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Problem set 4

Tutorial 4.1 Superconductor

The constitutive equation of a type-I superconductor relates the the supercurrent density ~Js directly
to the vector potential ~A via the second London equation,

~Js(~x) = −nse
2

mc
~A(~x) .

Here m and −e denote the mass and charge of the supercurrent carrier, and ns abbreviates their number
density.

a) Use Maxwell's equations to show that in the static case the magnetic �eld ful�lls the �eld
equation

∇2 ~B(~x)− 1
λ2

L

~B(~x) = 0 ,

and determine the London penetration depth λL. Conclude that no homogeneous magnetic �eld
can exist in the bulk of a superconductor.

b) Consider the boundary z = 0 between a superconductor (z > 0) and vacuum (z < 0). A
magnetic �eld ~B is applied parallel to the boundary (z < 0). Solve for the magnetic �eld inside
of the superconductor.

c) Show that the �eld equation can be obtained by minimizing the total energy U = Umatter+U�eld

by varying with respect to the vector potential, ~A(~x) → ~A(~x) + δ ~A(~x). Here the variation of
the matter and �eld energy follows from

δUmatter = −1
c

∫
d3~x ~Js(~x) · δ ~A(~x) and δU�eld =

1
4π

∫
d3~x ~B(~x) · δ ~B(~x) .

The supercurrent Js(~x) and the magnetic �eld ~B(~x) have to be eliminated in favor of ~A(~x) to
perform the variation.



Tutorial 4.2 Polarizable Medium

Consider the following constitutive equation for a polarizable medium

∂2
t
~P (~x, t) +

1
τ
∂t

~P (~x, t) + ω2
0
~P (~x, t) =

ω2
p

4π
~E(~x, t) ;

here ω2
p = 4πne2/m denotes the plasma frequency, ω2

0 the resonance frequency, and τ > 0 is a char-
acteristic damping time. The change of polarization is considered slow and possibly induced magnetic
�elds shall be neglected.

a) Employing the constitutive equation, evaluate the time derivative u̇M (~x, t) of the energy density
of matter

uM (~x, t) =
2π

ω2
p

(
~j(ind)(~x, t)2 + ω2

0
~P (~x, t)2

)
,

and interpret the terms contributing to u̇M (~x, t).
b) Consider the total energy density u = uM + uF , with the usual �eld energy density uF =

(1/8π)[ ~E2 + ~B2], derive a local balance equation

∂tu(~x, t) + div ~S(~x, t) = q(~x, t) where ~S(~x, t) =
c

4π
~E(~x, t)× ~B(~x, t) ,

and determine the source term q(~x, t).

Problem 4.3 Debye-Hückel theory

In an electrolyte solution ions of opposite charges can freely �oat agitated by thermal �uctuations. To
simplify consider only one species of cations of charge q+ > 0 and anions of charge q− < 0 of respective
number density n+ and n−. Charge neutrality requires q+n+ = q−n−. The constitutive equation of
the Debye-Hückel electrolyte relates the charge densities of the cations ρ+(~x) and anions ρ−(~x) to the
electrostatic potential ϕ(~x) via

ρ+(~x) = q+n+ exp
(
−q+ϕ(~x)

kBT

)
, ρ−(~x) = q−n− exp

(
−q−ϕ(~x)

kBT

)
.

Here T denotes the temperature and kB is Boltzmann's constant.
a) Considering external charges ρext(~x) in addition to the induced ones, ρind(~x) = ρ+(~x) + ρ−(~x),

formulate the Poisson equation. Linearize the exponentials in ϕ(~x) and show that

∇2ϕ(~x)− 1
λ2

ϕ(~x) = −4πρext(~x) ,

holds. Relate the Debye-Hückel screening length λ to the number densities n±.

b) Determine the electrostatic potential within the linearized theory for a point-like test charge
ρext(~x) = Qδ(~x). Use the spherical symmetry of the problem and determine the solution of the
di�erential equation for r = |~x| > 0 that vanishes for r →∞. Discuss the physical consequences
of the result.

Hint: The substitution ϕ(r) = u(r)/r simpli�es the homogeneous di�erential equation. The constant of
integration may be determined by matching to the Coulomb solution in vacuum close to the test charge.

c) Equivalently you may evaluate the Green function G(~x, ~y) de�ned via(
1
λ2
−∇2

)
G(~x, ~y) = δ(~x− ~y).



Show that

G(~k) =
∫

d3~x e−i~k·(~x−~y)G(~x, ~y) .

satis�es an algebraic equation and perform the inverse Fourier transform; apply the residue
theorem to perform the integration.

d*) Consider a small spherical colloid of radius R suspended in the electrolyte. The colloid carries
a charge Ze homogeneously distributed along the surface. There are no further charges inside
of the colloid. Since the electrolyte cannot penetrate the colloidal particles, the usual Poisson
equation holds in the inner region. Determine the electrostratic potential and compare your
result to the point-like test charge.

Problem 4.4 Rotating sphere

A sphere S of constant surface charge density σ rotates at constant angular frequency ~ω, i.e., there is
a surface current density ~K(~r) = σ~v(~r) for ~r ∈ ∂S, where ~v(~r) = ~ω × ~r abbreviates the velocity of the
point ~r.

a) Calculate the corresponding magnetic �eld ~B(r) inside and outside of the sphere. It is favorable
to determine �rst a suitable vector potential by evaluating the analogue of Coulomb's solution,

~A(~r) =
1
c

∫
∂S

~K(~R)

|~r − ~R|
dS(~R) .

The integral over the surface of the sphere ∂S is elementary in polar coordinates aligned with ~r
once the polar angle ϑ is eliminated in favor of the distance s = |~r− ~R| =

√
r2 + R2 − 2rR cos ϑ.

b) In a minimal model, the origin of the magnetic �eld of the earth is attributed to the rotating
molten and ionized core of the earth. (Dynamo theory explains why it rotates.) Calculate the
magnetic dipole �eld outside a homogeneous, rotating charge distribution, ρ(~r) = ρ0 for r < RS .

Note: The surface charge density of a shell of width dR is related to the charge density ρ0 by σ = ρ0dR.

Problem 4.5 Spherical capacitor

A spherical capacitor is composed of two concentric, metallic spheres of radii R1 < R2, the region
between the spheres being �lled with an insulator of dielectric constant ε. While the outer sphere is
kept uncharged, the inner sphere is charged such that the potential di�erence between inner and outer
sphere adjusts to U .

a) Determine the electrostatic potential ϕ(~r) of the problem that vanishes at in�nity.

b) Calculate the charge Q on the inner sphere; substitute U in favor of Q in your result for ϕ(~r).
What is the capacity of the assembly?

c) Derive the electric �eld ~E(~r) by means of heuristic arguments. Check that your result agrees
with the one obtained from ϕ(~r).
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