec{M}}(t) = \gamma \vec{M}(t) \times \vec{H}(t) - \frac{1}{T_1} \left[\vec{M}(t) - \vec{M}_0 \right].$$

Here the gyromagnetic ratio γ determines the frequency of the Larmor precession. The second term is a phenomenological damping term introducing a characteristic (energy) relaxation time T_1 . Consider a strong d.c. field \vec{H}_0 aligning the magnetization $\vec{M}(t) = \vec{M}_0 \parallel \vec{H}_0$ in the static case. A small timedependent field $\delta H_{\perp}(t)$ is applied in addition to the d.c. field \vec{H}_0 . The probing field $\delta \vec{H}_{\perp}(t)$ acts perpendicularly to \vec{H}_0 at all times. Since for positive gyromagnetic ratio, $\gamma > 0$, the Larmor precession is clockwise, the probing field shall rotate clockwise too.

a) Derive a constitutive equation for the induced magnetization $\delta \vec{M}(t) = \vec{M}(t) - \vec{M}_0$ to linear order in $\delta \vec{H}_{\perp}(t)$. Decompose the response into a component parallel and perpendicular to the static external field, $\delta \vec{M}(t) = \delta \vec{M}_{\parallel}(t) + \delta \vec{M}_{\perp}(t)$, and show that they fulfill

$$\delta \dot{\vec{M}}_{\parallel}(t) + \frac{1}{T_1} \delta \vec{M}_{\parallel}(t) = 0 \,, \qquad \delta \dot{\vec{M}}_{\perp}(t) - \gamma \delta \vec{M}_{\perp}(t) \times \vec{H}_0 + \frac{1}{T_1} \delta \vec{M}_{\perp}(t) = \gamma \vec{M}_0 \times \delta \vec{H}_{\perp}(t) \,. \label{eq:delta}$$

b) Discuss the free decay of the induced magnetization $\delta \vec{M}(t)$ in the absence of external driving, i.e., $\delta \vec{H}_{\perp}(t) \equiv 0$, for arbitrary initial condition $\delta \vec{M}(t=0)$.

Hint: It is favorable to complexify the transverse magnetization $\delta \vec{M}_{\perp}(t)$ as $\delta \mathcal{M}(t) = \delta M_x(t) + i \delta M_y(t)$.

c) Derive the steady state response for a probing field rotating perpendicularly to the aligning field \vec{H}_0 at constant angular frequency, $\delta \vec{H}_{\perp}(t) = \delta H^{\omega}(\cos \omega t, -\sin \omega t, 0)$; here the z-axis has been chosen parallel to \vec{H}_0 . Determine the complex susceptibility $\chi(\omega)$, sketch and discuss its real and imaginary parts, $\chi(\omega) = \chi'(\omega) + i\chi''(\omega)$.

Hints: It is favorable to complexify by introducing $\delta \mathcal{H}(t) = \delta H_x(t) + i\delta H_y(t)$ and similarly for the magnetization. The susceptibility is defined as $\chi(\omega) = \delta \mathcal{M}(t)/\delta \mathcal{H}(t)$, and the result is $\chi(\omega) = i\gamma M_0/(-i\omega + i\omega_L + 1/T_1)$.

d) Determine the averaged power absorbed by the sample,

$$\mathcal{P}(\omega) = \overline{\delta \vec{H}_{\perp}(t) \cdot \frac{\mathrm{d}}{\mathrm{d}t} \delta \vec{M}_{\perp}(t)},$$

where the average indicates a time average over many cycles.

e^{*}) Assume that the strong aligning field is not totally uniform in space. This corresponds to small random local changes of the Larmor frequencies $\omega_L \to \omega_L + \Delta \omega_L$. For simplicity, assume for the probability distribution $p(\Delta \omega_L)$ of the local increments a Cauchy-Lorentz distribution,

$$p(\Delta\omega_L) = \frac{1}{\pi} \frac{T}{1 + (T\Delta\omega_L)^2} \,.$$

Verify that the probability distribution is normalized, $\int p(\Delta \omega_L) d(\Delta \omega_L) = 1$. Determine the averaged complex susceptibility

$$\langle \chi(\omega) \rangle := \int \chi(\omega) p(\Delta \omega_L) d(\Delta \omega_L) d(\Delta \omega_L)$$

Can you interpret the additional damping? *Hint:* Use the residue theorem.

Due date: Tuesday, 5/29/07, at 9 a.m.