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Problem set 1

Tutorial 1.1 Field lines

Field lines are integral curves tangent to the vector field, i.e., up to reparametrization they fulfill
d -
Ef(T) = FE(Z(1)), Z(r=0)=2.

Consider the vector field E(Z) = (y, z,0). Verify that E is irrotational, i.e., V x E = 0, and construct
a scalar potential ¢(Z) by evaluating the line integral

so(f)z—/ﬁ-df,
C

for curves C connecting the origin with the point # = (z,y, z). Discuss the equipotential surfaces and
calculate the field lines corresponding to E(Z).

Tutorial 1.2 Newton’s theorem

a) Prove the electrostatic analog of Newton’s theorem:

For a spherically symmetric charge (or mass, in the case of gravity) distribution p(r),
the radial component of the electric field, E, = E - 7#/r, is given by

Qr(;) with  Q(r) = 471'/0 p(R)R*dR,

i.e. the same as if the charge in the sphere of radius R is located at the center of the
sphere.

E, =

Calculate also the associated electrostatic potential.
Note that the Poisson equation in spherical coordinates reads
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b) As an application of Newton’s theorem, consider a charge-free spherical cavity concentric with
the center of a spherically symmetric charge distribution. What is the electric force on a test
charge inside this hole?



Problem 1.3 Hamilton formulation

Consider a magnetic field in two dimensions. By virtue of the magnetic Gauss’s law V-B=V,B, +
VyB, = 0, a 'vector’ potential A,(z,y) can be introduced, such that B, = V,A,, B, = —V,A..
a) Argue that the field lines corresponding to B can be interpreted in terms of Hamiltonian flows
in phase space of a suitable equivalent mechanical system with a single degree of freedom.

b) Summarize some basic facts on the geometry of a Hamiltonian flow in the p—g-plane.

c¢) Discuss the magnetic field lines corresponding to the vector potentials

2 2 2
i) A.(z,y) = % + [1 — cos(z)], i) A.(z,y) = % -5

Problem 1.4 Penning trap

Consider the motion of a particle that has a charge ¢ and mass m in a constant uniform magnetic field
B = Bé, and an electric quadrupol potential (Uy > 0)
Uo L
o) =~ 5@+ —22),  T=(5,y2).
7o
a) Show that the non-relativistic equation of motion for the particle in the z—y plane for the case
Up = 0 leads to oscillatory motion. Determine the cyclotron frequency w. characterizing the
oscillation. It is favorable to introduce a complex variable £ := z + iy.

b) Determine the electric field E(Z) = —V(&) and verify that E is solenoidal, i.e., V - E(Z) = 0.
¢) Show that the magnetic field does not couple to the motion along the z-direction, and determine
the characteristic frequency w, for the corresponding harmonic oscillations in the quadrupol field.

d) Solve the complete equations of motion in the z—y plane and show that the general solution
is a superposition of two oscillatory motions with a perturbed cyclotron frequency w/ and the
magnetron frequency wys. Provide conditions such that the orbits are stable. Discuss the case
w, < w, in particular.

Problem 1.5 Hydrogen atom

Quantum mechanics reveals that the electron in a hydrogen atom should be described in terms of a
wave function ¢(7) (probability amplitude) giving rise to a smeared electron cloud corresponding to
a charge density, p.(¥) = —e|(7)|?. At the center of the atom, the proton is localized at a much
smaller length scale, and the contribution to the charge density may be modeled as a point charge,
ed (7). Determine the (total) electrostatic potential ¢
a) for the (1s orbital, K-shell) ground state of the hydrogen atom. Here the wave function is
spherically symmetric

R 1
b = ——
Ta
where a = h?/2me? = 0.529 x 10~%cm denotes the Bohr radius.
b) for the spherically symmetric first excited state (2s orbital, L-shell)

W) = \/é% (1 )ere

e—r/a



Problem 1.6 Harmonic functions

Consider a scalar field in three-dimensional space ¢ : U — R (where U is an open subset of R?) that
is harmonic, i.e., satisfies the Laplace equation V?p(Z) = 0.
a) Proof the mean value theorem: Let ¥ € U and take a ball B.(¥) = {f € R : |§—&| <r} CU
of radius r around Z. If ¢ is a harmonic function then

1
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i.e., the average over the surface of a sphere of a harmonic function reproduces its value at the
center of the sphere.
To demonstrate the property argue that

d 1 . . 1 . B B
dr [47””2 /c?Br(f) #9) df(y)] ~ amr? /aBr(f) (Vgo(y)> ndf (@),

where 77 denotes the normal vector of the sphere. Then apply Gauss’s theorem to show that the
derivative actually vanishes. Complete the proof by evaluating the mean value for sufficiently
small radii.

b) Apply the mean value theorem to proof the related property

o) = s [, FDU@,

i.e., the volume average over a sphere of a harmonic function yields the value at the center of
the sphere.

¢) As a corollary conclude the maximum principle: if K C U is compact, then ¢ restricted to K
attains its maximum and minimum on the boundary of K.

d) Prove Earnshaw’s theorem:

A charge cannot be maintained in a stable stationary equilibrium solely by an elec-
trostatic potential.

Due date: Wednesday, 5/2/07, at 1 p.m.



