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Problem set 1

Tutorial 1.1 Field lines

Field lines are integral curves tangent to the vector �eld, i.e., up to reparametrization they ful�ll

d
dτ
~x(τ) = ~E(~x(τ)) , ~x(τ = 0) = ~x0 .

Consider the vector �eld ~E(~x) = (y, x, 0). Verify that ~E is irrotational, i.e., ~∇× ~E = 0, and construct
a scalar potential ϕ(~x) by evaluating the line integral

ϕ(~x) = −
∫
C
~E · d~l ,

for curves C connecting the origin with the point ~x = (x, y, z). Discuss the equipotential surfaces and
calculate the �eld lines corresponding to ~E(~x).

Tutorial 1.2 Newton's theorem

a) Prove the electrostatic analog of Newton's theorem:

For a spherically symmetric charge (or mass, in the case of gravity) distribution ρ(r),
the radial component of the electric �eld, Er = ~E · ~r/r, is given by

Er =
Q(r)
r2

with Q(r) = 4π
∫ r

0
ρ(R)R2dR ,

i. e. the same as if the charge in the sphere of radius R is located at the center of the
sphere.

Calculate also the associated electrostatic potential.

Note that the Poisson equation in spherical coordinates reads

−4πρ = ∇2ϕ =
1
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b) As an application of Newton's theorem, consider a charge-free spherical cavity concentric with
the center of a spherically symmetric charge distribution. What is the electric force on a test
charge inside this hole?



Problem 1.3 Hamilton formulation

Consider a magnetic �eld in two dimensions. By virtue of the magnetic Gauss's law ~∇ · ~B = ∇xBx +
∇yBy = 0, a 'vector' potential Az(x, y) can be introduced, such that Bx = ∇yAz, By = −∇xAz.

a) Argue that the �eld lines corresponding to ~B can be interpreted in terms of Hamiltonian �ows
in phase space of a suitable equivalent mechanical system with a single degree of freedom.

b) Summarize some basic facts on the geometry of a Hamiltonian �ow in the p�q-plane.

c) Discuss the magnetic �eld lines corresponding to the vector potentials

i) Az(x, y) =
y2

2
+ [1− cos(x)] , ii) Az(x, y) =

y2

2
− x2

2
.

Problem 1.4 Penning trap

Consider the motion of a particle that has a charge q and mass m in a constant uniform magnetic �eld
~B = Bêz and an electric quadrupol potential (U0 > 0)

ϕ(~x) = − U0

2r20
(x2 + y2 − 2z2) , ~x = (x, y, z) .

a) Show that the non-relativistic equation of motion for the particle in the x�y plane for the case
U0 = 0 leads to oscillatory motion. Determine the cyclotron frequency ωc characterizing the
oscillation. It is favorable to introduce a complex variable ξ := x+ iy.

b) Determine the electric �eld ~E(~x) = −~∇ϕ(~x) and verify that ~E is solenoidal, i.e., ~∇ · ~E(~x) = 0.
c) Show that the magnetic �eld does not couple to the motion along the z-direction, and determine

the characteristic frequency ωz for the corresponding harmonic oscillations in the quadrupol �eld.

d) Solve the complete equations of motion in the x�y plane and show that the general solution
is a superposition of two oscillatory motions with a perturbed cyclotron frequency ω′c and the
magnetron frequency ωM . Provide conditions such that the orbits are stable. Discuss the case
ωz � ωc in particular.

Problem 1.5 Hydrogen atom

Quantum mechanics reveals that the electron in a hydrogen atom should be described in terms of a
wave function ψ(~r) (probability amplitude) giving rise to a smeared electron cloud corresponding to
a charge density, ρe(~r) = −e|ψ(~r)|2. At the center of the atom, the proton is localized at a much
smaller length scale, and the contribution to the charge density may be modeled as a point charge,
eδ(~r). Determine the (total) electrostatic potential ϕ

a) for the (1s orbital, K-shell) ground state of the hydrogen atom. Here the wave function is
spherically symmetric

ψ(~r) =
1√
πa3

e−r/a

where a = ~2/2me2 = 0.529× 10−8cm denotes the Bohr radius.

b) for the spherically symmetric �rst excited state (2s orbital, L-shell)

ψ(~r) =
1√

8πa3

(
1− r

2a

)
e−r/2a .



Problem 1.6 Harmonic functions

Consider a scalar �eld in three-dimensional space ϕ : U → R (where U is an open subset of R3) that
is harmonic, i.e., satis�es the Laplace equation ∇2ϕ(~x) = 0.

a) Proof the mean value theorem: Let ~x ∈ U and take a ball Br(~x) = {~y ∈ R3 : |~y − ~x| ≤ r} ⊂ U
of radius r around ~x. If ϕ is a harmonic function then

ϕ(~x) =
1

4πr2

∫
∂Br(~x)

ϕ(~y) df(~y) , ∂Br(~x) = {~y ∈ R3 : |~y − ~x| = r} ,

i.e., the average over the surface of a sphere of a harmonic function reproduces its value at the
center of the sphere.
To demonstrate the property argue that

d
dr

[
1

4πr2

∫
∂Br(~x)

ϕ(~y) df(~y)

]
=

1
4πr2

∫
∂Br(~x)

(
~∇ϕ(~y)

)
· ~ndf(~y) ,

where ~n denotes the normal vector of the sphere. Then apply Gauss's theorem to show that the
derivative actually vanishes. Complete the proof by evaluating the mean value for su�ciently
small radii.

b) Apply the mean value theorem to proof the related property

ϕ(~x) =
1

4πr3/3

∫
Br(~x)

ϕ(~y) df(~y) ,

i.e., the volume average over a sphere of a harmonic function yields the value at the center of
the sphere.

c) As a corollary conclude the maximum principle: if K ⊂ U is compact, then ϕ restricted to K
attains its maximum and minimum on the boundary of K.

d) Prove Earnshaw's theorem:

A charge cannot be maintained in a stable stationary equilibrium solely by an elec-
trostatic potential.
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