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Problem set 3

Tutorial 3.1 In�nitely long wire

Consider an in�nitely long straight wire of circular cross section πR2 carrying a constant current I.
The current density ~j(~x) is distributed uniformly in the wire.

a) Determine the magnetic �eld ~B(~x) inside and outside of the wire. Discuss the �eld lines.

b) Construct an appropriate vector potential ~A(~x) and discuss the corresponding �eld lines.

Hint: It is favorable to use cylindrical coordinates and there the curl operation reads
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Tutorial 3.2 Dielectric cylinder

Consider an in�nitely long cylinder of circular cross section of radius R, �lled with a dielectric medium
of dielectric constant ε. The cylinder is placed in a homogeneous electric �eld ~Eext perpendicular to
the axis of the cylinder; this �eld induces a polarization of the cylinder. Calculate and discuss the
resulting electrostatic potential ϕ(~x) and �eld ~E(~x).

Hint: Show that the (e�ectively two-dimensional) potential

ϕ(~x) =

{
− ~Eext · ~x + ~p · ~x/r2 outside the cylinder (r =

√
x2 + y2 > R),

− ~Ein · ~x + const inside,

ful�lls the Laplace equation. Use the boundary conditions at the interface for the normal part of ~D(~x) and the
tangential part of ~E(~x) to determine the remaining constants. Symmetry considerations are useful to argue on
the orientation of the vectors ~Ein and ~p. In the course of the lecture, you will learn why the present form of the
potential is the only solution to this problem.

Problem 3.3 Charged rod

An in�nitely thin, straight rod of length L carries a charge Q homogeneously distributed along the rod.
a) Integrate the Coulomb solution,

ϕ(~x) =
∫

dq(~y)
|~x− ~y|

,



and determine the electrostatic potential ϕ(~x). Answer:

ϕ(x, y, z) = λ ln

√
(z − L/2)2 + r2 − (z − L/2)√
(z + L/2)2 + r2 − (z + L/2)

, r2 = x2 + y2 .

Show that the equipotential surfaces are ellipses of revolution.

b) Discuss the leading behavior of the potential far away from the rod. What determines the
leading correction?

c) Expand the potential close to the center of the rod and compare with an in�nitely long rod
carrying a charge per unit length λ. Determine the electric �eld for this case by applying Gauÿ's
law in its integral form.

Problem 3.4 Polarization and magnetization

a) For a static polarization �eld ~P (~r) that vanishes su�ciently rapidly at in�nity, an electrostatic
potential ϕ(~r) is given by

ϕ(~r) = −~∇r ·
∫ ~P (~R)

|~r − ~R|
d3 ~R .

Argue that this expression indeed represents a solution of Poisson's equation,

−∇2ϕ = 4πρ(ind) = −4π div ~P .

b) Use the preceding result to calculate the electrostatic potential ϕ(~r) corresponding to a sphere
of homogeneous polarization, ~P = const . Determine also the electric �eld and sketch the �eld
lines.

c) Similarly, for a static magnetization �eld ~M(~r) a solution of the magnetostatic problem is
provided in terms of the vector potential

~A(~r) = ~∇r ×
∫ ~M(~R)

|~r − ~R|
d3 ~R .

Corroborate again that the preceding formula constitutes a solution of

−∇2 ~A = 4π~j(ind)/c = 4π curl ~M.

d) Determine a vector potential for a homogeneously magnetized sphere, ~M = const , and calculate
the magnetic �eld.

e) Argue that the magnetic �elds arising due to a static magnetization �eld ~M can be expressed in
terms of a scalar magnetostatic potential ϕM (~r) by ~H = −~∇ϕM . Determine the �eld equation
for ϕM that contains ~M as source terms. Compare the polarized with the magnetized sphere.

Problem 3.5 Angular momentum conservation law

The angular momentum density of the electromagnetic �eld is de�ned by the antisymmetric tensor
�eld

Lij(~x, t) =
1
c2

(xiSj − xjSi) ,

where ~S denotes the Poynting vector.
a) Employ the momentum balance law to construct a local balance law for the angular momentum

density of the form
∂tLij +∇kMijk = −Dij .



Determine the angular moment current tensor Mijk as well as the mechanical torque tensor Dij .
Rewrite the balance law in terms of the pseudo-vector �eld

Li(~x, t) =
1
2
εijkLjk ,

and suitable Mik and Di.

b) Formulate the angular momentum conservation law in integral form, for Li =
∫
V Li dV .

c) Demonstrate that in the radiation gauge, i.e., ϕs = 0, the angular momentum of the �eld can
be decomposed, L = LS + LB, in a 'spin' part

LS =
1

4πc2

∫
V

~A× ~̇A dV ,

and an 'orbital' part LB that depends explicitly on the point of reference of the coordinate
system.
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