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Abstract

Ecological systems are complex assemblies of large numbers of indi-
viduals, interacting competitively under multifaceted environmental con-
ditions. Recent studies using microbial laboratory communities have re-
vealed some of the self-organization principles underneath the complexity
of these systems. A major role of the inherent stochasticity of its dynam-
ics and the spatial segregation of different interacting species into distinct
patterns has thereby been established. It ensures viability of microbial
colonies by allowing for species diversity, cooperative behavior and other
kinds of “social” behavior.

A synthesis of evolutionary game theory, nonlinear dynamics, and the
theory of stochastic processes provides the mathematical tools and con-
ceptual framework for a deeper understanding of these ecological systems.
We give an introduction into the modern formulation of these theories
and illustrate their effectiveness focussing on selected examples of micro-
bial systems. Intrinsic fluctuations, stemming from the discreteness of
individuals, are ubiquitous, and can have important impact on the sta-
bility of ecosystems. In the absence of speciation, extinction of species
is unavoidable, may, however, take very long times. We provide a gen-
eral concept for defining survival and extinction on ecological time-scales.
Spatial degrees of freedom come with a certain mobility of individuals.
When the latter is sufficiently high, bacterial community structures can
be understood through mapping individual-based models, in a contin-
uum approach, onto stochastic partial differential equations. These allow
progress using methods of nonlinear dynamics such as bifurcation analysis
and invariant manifolds. We conclude with a perspective on the current
challenges in quantifying bacterial pattern formation, and how this might
have an impact on fundamental research in non-equilibrium physics.
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1 Introduction

This article is intended as an introduction into the concepts and the mathemat-
ical framework of evolutionary game theory, seen with the eyes of a theoretical
physicist. It grew out of a series of lectures on this topic given at various summer
schools in the year 2009.1 Therefore, it is not meant to be a complete review
of the field but rather a personal, and hopefully pedagogical, collection of ideas
and concepts intended for an audience of advanced students.

The first chapter gives an introduction into the theory of games. We will
start with “strategic games”, mainly to introduce some basic terminology, and
then quickly move to “evolutionary game theory”. The latter is the natural
framework for the evolutionary dynamics of populations consisting of interact-
ing multiple species, where the success of a given individual depends on the
behavior of the surrounding ones. It is most naturally formulated in the lan-
guage of nonlinear dynamics, where the game theory terms “Nash equilibrium”
or “evolutionary stable strategy” map onto “fixed points” of ordinary nonlin-
ear differential equations. Illustrations of these concepts are given in terms
of two-strategy games and the cyclic Lotka-Volterra model, also known as the
“rock-paper-scissors” game. We conclude this first chapter by an (incomplete)
overview of game-theoretical problems in biology, mainly taken from the field
of microbiology.

A deterministic description of populations of interacting individuals in terms
of nonlinear differential equations, however, misses some important features of
actual ecological systems. The molecular processes underlying the interaction
between individuals are often inherently stochastic and the number of individ-
uals is always discrete. As a consequence, there are random fluctuations in
the composition of the population which can have an important impact on the
stability of ecosystems. In the absence of speciation, extinction of species is
unavoidable, may, however, take very long times. Our second chapter starts
with some elementary, but very important, notes on extinction times. These
ideas are then illustrated for two-strategy games, whose stochastic dynamics is
still amenable to an exact solution. Finally, we provide a general concept for
defining survival and extinction on ecological time which should be generally
applicable.

Chapter 3, introducing the May-Leonard model, serves two purposes. On
the one hand, it shows how a two-step cyclic competition, split into a selection
and reproduction step, modifies the nonlinear dynamics from neutral orbits, as
observed in the cyclic Lotka-Volterra model, to an unstable spiral. This teaches
that the details of the molecular interactions between individuals may matter
and periodic orbits are, in general, non-generic in population dynamics. On the
other hand, the May-Leonard models serves to introduce some more advanced
concepts from non-linear dynamics: linear stability analysis, invariant mani-
folds, and normal forms. In addition, the analysis will also serve as a necessary

1International Summer School Fundamental Problems in Statistical Physics XII, August
31 - September 11, 2009, Leuven, Belgium; Boulder School for Condensed Matter and Ma-
terials Physics, “Nonequilibrium Statistical Mechanics: Fundamental Problems and Appli-
cations”, July 6-31, 2009, Boulder, Colorado; WE-Heraeus Summerschool 2009, “Steps in
Evolution: Perspectives from Physics, Biochemistry and Cell Biology 150 Years after Dar-
win”, June 28 - July 5, 2009, Jacobs University Bremen.
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prerequisite for the analysis of spatial games in the subsequent chapter. Chapter
3 is mainly technical and may be skipped in a first reading.

Cyclic competition of species, as metaphorically described by the childrens
game “rock-paper-scissors”, is an intriguing motif of species interactions. Lab-
oratory experiments on populations consisting of different bacterial strains of
E. coli have shown that bacteria can coexist if a low mobility enables the seg-
regation of the different strains and thereby the formation of patterns [1]. In
chapter 4 we analyze the impact of stochasticity as well as individuals mobility
on the stability of diversity as well as the emerging patterns. Within a spatially-
extended version of the May-Leonard model we demonstrate the existence of a
sharp mobility threshold, such that diversity is maintained below, but jeopar-
dized above that value. Computer simulations of the ensuing stochastic cellular
automaton show that entangled rotating spiral waves accompany biodiversity.
These findings are rationalized using stochastic partial differential equations
(SPDE), which are reduced to a complex Ginzburg-Landau equation (CGLE)
upon mapping the SPDE onto the reactive manifold of the nonlinear dynamics.

In chapter 5, we conclude with a perspective on the current challenges in
quantifying bacterial pattern formation and how this might have an impact on
fundamental research in non-equilibrium physics.

1.1 Strategic games

Classical Game Theory [2] describes the behavior of rational players. It at-
tempts to mathematically capture behavior in strategic situations, in which an
individual’s success in making choices depends on the choices of others. A clas-
sical example of a strategic game is the prisoner’s dilemma. In its classical form,
it is presented as follows2:

“Two suspects of a crime are arrested by the police. The police have insuf-
ficient evidence for a conviction, and, having separated both prisoners, visit
each of them to offer the same deal. If one testifies (defects from the other)
for the prosecution against the other and the other remains silent (cooperates
with the other), the betrayer goes free and the silent accomplice receives the
full 10-year sentence. If both remain silent, both prisoners are sentenced to
only 1 year in jail for a minor charge. If each betrays the other, each receives a
five-year sentence. Each prisoner must choose to betray the other or to remain
silent. Each one is assured that the other would not know about the betrayal
before the end of the investigation. How should the prisoners act?”

The situation is best illustrated in what is called a “payoff matrix” which in
the classical formulation is rather a “cost matrix”:

P Cooperator (C) Defector (D)
C 1 year 10 years
D 0 years 5 years

Here rows and columns correspond to player (suspect) 1 and 2, respectively. The
entries give the prison sentence for player 1; this is sufficient information since

2This description is taken from Wikipedia: http://en.wikipedia.org/wiki/Prisoner’s_

dilemma.
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the game is symmetric. Imagine you are player 1, and that player 2 is playing
strategy “cooperate”. Then you are obviously better off to play “defect” since
you can get free. Now imagine player 2 is playing “defect”. Then you are still
better off to defect since 5 years in prison is better than 10 years in prison.
If both players are rational players a dilemma arises since both will analyze
the situation in the same way and come to the conclusion that it is always
better to play “defect” irrespective of what the other suspect is playing. This
outcome of the game, both playing “defect”, is called a Nash equilibrium [3]. The
hallmark of a Nash equilibrium is that none of the players has an advantage of
deviating from his strategy unilaterally. This rational choice, where each player
maximizes his own payoff, is not the best outcome! If both defect, they will
both be sentenced to prison for 5 years. Each player’s individual reward would
be greater if they both played cooperatively; they would both only be sentenced
to prison for 1 year.

We can also reformulate the prisoner’s dilemma game as a kind of a public
good game. A cooperator provides a benefit b to another individual, at a cost c
to itself (with b− c > 0). In contrast, a defector refuses to provide any benefit
and hence does not pay any costs. For the selfish individual, irrespective of
whether the partner cooperates or defects, defection is favorable, as it avoids the
cost of cooperation, exploits cooperators, and ensures not to become exploited.
However, if all individuals act rationally and defect, everybody is, with a gain
of 0, worse off compared to universal cooperation, where a net gain of b− c > 0
would be achieved. The prisoner’s dilemma therefore describes, in its most basic
form, the fundamental problem of establishing cooperation.

P Cooperator (C) Defector (D)
C b− c −c
D b 0

This scheme can be generalized to include other basic types of social dilem-
mas [4, 5]. Namely, two cooperators that meet are both rewarded a payoff R,
while two defectors obtain a punishment P. When a defector encounters a
cooperator, the first exploits the second, gaining the temptation T , while the
cooperator only gets the suckers payoff S. Social dilemmas occur when R > P,
such that cooperation is favorable in principle, while temptation to defect is
large: T > S, T > P. These interactions may be summarized by the payoff
matrix:

P Cooperator (C) Defector (D)
C R S
D T P

Variation of the parameters T , P, R and S yields four principally different types
of games. The prisoner’s dilemma arises if the temptation T to defect is larger
than the reward R, and if the punishment P is larger than the suckers payoff
S. As we have already seen above, in this case, defection is the best strat-
egy for the selfish player. Within the three other types of games, defectors are
not always better off. For the snowdrift game the temptation T is still higher
than the reward R but the sucker’s payoff S is larger than the punishment P.
Therefore, now actually cooperation is favorable when meeting a defector, but
defection pays off when encountering a cooperator, and a rational strategy con-
sists of a mixture of cooperation and defection. The snowdrift game derives its
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name from the potentially cooperative interaction present when two drivers are
trapped behind a large pile of snow, and each driver must decide whether to
clear a path. Obviously, then the optimal strategy is the opposite of the oppo-
nent’s (cooperate when your opponent defects and defect when your opponent
cooperates). Another scenario is the coordination game, where mutual agree-
ment is preferred: either all individuals cooperate or defect as the reward R
is higher than the temptation T and the punishment P is higher than sucker’s
payoff S. Lastly, the scenario of by-product mutualism (also called harmony)
yields cooperators fully dominating defectors since the reward R is higher than
the temptation T and the sucker’s payoff S is higher than the punishment P.

1.2 Evolutionary game theory

Strategic games, as discussed in the previous section, are thought to be useful
concept in economic and social settings. In order to analyze the behavior of
biological systems, the concept of rationality is not meaningful. Evolutionary
Game Theory (EGT) as developed mainly by Maynard Smith and Price [6, 7]
does not rely on rationality assumptions but on the idea that evolutionary forces
like natural selection and mutation are the driving forces of change. The inter-
pretation of game models in biology is fundamentally different from strategic
games in economics or social sciences. In biology, strategies are considered to be
inherited programs which control the individual’s behavior. Typically one looks
at a population composed of individuals with different strategies who interact
generation after generation in game situations of the same type. The interac-
tions may be described by deterministic rules or stochastic processes, depending
on the particular system under study. The ensuing dynamic process can then
be viewed as an iterative (nonlinear) map or a stochastic process (either with
discrete or continuous time). This naturally puts evolutionary game theory in
the context of nonlinear dynamics and the theory of stochastic processes. We
will see how a synthesis of both approaches helps to understand the emergence
of complex spatio-temporal dynamics.

In this section, we focus on a deterministic description of well-mixed popula-
tions. The term “well-mixed” signifies systems where the individual’s mobility
(or diffusion) is so large that one may neglect any spatial degrees of freedom
and assume that every individual is interacting with everyone at the same time.
This is a mean-field picture where the interactions are given in terms of the
average number of individuals playing a particular strategy. Frequently, this
situation is visualized as an “urn model”, where two (or more) individuals from
a population are randomly selected to play with each other according to some
specified game theoretical scheme. The term “deterministic” means that we
are seeking a description of populations where the number of individuals Ni(t)
playing a particular strategy Ai are macroscopically large such that stochastic
effects can be neglected.

Pairwise reactions and rate equations

In the simplest setup the interaction between individuals playing different strate-
gies can be represented as a reaction process characterized by some set of rate
constants. For example, consider a game where three strategies {A,B,C} cycli-
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Figure 1: The urn model describes the evolution of well-mixed finite populations.
Here, as an example, we show three species as yellow (A), red (B), and blue
(C) spheres. At each time step, two randomly selected individuals are chosen
(indicated by arrows in the left picture) and interact with each other according
to the rules of the game resulting in an updated composition of the population
(right picture).

cally dominate each other, as in the famous rock-paper-scissors game: A invades
B, B outperforms C, and C in turn dominates over A, schematically drawn in
Fig.2:

BC

A

Figure 2: Illustration of cyclic dominance of three states A, B, and C: A invades
B, B outperforms C, and C in turn dominates over A.

In an evolutionary setting, the game may be played according to an urn
model as illustrated in Fig.1: at a given time t two individuals from a population
with constant size N are randomly selected to play with each other (react)
according to the scheme

A+B
kA−→ A+A ,

B + C
kB−→ B +B , (1)

C +A
kC−→ C + C ,

where ki are rate constants, i.e. probabilities per unit time. This interaction
scheme is termed a cyclic Lotka-Volterra model 3. It is equivalent to a set of
chemical reactions, and in the deterministic limit of a well-mixed population
one obtains rate equations for the frequencies (a, b, c) = (NA, NB , NC)/N :

∂ta = a(kAb− kCc) ,
∂tb = b(kBc− kAa) , (2)
∂tc = c(kCa− kBb) .

3The two-species Lotka-Volterra equations describe a predator-prey system where the per-
capita growth rate of prey decreases linearly with the amount of predators present. In the
absence of prey, predators die, but there is a positive contribution to their growth which
increases linearly with the amount of prey present [8, 9].
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Figure 3: The three-species simplex for reaction rates kA = 1, kB = 1.5, kC = 2.
Since there is a conserved quantity, the rate equations predict cyclic orbits.

Here the right hand sides gives the balance of “gain” and “loss” processes.
The phase space of the model is the simplex S3, where the species’ densities are
constrained by a+b+c = 1. There is a constant of motion for the rate equations,
Eq.(3), namely the quantity ρ := akBbkC ckA does not evolve in time [10]. As a
consequence, the phase portrait of the dynamics, shown in Fig. 3, yield cycles
around the reactive fixed point.

The concept of fitness and replicator equations

Another route of setting up an evolutionary dynamics, often taken in the math-
ematical literature of evolutionary game theory [10,11], introduces the concept
of fitness and then assumes that the per-capita growth rate of a strategy Ai is
given by the surplus in its fitness with respect to the average fitness of the pop-
ulation. We will illustrate this reasoning for two-strategy games with a payoff
matrix P:

P A B
A R S
B T P

(3)

Let NA and NB be the number of individuals playing strategy A and B in a
population of size N = NA +NB . Then the relative abundances of strategies A
and B are given by

a =
NA
N

, b =
NB
N

= (1− a) . (4)

The “fitness” of a particular strategy A or B is defined as a constant background
fitness, set to 1, plus the average payoff obtained from playing the game:

fA(a) := 1 +Ra+ S(1− a) , (5)
fB(a) := 1 + T a+ P(1− a) . (6)

In order to mimic an evolutionary process one is seeking a dynamics which
guarantees that individuals using strategies with a fitness larger than the average
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fitness increase while those using strategies with a fitness below average decline
in number. This is, for example, achieved by choosing the per-capita growth
rate, ∂ta/a, of individuals playing strategy A proportional to their surplus in
fitness with respect to the average fitness of the population,

f̄(a) := afA(a) + (1− a)fB(a) . (7)

The ensuing ordinary differential equation is known as the standard replicator
equation [10, 11]

∂ta =
[
fA(a)− f̄(a)

]
a . (8)

Lacking a detailed knowledge of the actual “interactions” of individuals in a pop-
ulation, there is, of course, plenty of freedom in how to write down a differential
equation describing the evolutionary dynamics of a population. Indeed, there
is another set of equations frequently used in EGT, called adjusted replicator
equations, which reads

∂ta =
fA(a)− f̄(a)

f̄(a)
a . (9)

Here we will not bother to argue why one or the other is a better description. As
we will see later, these equations emerge quite naturally from a full stochastic
description in the limit of large populations.

1.3 Nonlinear dynamics of two-player games

This section is intended to give a concise introduction into elementary concepts
of nonlinear dynamics [12]. We illustrate those for the evolutionary dynamics
of two-player games characterized in terms of the payoff matrix, Eq.(1.3), and
the ensuing replicator dynamics

∂ta = a(fA − f̄) = a(1− a)(fA − fB) . (10)

This equation has a simple interpretation: the first factor, a(1 − a), is the
probability for A and B to meet and the second factor, fA − fB , is the fitness
advantage of A over B. Inserting the explicit expressions for the fitness values
one finds

∂ta = a(1− a)
[
µA(1− a)− µBa

]
=: F (a) , (11)

where µA is the relative benefit of A playing against B and µB is the relative
benefit of B playing against A:

µA := S − P , µB := T −R . (12)

Hence, as far as the replicator dynamics is concerned, we may replace the payoff
matrix by

P A B
A 0 µA
B µB 0

Eq.11 is a one-dimensional nonlinear first-oder differential equation for the
fraction a of players A in the population, whose dynamics is most easily ana-
lyzed graphically. The sign of F (a) determines the increase or decrease of the
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dynamic variable a; compare the right half of Fig.4. The intersections of F (a)
with the a-axis (zeros) are fixed points, a∗. Generically, these intersections are
with a finite slope F ′(a∗) 6= 0; a negative slope indicates a stable fixed point
while a positive slope an unstable fixed point. Depending on some control pa-
rameters, here µA and µB , the first or higher order derivatives of F at the fixed
points may vanish. These special parameter values mark “threshold values” for
changes in the flow behavior (bifurcations) of the nonlinear dynamics. We may
now classify two-player games as summarized in the following table.

Game control parameters stable fixed points
prisoner’s dilemma µA < 0 ; µB > 0 0
snowdrift µA > 0 ; µB > 0 µA/(µA + µB)
coordination µA < 0 ; µB < 0 0, 1
harmony µA > 0 ; µB < 0 1

Table 1: Classification of two player games according to their payoff matrices
and stable fixed point values of the replicator equation.

Prisoner’s Dilemma

Coordination Game

Snowdrift Game

Harmony

µB

µA

F(a)

a10

Figure 4: Classification of two-player games. Left: The black arrows in the
control parameter plane (µA, µB) indicate the flow behavior of the four different
types of two-player games. Right: Graphically the solution of a one-dimensional
nonlinear dynamics equation, ∂ta = F (a), is simply read off from the signs of
the function F (a); illustration for the snowdrift game.

For the prisoner’s dilemma µA = −c < 0 and µB = c > 0 and hence players
with strategy B (defectors) are always better off (compare the payoff matrix).
Both players playing strategy B is a Nash equilibrium. In terms of the replicator
equations this situation corresponds to F (a) < 0 for a 6= 0 and F (a) = 0 at
a = 0, 1 such that a∗ = 0 is the only stable fixed point. Hence the term “Nash
equilibrium” translates into the “stable fixed point” of the replicator dynamics
(nonlinear dynamics).

For the snowdrift game both µA > 0 and µB > 0 such that F (a) can change
sign for a ∈ [0, 1]. In fact, a∗int = µA/(µA + µB) is a stable fixed point while
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a∗ = 0, 1 are unstable fixed points; see the right panel of Fig.4. Inspection of
the payoff matrix tells us that it is always better to play the opposite strategy of
your opponent. Hence there is no Nash equilibrium in terms of pure strategies
A or B. This corresponds to the fact that the boundary fixed points a∗ = 0, 1
are unstable. There is, however, a Nash equilibrium with a mixed strategy where
a rational player would play strategy A with probability pA = µA/(µA + µB)
and strategy B with probability pB = 1 − pA. Hence, again, the term “Nash
equilibrium” translates into the “stable fixed point” of the replicator dynamics
(nonlinear dynamics).

For the coordination game, there is also an interior fixed point at a∗int =
µA/(µA + µB), but now it is unstable, while the fixed points at the boundaries
a∗ = 0, 1 are stable. Hence we have bistability : for initial values a < a∗int the
flow is towards a = 0 while it is towards a = 1 otherwise. In the terminology of
strategic games there are two Nash equilibria. The game harmony corresponds
to the prisoner’s dilemma with the roles of A and B interchanged.

1.4 Bacterial games

Bacteria often grow in complex, dynamical communities, pervading the earth’s
ecological systems, from hot springs to rivers and the human body [13]. As an
example, in the latter case, they can cause a number of infectious diseases, such
as lung infection by Pseudomonas aeruginosa. Bacterial communities, quite
generically, form biofilms [13, 14], i.e., they arrange into a quasi-multi-cellular
entity where they highly interact. These interactions include competition for
nutrients, cooperation by providing various kinds of public goods essential for
the formation and maintenance of the biofilm [15], communication through the
secretion and detection of extracellular substances [16,17], and last but not least
physical forces. The ensuing complexity of bacterial communities has conveyed
the idea that they constitute a kind of “social groups” where the coordinated
action of individuals leads to various kinds of system-level functionalities. Since
additionally microbial interactions can be manipulated in a multitude of ways,
many researchers have turned to microbes as the organisms of choice to explore
fundamental problems in ecology and evolutionary dynamics.

Two of the most fundamental question that challenge our understanding
of evolution and ecology are the origin of cooperation [16–23] and biodiver-
sity [1, 24–27]. Both are ubiquitous phenomena yet conspicuously difficult to
explain since the fitness of an individual or the whole community depends in an
intricate way on a plethora of factors, such as spatial distribution and mobility
of individuals, secretion and detection of signaling molecules, toxin secretion
leading to inter-strain competition and changes in environmental conditions. It
is fair to say that we are still a far way off from a full understanding, but the
versatility of microbial communities makes their study a worthwhile endeavor
with exciting discoveries still ahead of us.

Cooperation

Understanding the conditions that promote the emergence and maintenance
of cooperation is a classic problem in evolutionary biology [7, 28, 29]. It can
be stated in the language of the prisoners dilemma. By providing a public
good, cooperative behavior would be beneficial for all individuals in the whole
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population. However, since cooperation is costly, the population is at risk from
invasion by “selfish” individuals (cheaters), who save the cost of cooperation
but can still obtain the benefit of cooperation from others. In evolutionary
theory many principles were proposed to overcome this dilemma of cooperation:
repeated interaction [20, 28], punishment [20, 30], or kin discrimination [31, 32].
All of these principles share one fundamental feature: They are based on some
kind of selection mechanism. Similar to the old debate between “selectionists”
and “neutralists” in evolutionary theory [33], there is an alternative. Due to
random fluctuations a population, initially composed of both cooperators and
defectors, may (with some probability) become fixed in a state of cooperators
only [34]. We will come back to this point later in section 2.2.

There has been an increasing number of experiments using microorganisms
trying to shed new light on the problem of cooperation [18,19,22,23]. Here, we
will shortly discuss a recent experiment on “cheating in yeast” [22]. Budding
yeast prefers to use the monosaccharides glucose and fructose as carbon sources.
If they have to grow on sucrose instead, the disaccharide must first be hydrolyzed
by the enzyme invertase. Since a fraction of approximately 1 − ε = 99% of
the produced monosaccharides diffuses away and is shared with neighboring
cells, it constitutes a public good available to the whole microbial community.
This makes the population susceptible to invasion by mutant strains that save
the metabolic cost of producing invertase. One is now tempted to conclude
from what we have discussed in the previous sections that yeast is playing the
prisoner’s dilemma game. The cheater strains should take over the population
and the wild type strain should become extinct. But, this is not the case. Gore
and collaborators [22] show that the dynamics is rather described a snowdrift
game, in which cheating can be profitable, but is not necessarily the best strategy
if others are cheating too. The explanation given is that the growth rate as a
function of glucose is highly concave and, as a consequence, the fitness function
is non-linear in the payoffs 4

fC(x) :=
[
ε+ x(1− ε)

]α − c , (13)

fD(a) :=
[
x(1− ε)

]α
, (14)

with α ≈ 0.15 determined experimentally. The ensuing phase diagram, Fig. 5
as a function of capture efficiency ε and metabolic cost c shows an altered inter-
mediate regime with a bistable phase portrait, i.e. the hallmark of a snowdrift
game as discussed in the previous section. This explains the experimental ob-
servations. The lesson to be learned from this investigation is that defining a
payoff function is not a trivial matter, and a naive replicator dynamics fails to
describe biological reality. It is, in general, necessary to have a detailed look on
the nature of the biochemical processes responsible for the growth rates of the
competing microbes.

Pattern formation

Investigations of microbial pattern formation have often focussed on one bac-
terial strain [35–37]. In this respect, it has been found that bacterial colonies

4Note that ε is the fraction of carbon source kept by cooperators solely for themselves and
x(1− ε) is the amount of carbon source shared with the whole community. Hence, the linear
growth rate of cooperators and defectors would by ε+ x(1− ε)− c and x(1− ε), respectively,
where c is the metabolic cost for invertase production.
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Figure 5: Game theory models of cooperation in sucrose metabolism of yeast.
a) Phase diagram resulting from fitness functions fC and fD linear in the pay-
offs. This model leads to fixation of cooperators (x = 1) at low cost and/or
high efficiency of capture (ε > c, implying that the game is mutually beneficial
(MB)) but fixation of defectors (x = 0) for high cost and/or low efficiency of
capture (ε < c, implying that the game is prisoners dilemma (PD)). b) A model
of cooperation with experimentally measured concave benefits yields a central
region of parameter space that is a snowdrift game (SG), thus explaining the
coexistence that is observed experimentally (α = 0.15). Adapted from Ref. [22]

on substrates with a high nutrient level and intermediate agar concentrations,
representing “friendly” conditions, grow in simple compact patterns [38]. When
instead the level of nutrient is lowered, when the surface on which bacteria
grow possesses heterogeneities, or when the bacteria are exposed to antibiotics,
complex, fractal patterns are observed [35,39,40]. Other factors that affect the
self-organizing patterns include motility [41], the kind of bacterial movement,
e.g., swimming [42], swarming, or gliding [43, 44], as well as chemotaxis and
external heterogeneities [45]. Another line of research has investigated patterns
of multiple co-evolving bacterial strains. As an example, recent studies looked
at growth patterns of two functionally equivalent strains of Escherichia coli and
showed that, due to fluctuations alone, they segregate into well-defined, sector
like regions [36,46].

The Escherichia Col E2 system

Several Colibacteria such as Escherichia coli are able to produce and secrete
specific toxins called Colicines that inhibit growth of other bacteria. Kerr and
coworkers [1] have studied three strains of E. coli, amongst which one is able
to produce the toxin Col E2 that acts as an DNA endonuclease. This poison
producing strain (C) kills a sensitive strain (S), which outgrows the third, re-
sistant one (R), as resistance bears certain costs. The resistant bacteria grow
faster than the poisonous ones, as the latter are resistant and produce poison,
which is yet an extra cost. Consequently, the three strains of E. coli display
cyclic competition, similar to the children’s game rock-paper-scissors.

When placed on a Petri-dish, all three strains coexist, arranging in time-
dependent spatial clusters dominated by one strain. In Fig. 6, snapshots of
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these patterns monitored over several days are shown. Sharp boundaries be-
tween different domains emerge, and all three strains co-evolve at comparable
densities. The patterns are dynamic: Due to the non-equilibrium character of
the species’ interactions, clusters dominated by one bacterial strain cyclically
invade each other, resulting in an endless hunt of the three species on the Petri-
dish. The situation changes considerably when putting the bacteria in a flask
with additional stirring. Then, only the resistant strain survives, while the two
others die out after a short transient time.

Figure 6: The three strains of the Escherichia Col E2 system evolve into spatial
patterns on a Petri-dish. The competition of the three strains is cyclic (of rock-
paper-scissors type) and therefore non-equilibrium in nature, leading to dynamic
patterns. The picture has been modified from [1].

These laboratory experiments thus provide intriguing experimental evidence
for the importance of spatial patterns for the maintenance of biodiversity. In this
respect, many further questions regarding the spatio-temporal interactions of
competing organisms under different environmental conditions lie ahead. Spon-
taneous mutagenesis of single cells can lead to enhanced fitness under specific
environmental conditions or due to interactions with other species. Moreover,
interactions with other species may allow unfit, but potentially pathogenic bac-
teria to colonize certain tissues. Additionally, high concentrations of harm-
less bacteria may help pathogenic ones to nest on tissues exposed to extremely
unfriendly conditions. Information about bacterial pattern formation arising
from bacterial interaction may therefore allow to develop mechanism to avoid
pathogenic infection.
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2 Stochastic dynamics in well-mixed populations

The machinery of biological cells consists of networks of molecules interacting
with each other in a highly complex manner. Many of these interactions can
be described as chemical reactions, where the intricate processes which occur
during the encounter of two molecules are reduced to reaction rates, i.e. prob-
abilities per unit time. This notion of stochasticity carries over to the scale
of microbes in a manifold way. There is phenotypic noise. Due to fluctua-
tions in transcription and translation, phenotypes vary even in the absence of
genetic differences between individuals and despite constant environmental con-
ditions [47, 48]. In addition, phenotypic variability may arise due to various
external factors like cell density, nutrient availability and other stress condi-
tions. A general discussion of phenotypic variability in bacteria may be found
in recent reviews [49–52]. There is interaction noise. Interactions between in-
dividuals in a given population, as well as cell division and cell death, occur
at random points in time (following some probability distribution) and lead to
discrete steps in the number of the different species. Then, as noted long ago by
Delbrück [53], a deterministic description, as discussed in the previous section,
breaks down for small copy numbers. Finally, there is external noise due to
spatial heterogeneities or temporal fluctuations in the environment.

In this section we will focus on interaction noise, whose role for extinction
processes in ecology has recently been recognized to be very important, espe-
cially when the deterministic dynamics exhibits neutral stability [54–56] or weak
stability [34,57]. After a brief and elementary discussion of extinction times we
will analyze the stochastic dynamics of two-strategy games [34] and the cyclic
Lotka-Volterra model [55]. We conclude with a general concept for defining
survival and extinction on ecological time-scales which should be generally ap-
plicable.

2.1 Some elementary notes on extinction times

The analysis in the previous section is fully deterministic. Given an initial con-
dition the outcome of the evolutionary dynamics is certain. However, processes
encountered in biological systems are often stochastic. For example, consider
the degradation of a protein or the death of an individual bacterium in a popu-
lation. To a good approximation it can be described as a stochastic event which
occurs at a probability per unit time (rate) λ, known as a stochastic linear death
process. Then the population size N(t) at time t becomes a random variable,
and its time evolution becomes a set of integers {Nα} changing from Nα to
Nα − 1 at particular times tα; this is also called a realization of the stochas-
tic process. Now it is no longer meaningful to ask for the time evolution of a
particular population, as one would do in a deterministic description in terms
of a rate equation, Ṅ = −λN . Instead one studies the time evolution of an
ensemble of systems or tries to understand the distribution of times {tα}. A
central quantity in this endeavor is the probability P (N, t) to find a population
of size N given that at some time t = 0 there was some initial ensemble of
populations. Assuming that the stochastic process is Markovian, its dynamics
is given by the following master equation:

∂tP (N, t) = λ(N + 1)P (N + 1, t)− λNP (N, t) . (15)
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A master equation is a “balance equation” for probabilities. The right hand side
simply states that there is an increase in P (N, t) if in a population of size N + 1
an individual dies with rate λ, and a decrease in P (N, t) if in a population of
size N an individual dies with rate λ.5

Master equations can be analyzed by standard tools from the theory of
stochastic processes. In particular, it can (for some elementary cases) be solved
exactly using generating functions. In this section we are only interested in the
average extinction time T , i.e. the expected time for the population to reach
the state N = 0. This state is also called an absorbing state since (for the linear
death process considered here) there are only processes leading into but not out
of this state. The expected extinction time T can be obtained rather easily by
considering the probability Q(t) that a given individual is still alive at time t
given that it was alive at time t = 0. We immediately obtain

Q(t+ dt) = Q(t)(1− λt) with Q(0) = 1 (16)

since an individual will be alive at time t + dt if it was alive at time t and did
not die within the time interval [t, t+ dt]. The ensuing differential equation (in
the limit dt→ 0), Q̇ = −λQ is solved by Q(t) = e−λt. This identifies τ = 1/λ as
the expected waiting time for a particular individual to die. We conclude that
the waiting times for the population to change by one individual is distributed
exponentially and its expected value is τN = τ/N for a population of size N ;
note that each individual in a population has the same chance to die. Hence we
can write for the expected extinction time for a population with initial size N0

T = τN0 + τN0−1 + · · ·+ τ1 =
N0∑
N=1

τ

N
≈ τ

∫ N0

1

1
N
dN = τ lnN0 . (17)

We have learned that for a system with a “drift” towards the absorbing bound-
ary of the state space the expected time to reach this boundary scales, quite
generically, logarithmically in the initial population size, T ∼ lnN0.6 Note that
within a deterministic description, Ṅ = −λN , the population size would expo-
nentially decay to zero but never reach it, N(t) = N0e

−t/τ . This is, of course,
flawed in two ways. First, the process is not deterministic and, second, the
population size is not a real number. Both features are essential to understand
the actual dynamics of a population at low copy numbers of individuals.

Now we would like to contrast the linear death process with a “neutral
process” where death and birth events balance each other, i.e. where the birth
rate µ exactly equals the death rate λ. In a deterministic description one would
write

∂tN(t) = −(λ− µ)N(t) = 0 (18)

and conclude that the population size remains constant at its initial value. In
a stochastic description, one starts from the master equation

∂tP (N, t) = λ(N + 1)P (N + 1, t) + λ(N − 1)P (N − 1, t)− 2λNP (N, t) . (19)

5For an elementary intorduction into the theory of stochastic processes see the textbooks
by van Kampen [58] and Gardiner [59].

6Naively, one may estimate the extinction time from the deterministic dynamics by asking
for the time T where N(T ) = 1, and indeed this gives T = τ lnN0.
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Though this could again be solved exactly using generating functions it is in-
structive to derive an approximation valid in the limit of a large population
size, i.e. N � 1. This is most easily done by simply performing a second order
Taylor expansion without worrying to much about the mathematical validity of
such an expansion. With[

(N ± 1)P (N ± 1, t)
]
≈ NP (N, t)± ∂N

[
NP (N, t)

]
+

1
2
∂2
N

[
NP (N, t)

]
(20)

we obtain
∂tP (N, t) = λ∂2

N

[
NP (N, t)

]
. (21)

Measuring the population size in units of the initial population size at time t = 0
and defining x = N/N0, this becomes

∂tP (x, t) = D∂2
x

[
xP (x, t)

]
(22)

with the “diffusion constant” D = λ/N0.7 This implies that all time scales
in the problem scale as t ∼ D−1 ∼ N0; this is easily seen by introducing a
dimensionless time τ = Dt resulting in a rescaled equation

∂τP (x, τ) = ∂2
x

[
xP (x, τ)

]
. (23)

Hence for a (deterministically) “neutral dynamics” the extinction time, i.e. the
time reaching the absorbing state N = 0, scales, also quite generically, linear in
the initial system size T ∼ N0.

Finally, there are processes like the snowdrift game where the deterministic
dynamics drives the population towards an interior fixed point well separated
from the absorbing boundaries, x = 0 and x = 1. In such a case, starting
from an initial state in the vicinity of the interior fixed point, the stochastic
dynamics has to overcome a finite barrier in order to reach the absorbing state.
This is reminiscent to a chemical reaction with an activation barrier which is
described by an Arrehnius law. Hence we expect that the extinction time scales
exponentially in the initial population size T ∼ eN0 . This will be corroborated
later by explicit calculations for the snowdrift game.

To summarize, the mean extinction time T can be used to classify evolution-
ary dynamics into a few fundamental regimes. For systems with a deterministic
drift towards the absorbing boundaries of states space, as frequently encoun-
tered in nonlinear dynamic systems with unstable interior fixed points, typical
extinction times are expected to scale as T ∼ lnN . We refer to such a system
as an “unstable” system. If, in contrast, the deterministic dynamics is char-
acterized by a stable fixed point with some domain of attraction, we expect
extinction times to scale as T ∼ eN . We will refer to those systems as “stable”.
The case of neutral dynamics yields T ∼ N and will be referred to as “neutral”

7If instead of a linear birth-death process one would consider a symmetric random walk
with hopping rate ε on a one-dimensional lattice with sites xi = ia, the resulting equa-
tion would be a diffusion equation ∂tP (x, t) = D∂2

xP (x, t) with diffusion constant D = εa2.
Restricting the random walk to a finite lattice with absorbing boundaries at x0 = 0 and
xN = Na := 1 this would result in a diffusion constant scaling as the inverse square of the
system size, D ∼ 1/N2. In the linear birth-death process, the corresponding amplitude D,
measuring the magnitude of stochastic effects, scales as D ∼ 1/N since the rates are pro-
portional to the size of the system; each individual has the same probability of undergoing a
reaction.
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(or marginally stable). There may also be intermediate scenarios with extinc-
tion times scaling as a power law in the population size, T ∼ Nγ . Transitions
between these regimes can occur and manifest as crossovers in the functional
relation T (N).

2.2 Two-strategy games

In this section we will exemplify how to set up a stochastic dynamics in evo-
lutionary game theory by studying two-strategy games. We restrict ourselves
to standard urn models with a fixed population size N where the composition
of the population is updated by a Moran process [60]: At every time step an
individual with a given strategy Ai is randomly selected for reproduction, with
a probability proportional to its relative abundance in the population, Ni/N ,
and proportional to its relative fitness, fi/f̄ . In order to keep the constant
population size fixed this replacement happens at the expense of the alternative
strategy, i.e. an individual with the alternative strategy is randomly selected
and deleted from the population.8 Taken together, these update rules amount

N A =

N B = N − n+ 1 N − n

N − 1

N − 1

N

N

n− 11

1 0

0 n

Figure 7: The discrete state space S2 for the two-strategy game. The stochas-
tic process is a one-step process where transitions are possible only between
neighboring states.

to a one-step stochastic process in the number of players with one given strat-
egy, say n := NA. Transitions are possible only between neighboring states. If a
player with strategy A wins the game, the number of players with this strategy
increases by one, n→ n+ 1, with a transition rate given by

w+
n (x) = N x(1− x)

fA(x)
f̄(x)

, (24)

where x := n/N is defined as the relative abundance of strategy A. Here we have
chosen units of time such that N games are played per unit time, or, in other
words, each player plays one game on average per unit time; ∆t = 1/N . If a
player with strategy B wins the game, we have n→ n−1 with the corresponding
transition rate

w−n (x) = N x(1− x)
fB(x)
f̄(x)

. (25)

The ensuing Master equation for this one-step stochastic process reads

∂tP (n, t) = w−n+1P (n+1, t) + w+
n−1P (n−1, t)−

[
w−n + w+

n

]
P (n, t) . (26)

8Note that such a Moran process is - by far - not the most general nor the typical scenario
for microbial populations. One should think of such a dynamics as an effective and crude way
to account for a system with limited resources where the one’s gain is the other’s loss.
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It is straightforward to show that the first moment obeys the equation

∂t〈n〉 = 〈w+
n 〉 − 〈w−n 〉 (27)

which upon neglecting correlations reduces to the deterministic (adjusted) repli-
cator equation for the mean relative abundance x̄ = 〈n〉/N :

∂tx̄ = x̄(1− x̄)
fA(x̄)− fB(x̄)

f̄(x̄)
. (28)

However, these rate equations miss some important features of the evolution-
ary dynamics, which is intrinsically stochastic. As illustrated in Fig.8 for the
prisoners dilemma, there is an interplay between deterministic drift and stochas-
tic fluctuations. While selection-dominated dynamics drives the population to

CC

C

C

C

CC C

CC

D

D

D

DDD

D

D

D

D

fitness dominated dynamics

fluctuations

Figure 8: The evolutionary dynamics consists of a fitness-dominated, directed
part caused by selection of defectors (D) against cooperators (C), and a neu-
tral, undirected part due to fluctuations. Eventually, after some characteristic
time T , only one species survives and the population reaches a state of overall
defection or cooperation. Adapted from Ref. [34].

overall defection, random fluctuations induces an undirected random walk be-
tween complete defection and complete cooperation. When selection by fitness
differences dominates the dynamics, the resulting outcome (most likely) equals
the one of rational agents described in the previous chapter. When selection
is weak and stochastic fluctuations dominate both overall defection and overall
cooperation are possible outcomes. Note that upon reaching overall defection or
cooperation, the temporal development comes to an end. Hence, even if defec-
tion is the dominant strategy, there is always a finite chance that a population
reaches overall cooperation.

In the following we are going to quantify these observations employing meth-
ods from the theory of stochastic processes. Exact solutions are, in general, not
feasible. In many instances, however, a low-noise approximation employing a
Kramers-Moyal expansion gives excellent results. The Fokker-Planck equation
resulting from the Master equation reads

∂tP (x, t) = −∂x
(
α(x)P (x, t)

)
+

1
2
∂2
x

(
β(x)P (x, t)

)
(29)
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with

α(x) =
1
N

(
w+
n − w−n

)
= x(1− x)

fA(x)− fB(x)
f̄(x)

, (30)

β(x) =
1
N2

(
w+
n + w−n

)
=

1
N
x(1− x)

fA(x) + fB(x)
f̄(x)

. (31)

The most important conclusions to be drawn from these expressions are: (i) The
diffusion term proportional to β(x) scales as 1/N and hence vanishes for large
population size. (ii) The diffusion term is always positive and vanishes at the
boundaries of the phase space. (iii) The drift term is identical to the right hand
side of the adjusted replicator equation, α(x) = F (x). Hence the Moran process
reduces to the adjusted replicator dynamics in the limit of large populations.

Specializing to the prisoners dilemma in the limit of weak selection, c � 1,
we have

α(x) = −c x(1− x) ,

β(x) =
2
N
x(1− x) . (32)

At this level of description the model closely resembles the “diffusion theory”
for population genetics as introduced by Wright [61, 62]. There, x denotes the
relative frequency for a certain allele at one genetic locus. The drift term corre-
sponds to all directional evolutionary forces such as selection and mutation. The
diffusion term in population genetics is actually called “genetic drift” and incor-
porates all non-directional processes such as random variation in survivorship
and random gamete success; see e.g. the textbook by Ewens [63]. Diffusion the-
ory played a central role in the development of the neutral theory of molecular
evolution [64,65]; here, the neutral limit corresponds to c→ 0.

With the expressions for the drift and diffusion term, Eq.(32), one can cal-
culate the fixation probability Pfix,C to end up with only cooperators if starting
with an equal fraction of cooperators and defectors. It is given by [63,65]

Pfix,C =
e−

1
2Nc − e−Nc
1− e−Nc . (33)

The probability for fixation of defectors follows by Pfix,D = 1 − Pfix,C. Within
the fitness-dominated regime (Nc → ∞) defectors fixate (Pfix,D = 1), whereas
for the fluctuation-dominated neutral regime, Nc→ 0, both strategies have the
same chance of prevailing (Pfix,C = Pfix,D = 1

2 )9.
Insight into the maintenance of cooperation by fluctuation versus selection-

dominated evolution is provided by the mean extinction time T (x) of coopera-
tors or defectors, i.e., the average time after which a population that initially
displays coexistence of cooperators and defectors consists only of one species.
Within the above diffusion approximation the mean extinction time, T (x), for
a population which initially contained a fraction x of cooperators, can be cal-
culated employing the backward Kolmogorov equation:[

α(x)
∂

∂x
+

1
2
β(x)

∂2

∂x2

]
T (x) = −1 . (34)

9If, instead of an equal fraction, x = 1
2

, one starts with a fraction x of cooperators the
standard gambler’s ruin problem tells us that in the neutral case the fixation probability
becomes Pfix,C = 1− x; see e.g. chapter 2 of Ref. [66].
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This equation can be solved exactly by iterative integration [34], where, in the
following, we specialize to a case where the initial population is composed of
an equal number of cooperators and defectors, x = 1

2 . A main feature of the
extinction time is that its dependence on population size N and fitness difference
c can be cast into the form of a homogeneity relation

T (N, c) = TeG (N/Ne) , (35)

with a scaling function G. Te(c) and Ne(c) are characteristic time scales and
population sizes depending only on the selection strength c. Analyzing its prop-
erties one finds that G increases linearly in N for small argument N/Ne � 1,
such that T ∼ N , c.f. Fig. 9b. This indicates [67,68] that for small system sizes,
N � Ne, evolution is neutral ; compare the results in the previous section 2.1.
Fluctuations dominate the evolutionary dynamics while the fitness advantage
of defectors does not give them an edge. Indeed as shown above, in this regime,
cooperators and defectors have an equal chance of surviving. For a T ∼ N be-
havior the extinction time considerably grows with increasing population size; a
larger system size proportionally extends the time cooperators and defectors co-
exist. Very different behavior emerges for large system sizes, N/Ne � 1, where
G increases only logarithmically in N , and therefore T ∼ lnN ; compare the re-
sults in the previous section 2.1. Thus, the extinction time remains small even
for large system sizes, and coexistence of cooperators and defectors is unstable.
Indeed, in this regime, selection dominates over fluctuations in the stochastic
time evolution and quickly drives the system to a state where only defectors
remain, c.f. Fig. 9b. The evolution is selection-dominated.

As described above, the regimes of fluctuation and selection dominated evo-
lution emerge for N/Ne � 1 and N/Ne � 1, respectively. The cross-over
population size Ne delineates both scenarios. Further analyzing the universal
scaling function G, as well as comparison with data from stochastic simula-
tions, see Fig.. 9b, reveals that the transition at Ne is notably sharp. One
may therefore refer to it as the edge of neutral evolution. The crossover time
Te and the crossover population size Ne which define the edge of neutral evo-
lution decrease like 1/c in increasing cost c [34]. This can be understood by
recalling that the cost c corresponds to the fitness advantage of defectors and
can thus be viewed as the selection strength. The latter drives the selection-
dominated dynamics which therefore intensifies when c grows, and the regime of
fluctuation-dominated dynamics (neutral evolution) diminishes. On the other
hand, when the cost of cooperation vanishes, evolution becomes neutral also for
large populations. Indeed, in this case, defectors do not have a fitness advantage
compared to cooperators; both do equally well. The stochastic approach now
yields information about how large the cost may be until evolution changes from
neutral to selection-dominated. From numerical inspection of G one finds that
neutral evolution is present for cN < 2.5, and selection-dominated evolution
takes over for cN > 2.5 [34]. This resembles a condition previously derived by
Kimura and others [64, 65] for frequency independent fitness advantages. The
edge of neutral evolution arises at Ne = 2.5/c and Te = 2.5/c.

Though selection pressure clearly disfavors cooperation, these results reveal
that the ubiquitous presence of randomness (stochasticity) in any population
dynamics opens a window of opportunity where cooperation is facilitated. In
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Figure 9: Stochastic dynamics of the prisoner’s dilemma game. (a) Exemplary
evolutionary trajectories. A high selection strength, i.e., a high fitness difference
c = 0.1 (purple), leads to selection-dominated (neo-Darwinian) evolution and
fast extinction of cooperators, while a small one, c = 0.001 (green), allows
for dominant effects of fluctuations and maintenance of cooperation on long
time-scales. We have used N = 1000 in both cases. (b) The dependence of
the corresponding mean extinction time T on the system size N . We show
data from stochastic simulations as well as analytical results (solid lines) for
T , starting from equal abundances of both species, for different values of c
(see text): c1 = 0.1 (♦), c2 = 0.01 (◦), c3 = 0.001 (�), and c4 = 0.0001
(4). The transition from the neutral to the slection-dominated regime occurs
at population sizes N (1)

e , N
(2)
e , N

(3)
e , and N

(4)
e . They scale as 1/c: Ne ≈ 2.5/c,

as is confirmed by the rescaled plot where the data collapse onto the universal
scaling function G, shown in the inset. Adapted from Ref. [34].

the regime of neutral evolution,

cN < 2.5 (36)

cooperators have a significant chance of taking over the whole population when
initially present. Even if not, they remain on time-scales proportional to the
system size, T ∼ N , and therefore considerably longer than in the regime of
selection-dominated evolution, where they extinct after a short transient time,
T ∼ lnN .

2.3 Cyclic three-strategy games

As we have learned in the previous section, the coexistence of competing species
is, due to unavoidable fluctuations, always transient. Here we illustrate this for
yet another example, the cyclic Lotka-Volterra model (rock-scissors-paper game)
introduced in the section on Evolutionary Game Theory 1.2 as a mathematical
description for non-transitive dynamics. Like the original Lotka-Volterra model
the deterministic dynamics of the rock-scissors-paper game yields oscillations
along closed, periodic orbits around a coexistence fixed point. These orbits are
neutrally stable due to the existence of a conserved quantity ρ. Including noise
in such a game it is clear that eventually only one of the three species will
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survive [55,69,70]. However, it is far from obvious which species will most likely
win the contest. Intuitively, one might think, at a first glance, that it pays for
a given strain to have the highest reaction rate and hence strongly dominate
over its competitor. As it turns out, however, the exact opposite strategy is
the best [71]. One finds, what could be called a “law of the weakest”: When
the interactions between the three species are (generically) asymmetric, the
“weakest” species (i.e., the one with the smallest reaction rate) survives at a
probability that tends to one in the limit of a large population size, while the
other two are guaranteed to extinction.

The reason for this unexpected behavior is illustrated in Fig.10, showing a
deterministic orbit and a typical stochastic trajectory. For asymmetric reaction
rates, the fixed point is shifted from the center Z of the phase space (simplex)
towards one of the three edges. All deterministic orbits are changed in the
same way, squeezing in the direction of one edge. In Fig.10 reaction rates
are chosen such that the distance λA to the a-edge of the simplex, where A
would win the contest, is smallest. The important observation here is that
because of simple geometric reasons λA is smallest because the reaction rate kA
is smallest! Intuitively, the absorbing state which is reached from this edge has
the highest probability of being hit, as the distance λ from the deterministic
orbit towards this edge is shortest. Indeed, this behavior can be validated by
stochastic simulations complemented by a scaling argument [71]. One can go
even beyond such a scaling analysis and analytically calculate the probability
distribution of extinction times [72].
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Figure 10: The phase space S3. We show the reactive fixed point F, the cen-
ter Z, as well as a stochastic trajectory (red/light gray). It eventually devi-
ates from the ‘outermost’ deterministic orbit (black) and reaches the absorbing
boundary. λA, λB and λC (blue/dark gray) denote distances of Parameters are
(kA, kB , kC) = (0.2, 0.4, 0.4) and N = 36.

2.4 A general concept for classifying stability

The dependence of the mean extinction time T of competing species on the sys-
tem size N provides a universal and powerful framework to distinguish neutral
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from selection-dominated evolution. Indeed, selection, as a result of some inter-
actions within a finite population, can either stabilize or destabilize a species’
coexistence with others as compared to neutral interactions, thereby altering
the mean time until extinction occurs.

For the selection-dominated regime, instability leads to steady decay of a
species, and therefore to fast extinction [67,68,73]: The mean extinction time T
increases only logarithmically in the population size N , T ∼ lnN , and a larger
system size does not ensure much longer coexistence. This behavior can be un-
derstood by noting that a species disfavored by selection decreases by a constant
rate. Consequently, its population size decays exponentially in time, leading to
a logarithmic dependence of the extinction time on the initial population size.
In contrast, stable existence of a species induces T ∼ expN , such that extinc-
tion takes an astronomically long time for large populations [34,67,68]. In this
regime, extinction stems from large fluctuations that cause sufficient deviation
from the (deterministically) stable coexistence. These large deviations are ex-
ponentially suppressed and hence the time until a rare extinction event occurs
scales exponentially in the system size N . Then coexistence is maintained on
ecologically relevant time-scales which typically lie below T . An intermediate
situation, i.e., when T has a power-law dependence on N , T ∼ Nα, signals dom-
inant influences of stochastic effects and corresponds to neutral evolution. Here
the extinction time grows considerably, though not exponentially, in increasing
population size. Large N therefore clearly prolongs coexistence of species but
can still allow for extinction within biologically reasonable time-scales. A typ-
ical neutral regime, as found above in the prisoner’s dilemma, is characterized
by α = 1, such that T scales linearly in the system size N . There, the dy-
namics yields an essentially unbiased random walk in state space; see Fig. 9a.
The mean-square displacement grows linearly in time, with a diffusion constant
proportional to N . The absorbing boundary is thus reached after a time pro-
portional to the system size N . Summarizing these considerations, we have
proposed a quantitative classification of coexistences stability in the presence of
absorbing states, which is presented in the following Box [73]:

Classification of coexistence stability

Stability: If the mean extinction time T increases faster than any power
of the system size N , meaning T/Nα → ∞ in the asymptotic limit
N → ∞ and for any value of α > 0, we refer to coexistence as stable.
In this situation, typically, T increases exponentially in N .

Instability: If the mean extinction time T increases slower than any
power in the system size N , meaning T/Nα → 0 in the asymptotic limit
N →∞ and for any value of α > 0, we refer to coexistence as unstable.
In this situation, typically, T increases logarithmically in N .

Neutral stability: Neutral stability lies in between stable and unstable
coexistence. It emerges when the mean extinction time T increases
proportional to some power α > 0 of the system size N , meaning
T/Nα → O(1) in the asymptotic limit N →∞.
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The strength of the above classification lies in that it only involves quanti-
ties which are directly measurable (for example through computer simulations),
namely the mean extinction time and the system size. Therefore, it is gen-
erally applicable to stochastic processes, e.g. incorporating additional internal
population structure like individuals age or sex, or where individuals interaction
networks are more complex, such as lattices, scale-free- networks or fractal ones.
In these situation, it is typically impossible to infer analytically, from the dis-
cussion of fixed points stability, whether the deterministic population dynamics
yields a stable or unstable coexistence. However, based on the scaling of extinc-
tion time T with system size N , differentiating stable from unstable diversity
according to the above classification is feasible. In Section 4, we will follow
this line of thought and fruitfully apply the above concept to the investigation
of a rock-paper-scissors game on a two-dimensional lattice, where individuals
mobility is found to mediate between stable and unstable coexistence.
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3 The May-Leonard model

In ecology competition for resources has been classified [74] into two broad
groups, scramble and contest. Contest competition involves direct interaction
between individuals. In the language of evolutionary game theory the winner
in the competition replaces the looser in the population (Moran process). In
contrast, scramble competition involves rapid use of limiting resources without
direct interaction between the competitors.

The May-Leonard model [75] of cyclic dominance between three subpopu-
lations A, B and C dissects the non-transitive competition between these into
a contest and a scramble step. In the contest step an individual of subpopula-
tion A outperforms a B through “killing” (or “consuming”), symbolized by the
(“chemical”) reaction AB → A�, where � denotes an available empty space.
In the same way, B outperforms C, and C beats A in turn, closing the cycle.
We refer to these contest interactions as selection and denote the corresponding
rate by σ. In the scramble step, which mimics a finite carrying capacity, each
member of a subpopulation is allowed to reproduce only if an empty space is
available, as described by the reaction A� → AA and analogously for B and C.
For all subpopulations, these reproduction events occur with rate µ, such that
the three subpopulations equally compete for empty space. To summarize, the
reactions that define the May-Leonard model (selection and reproduction) read

AB
σ−→ A� , A� µ−→ AA ,

BC
σ−→ B� , B� µ−→ BB ,

CA
σ−→ C� , C� µ−→ CC . (37)

Let a, b, c denote the densities of subpopulations A, B, and C, respectively.
The overall density ρ then reads ρ = a+ b+ c. As every lattice site is at most
occupied by one individual, the overall density (as well as densities of each
subpopulation) varies between 0 and 1, i.e. 0 ≤ ρ ≤ 1. With these notations,
the rate equations for the reactions (37) are given by

∂ta = a [µ(1− ρ)− σc] ,
∂tb = b [µ(1− ρ)− σa] ,
∂tc = c [µ(1− ρ)− σb] , (38)

or in short
∂t~a = ~F (~a) . (39)

The goal of this section is to analyze this model with advanced tools from non-
linear dynamics [76]: linear stability analysis, invariant manifolds, and normal
forms. In addition, the analysis will also serve as a necessary prerequisite for
the analysis of spatial games in the subsequent section. This section is mainly
technical and may be skipped in a first reading.

The phase space of the model is organized by fixed point and invariant
manifolds. Equations (38) possess four absorbing fixed points. One of these
(unstable) is associated with the extinction of all subpopulations, (a∗1, b

∗
1, c
∗
1) =

(0, 0, 0). The others are heteroclinic points (i.e. saddle points underlying the
heteroclinic orbits) and correspond to the survival of only one subpopulation,
(a∗2, b

∗
2, c
∗
2) = (1, 0, 0), (a∗3, b

∗
3, c
∗
3) = (0, 1, 0) and (a∗4, b

∗
4, c
∗
4) = (1, 0, 0), shown in

blue (dark gray) in Fig. 11. In addition, there exists a reactive fixed point,
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Figure 11: The phase space of the May-Leonard model. It is spanned by the densities
a, b, and c of species A, B, and C. On an invariant manifold (yellow), the flows
obtained as solutions of the rate equations (38) (an example trajectory is shown in blue)
initially in the vicinity of the reactive fixed point (red) spiral outwards, approaching the
heteroclinic cycle which connects three trivial fixed points (blue). In Subsection 3.2,
we introduce the appropriate coordinates (yA, yB , yC) which reveal the mathematical
structure of the manifold and reflect the cyclic symmetry of the system. Adapated
from Ref. [77].

indicated in red (gray) in Fig. 11, where all three subpopulations coexist (at
equal densities), namely (a∗, b∗, c∗) = µ

3µ+σ (1, 1, 1).
For a non-vanishing selection rate, σ > 0, Leonard and May [75] showed that

the reactive fixed point is unstable, and the system asymptotically approaches
the boundary of the phase space (given by the planes a = 0, b = 0, and c = 0).
There, they observed heteroclinic orbits: the system oscillates between states
where nearly only one subpopulation is present, with rapidly increasing cycle
duration. While mathematically fascinating, this behavior was recognized to
be unrealistic [75]. For instance, as discussed in section 2, the system will, due
to finite-size fluctuations, always reach one of the absorbing fixed points in the
vicinity of the heteroclinic orbit, and then only one population survives.

3.1 Linear stability analysis: Jordan normal form

Our goal here is to study the nonlinear dynamics close to the coexistence (reac-
tive) fixed point ~a∗. We would like to know its stability and the typical behavior
of a trajectory in its vicinity. To this end we introduce a shifted reference frame
by defining a displacement vector

~x = ~a− ~a∗ = (a− a∗, b− b∗, c− c∗)T . (40)

Then
∂t~x = ~F (~x+ ~a) = DF |~a∗ ~x+ ~G(~x) (41)
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where A ≡ DF |~a∗ is the Jacobian of ~F at the reactive fixed point ~a∗, and ~G(~x)
is the remaining nonlinear part of ~F (~x+~a). From the structure of ~F , we know
that ~G is quadartic in xA, xB , and xC . Explicitly one finds

A = − µ

3µ+ σ

 µ µ µ+ σ
µ+ σ µ µ
µ µ+ σ µ

 . (42)

and

~G =

µxA(xA + xB) + xAxC(µ+ σ)
µxB(xB + xC) + xBxA(µ+ σ)
µxC(xC + xA) + xCxB(µ+ σ)

 . (43)

As the matrix A is circulant, its eigenvalues can be obtained from a particularly
simple general formula (see e.g. [10]); they read:

λ0 = −µ ,
λ± = c1 ± iω (44)

with

c1 =
1
2

µσ

3µ+ σ
,

ω =
√

3
2

µσ

3µ+ σ
. (45)

and corresponding (complex) eigenvectors ξ0, and ξ±; note that ξ0 = 1
3 (1, 1, 1)T

is easy to guess. From the sign of the eigenvalues we can read off that the reactive
fixed point is linearly stable along the eigendirection of the first eigenvalue
λ0. As elaborated below, there exists an invariant manifold [76] (including the
reactive fixed point), that the system quickly approaches. To first order such
a manifold is the plane normal to the eigendirection of λ0. On this invariant
manifold, flows spiral away from the reactive fixed point, which is an unstable
spiral, as sketched in Fig. 11 (blue trajectory). 10

To complete the linear stability analysis, it is useful to transform to Jordan
normal form by introducing suitable coordinates (yA, yB , yC) originating in the
reactive fixed point. We choose the yC-axis to coincide with the eigenvector of
λ0, and the coordinates yA and yB to span the plane normal to the axis yC ,
forming an orthogonal set. The coordinates (yA, yB , yC) are shown in Fig. 11.

10The linear stability analysis only reveals the local stability of the fixed points. The
global instability of the reactive fixed point is proven by the existence of a Lyapunov function
L [10, 75]:

L =
abc

ρ3
. (46)

In fact, using Eqs. (38), the time derivative of L is found to be always non-positive,

∂tL = −1

2
σρ−4abc

ˆ
(a− b)2 + (b− c)2 + (c− a)2

˜
≤ 0 . (47)

We note that ∂tL vanishes only at the boundaries (a = 0, b = 0 or c = 0) and along the
line of equal densities, a = b = c. The latter coincides with the eigendirection of λ0, along
which the system approaches the reactive fixed point. However, on the invariant manifold we
recover ∂tL < 0, corresponding to a globally unstable reactive fixed point, as exemplified by
the trajectory shown in Fig. 11.
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Such coordinates ~y = (yA, yB , yC) are, e.g., obtained by the linear transforma-
tion ~y = S~x, with the matrix S given by

S =
1
3

√3 0 −
√

3
−1 2 −1
1 1 1

 . (48)

To linear order this gives
∂t~y = J~y (49)

with

J = SAS−1 =

 c1 ω 0
−ω c1 0
0 0 −µ

 . (50)

With these results we may now rewrite the dynamics in the reference frame of
the Jordan normal form which is the optimized frame for the linear stability
analysis:

∂t~y = J~y + S ~G(S−1~y) ≡ J~y + ~H(~y) , (51)

where one finds (with a straightforward calculation)

~H(~y) =


√

3
4 σ
[
y2
A − y2

B

]
− σ

2 yAyB − 1
2yC

[
(6µ+ σ)yA −

√
3σyB

]
−σ4
[
y2
A − y2

B

]
−
√

3
2 σyAyB − 1

2yC
[√

3σyA + (6µ+ σ)yB
]

−(3µ+ σ)y2
C + σ

4

[
y2
A + y2

B

]
 . (52)

As the rate equations, Eq.(38), have one real eigenvalue smaller than zero and
a pair of complex conjugate eigenvalues, they fall into the class of the Poincaré-
Andronov-Hopf bifurcation, well known in the mathematical literature [76]. The
theory of invariant and center manifolds allows us to recast these equations into
a normal form. The latter, as discussed in the next section, will turn out to
be instrumental in the derivation of the complex Ginzburg-Landau equation
(CGLE).

3.2 Invariant manifold

An invariant manifold is a subspace, embedded in the phase space, which is left
invariant by the deterministic dynamics, Eq.(38). In phase space, this means
that flows starting on an invariant manifold always lie and evolve on it. Here, we
consider a two-dimensional invariant manifold M associated with the reactive
fixed point of the rate equations, Eq.(38), onto which all trajectories (initially
away from the invariant manifold) decay exponentially quickly. We call this
manifold M the reactive manifold. Upon restricting the dynamics to that reac-
tive invariant manifold, the system’s degrees of freedom are reduced from three
to two, which greatly simplifies the mathematical analysis.

To determine this invariant manifold, we notice that the eigenvector of the
eigenvalue λ0 < 0 at the reactive fixed point is a stable (attractive) direction.
Therefore, to lowest order around the reactive fixed point, the invariant manifold
is simply the plane normal to the eigendirection of λ0. To parameterize the
invariant manifold sketched in Fig. 11, we seek a function M(yA, yB), with
yC = M(yA, yB). If all nonlinearities of the rate equations, Eq.(38), are taken
into account, this is a very complicated problem. However, for our purpose it is
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sufficient to expand M to second order in yA, yB . As the invariant manifold is
left invariant by the dynamics, by definition, M must obey

∂tM
(
yA(t), yB(t)

)
=
∂M

∂yA
∂tyA +

∂M

∂yB
∂tyB = ∂tyC

∣∣∣
yC=M

. (53)

To linear order in yA and yB , we simply have M = 0 and recover yC = 0,
corresponding to the plane normal to the yC-direction. We have anticipated
this result above: to first order, the invariant manifold coincides with this plane,
and is tangential to it when higher orders are included. To second order, only
linear terms of ∂tyA, ∂tyB contribute to Eq. (53). The latter are invariant under
rotations in the (yA, yB)-plane, and M must obey the same symmetry. It is
therefore proportional to y2

A + y2
B . After some simple calculations, one obtains:

yC = M(yA, yB) =
σ

4µ
3µ+ σ

3µ+ 2σ
(y2
A + y2

B) + o(~y2) . (54)

The comparison of this expression for the invariant manifold, valid to second
order, with the numerical solutions of the rate equations, Eq.(38), (which should,
up to an initial transient, lie on the invariant manifold) confirms that Eq.(54)
is an accurate approximation, with only minor deviations occurring near the
boundaries of the phase space.

3.3 Normal form: the simplest nonlinear dynamics

Nonlinear systems are notably characterized by the bifurcations that they ex-
hibit [76]. Normal forms are defined as the simplest differential equations that
capture the essential features of a system near a bifurcation point, and there-
fore provide insight into the system’s universal behavior. Here, we derive the
normal form associated with the rate equations, Eq.(38), of the May-Leonard
model and show that they belong to the universality class of the Hopf bifur-
cation [76]. Below, we demonstrate that this property allows to describe the
system in terms of a well-defined complex Ginzburg-Landau equation.

Restricting the (deterministic) dynamics onto the invariant manifold, given
by Eq. (54), the system’s behavior can be analyzed in terms of two variables.
Here, we choose to express yC as a function of yA and yB , with the resulting
rate equations (up to cubic oder) given up to third order by:

∂tyA =
µσ

2(3µ+ σ)
[
yA +

√
3yB

]
+
√

3
4
σ
[
y2
A − y2

B

]
− σ

2
yAyB

− σ(3µ+ σ)
8µ(3µ+ 2σ)

(
y2
A + y2

B

)[
(6µ+ σ)yA −

√
3σyB

]
+ o(y3) ,

∂tyB =
µσ

2(3µ+ σ)
[
yB −

√
3yA

]
− σ

4
[
y2
A − y2

B

]
−
√

3
2
σyAyB

− σ(3µ+ σ)
8µ(3µ+ 2σ

(
y2
A + y2

B

)[√
3σyA + (6µ+ σ)yB

]
+ o(y3) . (55)

This set of nonlinear equations can be cast into a normal form (see [76] Chapter
2.2) by performing a nonlinear variable transformation ~y → ~z which eliminates
the quadratic terms and preserves the linear ones (i.e. ~y and ~z coincide to linear
order). As an Ansatz for such a transformation, we choose the most general
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quadratic expression in ~y for the new variable ~z.11 One finds for the normal
form of the rate equations in the new variables:

∂tzA = c1zA + ωzB − c2
(
zA + c3zB

)
(z2
A + z2

B) + o(z3) ,

∂tzB = c1zB − ωzA − c2
(
zB − c3zA

)
(z2
A + z2

B) + o(z3) . (58)

In these equations,

ω =
√

3
2

µσ

3µ+ σ
, (59)

is the (linear) frequency of oscillations around the reactive fixed point. The
constant

c1 =
1
2

µσ

3µ+ σ
, (60)

gives the intensity of the linear drift away from the fixed point, while

c2 =
σ(3µ+ σ)(48µ+ 11σ)

56µ(3µ+ 2σ)
, (61)

c3 =
√

3(18µ+ 5σ)
48µ+ 11σ

, (62)

are the coefficients of the cubic corrections. In complex notation, z = zA + izB ,
we have

∂tz = (c1 − iω)z − c2
(
1 + ic3

)
| z |2 z . (63)

To gain some insight into the dynamics in the normal form, it is useful to
rewrite Eq.(58) in polar coordinates (r, φ), where zA = r cosφ, zB = r sinφ.
This leads to

∂tr = r[c1 − c2r2] ,

∂tθ = −ω + c2c3r
2 . (64)

These equations only have a radial dependence, which clearly reveals a polar
symmetry. They predict the emergence of a limit cycle of radius r =

√
c1/c2 and

therefore fall into the universality class of the (supercritical) Hopf bifurcation. It
can be shown that an asymmetry in the reaction rates, note taken into account in

11The equations of motion, Eq.(55), comprise quadratic and cubic terms. To recast them
in their normal form, we seek a transformation allowing to eliminate the quadratic terms.
We make the Ansatz of a quadratic transformation ~y → ~z and determine the coefficients by
cancelling the quadratic contributions to the RE in the ~z variables, this leads to

zA = yA +
3µ+ σ

28µ
[
√

3y2
A + 10yAyB −

√
3y2

B ] ,

zB = yB +
3µ+ σ

28µ
[5y2

A − 2
√

3yAyB − 5y2
B ] . (56)

To second order, this nonlinear transformation can be inverted:

yA = zA −
3µ+ σ

28µ
[
√

3z2
A + 10zAzB −

√
3z2

B ] +
(3µ+ σ)2

14µ2
[z3

A + zAz
2
B ] + o(z3) ,

yB = zB −
3µ+ σ

28µ
[5z2

A − 2
√

3zAzB − 5z2
B ] +

(3µ+ σ)2

14µ2
[z2

AzB + z3
B ] + o(z3) . (57)

With these expressions, one can check that equations of motion, Eq.(55), are recast in the
normal form, Eq.(58).
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the above analysis, leads to the same type of dynamics, merely with renormalized
parameters [78].

We close with a final remark on the approximate nonlinear dynamics ob-
tained from the construction of a second order normal form. We know from
the original analysis by Leonard and May that when all nonlinearities are taken
into account, the rate equations, Eq.(38), give rise to heteroclinic orbits instead
of limit cycles. The heteroclinic orbits rapidly approach the boundaries of the
phase space, and thus are in general well separated from the limit cycles pre-
dicted by (64). Surprisingly, however, one finds for the spatial system, discussed
in the next section, that an analytical approach employing the above complex
Ginzburg Landau equation gives results which nicely agree with agent-based
stochastic lattice simulations. As it turns out, the reason for this surprising
agreement is that the interplay between noise and spatial degrees of freedom
leads to an effective space-induced “stochastic limit” cycle [72].

32



4 Spatial games with cyclic dominance

Spatial distribution of individuals, as well as their mobility, are common features
of real ecosystems that often come paired [79]. On all scales of living organisms,
from bacteria residing in soil or on Petri dishes, to the largest animals living
in savannas - like elephants - or in forests, populations’ habitats are spatially
extended and individuals interact locally within their neighborhood. Field stud-
ies as well as experimental and theoretical investigations have shown that the
locality of the interactions leads to the self-formation of complex spatial pat-
terns [1, 79–93]. Another important property of most individuals is mobility.
For example, bacteria swim and tumble, and animals migrate. As motile in-
dividuals are capable of enlarging their district of residence, mobility may be
viewed as a mixing, or stirring mechanism which “counteracts” the locality of
spatial interactions.

The role of mobility in ecosystems

The interplay between mobility and spatial separation on the spatio-temporal
development of populations is one of the most interesting and complex prob-
lems in theoretical ecology [73, 79–81, 84, 86]. If mobility is low, locally inter-
acting populations can exhibit involved spatio-temporal patterns 12, like trav-
eling waves [102], and for example lead to the self-organization of individuals
into spirals in myxobacteria aggregation [102] and insect host-parasitoid pop-
ulations [83]. See also the discussion in section 1.4. In contrast, high mobility
results in well-mixed systems where the spatial distribution of the populations
is irrelevant [73]. In this situation, spatial patterns do no longer form: The
system adopts a spatially uniform state, which therefore drastically differs from
the low-mobility scenario.

Pioneering work on the role of mobility in ecosystems was performed by
Levin [103], who investigated the dynamics of a population residing in two cou-
pled patches: Within a deterministic description, he identified a critical value
for the individuals’ mobility between the patches. Below the critical thresh-
old, all subpopulations coexisted, while only one remained above that value.
Later, more realistic models of many patches, partly spatially arranged, were
also studied; see e.g. Refs. [83–85, 104] as well as references therein. These
works shed light on the formation of patterns, in particular traveling waves and
spirals. However, patch models have been criticized for treating the space in
an “implicit” manner (i.e. in the form of coupled habitats without internal
structure) [25]. In addition, the above investigations were often restricted to
deterministic dynamics and thus did not address the spatio-temporal influence
of noise. To overcome these limitations, Durrett and Levin [24] proposed to
consider interacting particle systems, i.e. stochastic spatial models with popu-
lations of discrete individuals distributed on lattices. In this realm, studies have
mainly focused on numerical simulations and on (often heuristic) deterministic
reaction-diffusion equations, or coupled maps [24–26,86,91,105–108].

12The emergence of spatio-temporal noisy patterns is a feature shared across disciplines
by many complex systems characterized by their out-of-equilibrium nature and nonlinear
interactions. Examples range from the celebrated Belousov-Zhabotinsky reaction [94] (spi-
ralling patterns) and many other chemical reactions [95], to epidemic outbreaks (traveling
waves) [96,97], excitable media [95,98], and calcium signalling within single cells [99–101].
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Cyclic dominance in ecosystems

An intriguing motif of the complex competitions in a population, promoting
species diversity, is constituted by three subpopulations exhibiting cyclic domi-
nance, also called non-transitive competition. This basic motif is metaphorically
described by the rock-paper-scissors game, where rock crushes scissors, scissors
cut paper, and paper wraps rock. Such non-hierarchical, cyclic competitions,
where each species outperforms another, but is also itself outperformed by a
remaining one, have been identified in different ecosystems like coral reef in-
vertebrates [109], rodents in the high-Arctic tundra in Greenland [110], lizards
in the inner Coast Range of California [111] and microbial populations of col-
icinogenic E. coli [1, 112]. As we have discussed in section 1.4, in the latter
situation it has been shown that spatial arrangement of quasi-immobile bacte-
ria on a Petri-dish leads to the stable coexistence of all three competing bacterial
strains, with the formation of irregular patterns. In stark contrast, when the
system is well-mixed, there is spatial homogeneity resulting in the take over of
one subpopulation and the extinction of the others after a short transient.

4.1 The spatially-extended May-Leonard model

In this chapter we analyze the stochastic spatially-extended version of the May-
Leonard model [73], as illustrated in Fig. 12 This is supposed to mimic the
generic features found in ecosystems with species forming non-transitive inter-
action networks. We adopt an interacting particle description where individuals
of all subpopulations are arranged on a lattice. Let L denote the linear size of a
2-dimensional square lattice (i.e. the number of sites along one edge), such that
the total number of sites reads N = L2. In this approach, each site of the grid
is either occupied by one individual or empty, meaning that the system has a
finite carrying capacity, and the reactions are then only allowed between nearest
neighbors.

Selection, rate σ: Reproduction, rate µ:

A B

C

Figure 12: Individuals on neighboring sites may react with each other according
to the rules of cyclic dominance (selection; contest competition), or individuals
may give birth to new individuals if they happen to be next to an empty site
(reproduction; scramble competition).

In addition, we endow the individuals with a certain form of mobility. Namely,
at rate ε all individuals can exchange their position with a nearest neighbor.
With that same rate ε, any individual can also hop on a neighboring empty
site. These “microscopic” exchange processes lead to an effective diffusion of
the individuals described by a macroscopic diffusion constant D = ε/2L2.
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The goal of this chapter is to analyze the spatio-temporal dynamics at
asymptotically long time scales as a function of the hopping and reaction rates.
We will learn that the mobility of the individuals, characterized in terms of their
diffusion constant, has a critical influence on species diversity. When mobility
exceeds a certain threshold value, biodiversity is jeopardized and lost [73]. In
contrast, below this critical threshold all subpopulations coexist and the spa-
tial stochastic model of cyclically interacting subpopulations self-organizes into
regular, geometric spiral waves [77,113]. The latter become visible on the scale
of a large number of interacting individuals, see Fig. 13 (right). In contrast,
stochastic effects solely dominate on the scale of a few individuals, see Fig. 13
(left), which interact locally with their nearest neighbors. Spatial separation of
subpopulations starts to form on an intermediate scale, Fig. 13 (middle), where
mobility leads to fuzzy domain boundaries, with major contributions of noise.
On a larger scale, Fig. 13 (right), these fuzzy patterns adopt regular geometric
shapes. As shown below, the latter are jointly determined by the deterministic
dynamics and intrinsic stochastic effects.

Figure 13: The stochastic spatial system at different scales. Here, each of the
colors yellow, red, and blue (level of gray) represents one species, and black
dots identify empty spots. Left: Individuals are arranged on a spatial lattice
and randomly interact with their nearest neighbors. Middle: At the scale of
about 1,000 individuals, stochastic effects dominate the system’s appearance,
although domains dominated by different subpopulations can already be de-
tected. Right: About 50,000 mobile interacting individuals self-organize into
surprisingly regular spiral waves. Figure adapted from Ref. [77].

In the following, we elucidate this subtle interplay between noise and space
by mapping - in the continuum limit - the stochastic spatial dynamics onto a set
of stochastic partial differential equations (SPDE) and, using tools of dynamical
systems (such as normal forms and invariant manifolds), by recasting the under-
lying deterministic kinetics in the form of a complex Ginzburg-Landau equation
(CGLE). We have detailed these tools in the previous section. A remarkable
finding will be that the CGLE enables one to make analytical predictions for the
spreading velocity and wavelength of the emerging spirals waves which quanti-
tatively agree with the numerical findings.
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4.2 Simulation results for the lattice gas model

We start with a description of the results obtained from stochastic simulations
of the lattice gas model [73]. For simplicity, we consider equal reaction rates for
selection and reproduction, and, without loss of generality, set the time-unit by
fixing σ = µ ≡ 1. From the phase portrait of the May-Leonard model it is to be
expected that an asymmetry in the parameters yields only qualitative but not
quantitative changes in the system’s dynamics. The length scale is chosen such
that the linear dimension of the lattice is the basic length unit, L ≡ 1. With
this choice of units the diffusion constant measures the fraction of the entire
lattice area explored by an individual in one unit of time.

Typical snapshots of the steady states are shown in Fig. 14 13. When the
mobility of the individuals is low, one finds that all species coexist and self-
arrange by forming patterns of moving spirals. Increasing the mobility D, these
structures grow in size, and disappear for large enough D. In the absence of
spirals, the system adopts a uniform state where only one species is present,
while the others have died out. Which species remains is subject to a random
process, all species having equal chances to survive in the symmetric model
defined above.

           D3 x 10 3 x 10 3 x 10- 6 - 5 - 4           D           c

Figure 14: Snapshots obtained from lattice simulations are shown of typical
states of the system after long temporal development (i.e. at time t ∼ N) and
for different values of D (each color, blue, yellow and red, represents one of the
species and black dots indicate empty spots). Increasing D (from left to right),
the spiral structures grow, and outgrow the system size at the critical mobility
Dc: then, coexistence of all three species is lost and uniform populations remain
(right). Figure adapted from Ref. [73].

The transition from the reactive state containing spirals to the absorb-
ing state with only one subpopulation left is a non-equilibrium phase transi-
tion [113]. One way to characterize the transition is to ask how the extinction
time T , i.e. the time for the system to reach one of its absorbing states, scales
with system size N . In our analysis of the role of stochasticity in section 2 we

13You may also want to have a look at the movies posted on http://www.theorie.

physik.uni-muenchen.de/lsfrey/research/fields/biological_physics/2007_004/. There
is also a Wolfram demonstration project which can be downloaded from the web: http:

//demonstrations.wolfram.com/BiodiversityInSpatialRockPaperScissorsGames/.
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have found the following classification scheme. If T ∼ N , the stability of coexis-
tence is marginal. Conversely, longer (shorter) waiting times scaling with higher
(lower) powers of N indicate stable (unstable) coexistence. These three scenar-
ios can be distinguished by computing the probability Pext that two species have
gone extinct after a waiting time t ∼ N :

Pext = Prob [only one species left after time T ∼ N ] . (65)

In Fig. 15, the dependence of Pext on the mobility D is shown for a range of
different system sizes, N . Increasing the system size, a sharpened transition

0

0.2

0.4

0.6

0.8

1.0

1 x 10 -5 1 x 10 -4 1 x 10 -3Dc

Ex
tin

ct
io

n 
pr

ob
ab

ili
ty

Biodiversity

Uniformity

Figure 15: The extinction probability Pext that, starting with randomly dis-
tributed individuals on a square lattice, the system has reached an absorbing
state after a waiting time T ∼ N . Pext is shown as function of the mobility D
(and σ = µ = 1) for different system sizes: N = 20 × 20 (green), N = 30 × 30
(red), N = 40× 40 (purple), N = 100× 100 (blue), and N = 200× 200 (black).
As the system size increases, the transition from stable coexistence (Pext = 0)
to extinction (Pext = 1) sharpens at a critical mobility Dc ≈ (4.5± 0.5)× 10−4.
Figure adapted from Ref. [73].

emerges at a critical value Dc = (4.5 ± 0.5) × 10−4. Below Dc, the extinction
probability Pext tends to zero as the system size increases, and coexistence is
stable in the sense defined in section 2. In contrast, above the critical mobility,
the extinction probability approaches one for large system size, and coexistence
is unstable. As a central result, the agent-based simulations show that there is
a critical threshold value for the individuals’ diffusion constant, Dc, such that a
low mobility, D < Dc, guarantees coexistence of all three species, while a high
mobility, D > Dc, induces extinction of two of them, leaving a uniform state
with only one species [73].

4.3 Reaction-diffusion equations

Before embarking into the endeavor of fully analyzing the non-equilibrium dy-
namics let us disregard for the moment the effect of noise and consider the
deterministic spatial dynamics. We consider a continuum limit where the linear
dimension of the lattice is chosen as the basic length unit, L ≡ 1, and hence the
lattice constant becomes a = 1/L. Then the ensuing diffusion-reaction equa-
tions for the density vector ~a(~r, t) = (a(~r, t), b(~r, t), c(~r, t)) are given by a set of
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partial differential equations (PDE)

∂t~a(~r, t) = D∇2~a+ ~F (~a) (66)

with the macroscopic diffusion constant

D =
ε

2N
. (67)

We are interested in the limit N → ∞ and want the macroscopic diffusion
constant D to be finite in that limit. This implies that the rate ε becomes large
compared to the selection and reproduction rates, µ and σ, and thus - in the
lattice model - a large number of hopping and exchange events occurs between
two reactions.

These (deterministic) reaction-diffusion equations can be solved numerically.
Fig. 16d shows the outcome of such a simulation starting from a inhomogeneous
initial condition (and using periodic boundary conditions) [73]. One realizes
that ignoring noise in the equation of motion gives also rise to spiral patterns.
They share the same wavelength and frequency with those of the agent-based
simulations, but, their overall size and number depend on the initial conditions
and can deviate significantly from their stochastic counterparts.

a) Typical spiral b) Agent based c) SPDE d) PDE

λ

ω

Figure 16: Spiral patterns. a) Schematic drawing of a spiral with wavelength
λ. It rotates around the origin at a frequency ω. b) Agent-based simulations
for D < Dc, when all three species coexist, show entangled, rotating spirals. c)
Stochastic partial differential equations, discussed in section 4.4, show similar
patterns as agent-based simulations. d) Spiral pattern emerging from the dy-
namics of the deterministic diffusion reaction equation starting from a spatially
inhomogeneous initial state. Parameters are σ = µ = 1 and D = 1 × 10−5.
Figure adapted from Ref. [73].

Significant theoretical progress can now be made upon employing the re-
sults of the nonlinear dynamics in section 3. Projecting the diffusion-reaction
equation, Eq.(66), onto the reactive manifold M one obtains [73,77,113]:

∂tz = D∇2z + (c1 − iω)z − c2(1 + ic3)|z|2z . (68)

Here, we recognize the celebrated complex Ginzburg-Landau equation (CGLE),
whose properties have been extensively studied in the past [114,115]. In partic-
ular, it is known that in two dimensions the latter gives rise to a broad range
of coherent structures, including spiral waves whose velocity, wavelength and
frequency can be computed analytically.
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The linear spreading velocity

In the stochastic simulations we have seen that in the long-time regime the sys-
tem exhibits traveling waves. In the steady state, regions with nearly only A
individuals are invaded by a front of C individuals, which is taken over by B
in turn, and so on. This can be understood as a front propagation phenomenon
into an unstable state as follows. The complex Ginzburg-Landau equation has
an unstable fixed point at the reactive center, z = 0. Hence any small pertur-
bation will grow and lead to a spreading pulse whose form is determined by the
nonlinearities in the equation. Its velocity, however, can already be calculated
by analyzing the linearized equations; for a recent review on the theory of front
propagation into unstable states see Ref. [116].

The CGLE (68) linearized around the coexistence state z = 0 reads

∂tz(~r, t) = D∆z(~r, t) + (c1 − iω)z(~r, t) . (69)

We perform a Fourier transformation

z̃(~k, t) =
∫ ∞
−∞

d~r z(~r, t)e−i~k·~r , (70)

and make the ansatz z̃(~k, t) = z̄(~k) e−iΩ(~k)t for each Fourier mode. The lin-
earized CGLE then give the following dispersion relation

Ω(k) = ω + i(c1 −Dk2) , (71)

where k = |~k|. As Im Ω(k) > 0 for k2 < c1/D, the state z = 0 is linearly unsta-
ble in this range of wavevectors k. This confirms the analysis of the spatially
homogeneous nonlinear dynamics, Eq. (38), where we already found that the
coexistence fixed point is unstable. As for other systems characterized by fronts
propagating into unstable states [116], from Eq. (69) one can now compute the
linear spreading velocity, i.e. the speed v∗ at which fronts propagate. For com-
pleteness, we repeat the classical treatment which can, e.g., be found in [116].
A Fourier back-transform of the above results gives

z(~x, t) =
∫

d2k

(2π)2
z̄(~k) ei~k·~x−iΩ(~k)t . (72)

Say the front is propagating with a speed ~v∗ = v∗êx in the x-direction. Then in
the co-moving frame, ~ξ = ~x− ~v∗t, this velocity is determined (self-consistently)
such that the ensuing expression of the pulse form does neither grow nor decay

z(~ξ, t) =
∫

d2k

(2π)2
z̄(~k) ei~k·~ξ−i[Ω(~k)−~v∗·~k]t . (73)

For large times, t → ∞, the integral may be performed by a saddle-point ex-
pansion with the saddle k∗ determined by

d[Ω(k)− v∗k]
dk

|k∗= 0 ⇒ v∗ =
dΩ(k)
dk

|k∗ (74)

and the integral given to leading order by z(~ξ, t) ∝ ei~k·~ξ−i[Ω(k∗)−~v∗·~k]t. In order
for this to neither grow or decay we must have

Im Ω(k∗)− v∗Im k∗ = 0 ⇒ v∗ =
Im Ω(k∗)

Im k∗
. (75)
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Hence the linear spreading velocity is obtained by determining a wavevector k∗
according to

dΩ(k)
dk

∣∣∣∣
k∗

=
Im Ω(k∗)

Im k∗
≡ v∗ . (76)

The first equality singles out k∗ and the second defines the linear spreading
velocity v∗. Here, one finds Re k∗ = 0, Im k∗ =

√
c1/D, and hence

v∗ = 2
√
c1D = 2

√
D

√
1
2

µσ

3µ+ σ
. (77)

Wavelength and frequency

To determine analytically the wavelength λ and the frequency Ω of the spiral
waves, the (cubic) nonlinear terms of the CGLE, Eq. (68), have to be taken into
account. From the understanding gained in the previous sections, we make a
traveling-wave ansatz z(~r, t) = Ze−iΩt−i

~k·~r leading to the following dispersion
relation (with k = |~k|)

Ω(k) = ω + i(c1 −Dk2)− c2(i+ c3)Z2 . (78)

Separating real and imaginary parts, we can solve for Z, resulting in Z2 =
(c1 − Dk2)/c2. As already found above, the range of wavevectors that yield
traveling wave solutions is therefore given by k <

√
c1/D. The dispersion

relation can, upon eliminating Z, be rewritten as

Ω(k) = ω + c3(Dk2 − c1) , (79)

comprising of two contributions. First, there is ω, acting as a “background fre-
quency”, which stems from the nonlinear nature of the dynamics and is already
accounted by (38) when the system is spatially homogeneous. The second term
in Eq. (79) is due to the spatially-extended character of the model and to the
fact that traveling fronts propagate with velocity v∗, therefore generating oscil-
lations with a frequency of v∗k. Both contributions superpose and, to sustain
a velocity v∗, the dynamics selects a wavenumber ksel according to the relation
Ω(ksel) = ω + v∗ksel [116]. Solving this equation for ksel under the restriction
ksel <

√
c1/D yields

ksel =
√
c1

c3
√
D

(
1−

√
1 + c23

)
. (80)

Analytical expressions of the frequency Ω(ksel) and of the wavelength of the
spirals, λ = 2π/ksel, can be obtained immediately from Eq. (79) and Eq. (80).
In fact, the frequency reads

Ω = Ω(qsel) = ω +
2c1
c3

(
1−

√
1 + c23

)
, (81)

and the wavelength is given by

λ =
2πc3
√
D

√
c1
(
1−

√
1 + c23

) . (82)
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The expressions Eqs.(80-82) have been derived by considering a traveling
wave ansatz as described above. The latter hold in arbitrary dimensions. How-
ever, while traveling waves appear in one dimensions, in higher dimensions, the
generic emerging structures are somewhat different. For instance, rotating spi-
rals arise in two dimensions, while scroll waves are robust solutions of the CGLE
(68) in three spatial dimensions [115]. However, the characteristic properties of
these patterns, such as wavelength and frequency, still agree with those of trav-
eling waves. As will be shown in the next section, the results for the spreading
velocity and the wavelength actually remain valid even in the presence of noise!

4.4 The role of noise

There is noise due to the stochastic nature of all processes and the discrete
character of the individuals. It plays an important role for the system’s dynam-
ics. In particular it is responsible for the non-equilibrium phase transition from
the reactive state into one of the absorbing states. How one has to deal with
noise depends on the expected stationary state. If the stationary state contains
many individuals of each species (a macroscopic number) one may perform a
Kramers-Moyal expansion (low noise limit) [58,59]. If, however, the stationary
state is some kind of absorbing state where all fluctuations have died out, a dif-
ferent approach is called for. Then one has to employ a Fock space formulation
to map the dynamics of the master equation to a path integral measure with an
appropriate action [117,118]. From this action one may then derive a Langevin
equation for a set of complex density fields whose averages and correlation func-
tions characterize the dynamics towards the absorbing state (strong noise limit).
Though both of these approaches look superficially the same, they are funda-
mentally different. In a low-noise approximation the noise always turns out to
be real but it becomes a complex (imaginary) quantity in the strong noise limit!

Stochastic partial differential equations

As we have learned from the agent-based simulation the abundances of each
species are finite, i.e. there are high copy numbers for each species, unless one
is in the immediate vicinity of the threshold value for the diffusion constant.
Hence, to analyze the dynamics in the parameter regime where one finds bio-
diversity, we can restrict ourselves to the behavior of the system close to the
reactive state and use a low noise approximation. The Kramers-Moyal expansion
of the underlying master equation leading to a Fokker-Planck equation is de-
tailed in appendix A. Here, we give the equivalent set of Ito stochastic (partial)
differential equations (SPDE) (often referred to as Langevin equations) [113]:

∂ta(~r, t) = D∆a(~r, t) +AA[~a] + CA[~a]ξA ,
∂tb(~r, t) = D∆b(~r, t) +AB [~a] + CB [~a]ξB ,
∂tc(~r, t) = D∆c(~r, t) +AC [~a] + CC [~a]ξC , (83)

or in short
∂t~a(~r, t) = D∆~a(~r, t) +A[~a] + C[~a] · ~ξ (84)

where ∆ denotes the Laplacian operator. The reaction term A[~a] derived in the
Kramers-Moyal expansion is identical - as it must - to the corresponding non-
linear drift term in the diffusion-reaction equation, ~F [~a] = A[~a]. Noise arises
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because processes are stochastic and population size N is finite. As it turns
out (see appendix A), while noise resulting from the competition processes (re-
actions) scales as 1/

√
N , noise originating from hopping (diffusion) only scales

as 1/N . In summary, this gives (multiplicative) Gaussian white noise ξi(~r, t)
characterized by the correlation matrix

〈ξi(~r, t)ξj(~r′, t′)〉 = δijδ(~r − ~r′)δ(t− t′) (85)

and amplitudes14 depending on the system’s configuration:

CA =
1√
N

√
a(~r, t)

[
µ(1− ρ(~r, t)) + σc(~r, t)

]
,

CB =
1√
N

√
b(~r, t)

[
µ(1− ρ(~r, t)) + σa(~r, t)

]
,

CC =
1√
N

√
c(~r, t)

[
µ(1− ρ(~r, t)) + σb(~r, t)

]
. (86)

The comparison of snapshots obtained from lattice simulations with the
numerical solutions of the SPDE reveals a remarkable coincidence of both ap-
proaches (see Fig. 17). Of course, due to the inherent stochastic nature of the

D = 1× 10−6 D = 3× 10−6 D = 1× 10−5 D = 3× 10−5 D = 3× 10−4
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Figure 17: The reactive steady states. Snapshots emerging from simulations
of the interacting particle system (37) (top row) and obtained by solving the
SPDE (83) (bottom row). Each color (level of gray) represents a different species
(black dots denote empty spots). From left to right, the diffusion constant is
increased from D = 1×10−6 to D = 3×10−4. The latter value is slightly below
the critical threshold Dc. The system sizes used in the stochastic simulations
are L = 1000 in the upper two panels, L = 300 for that at bottom, and L = 500
for the other two (middle). The rates are chosen as σ = µ = 1. Figure adapted
from Ref. [77]

interacting particle system, the snapshots do not match exactly for each real-
ization. To reach a quantitative assessment on the validity of the SPDE (83) to
describe the spatio-temporal properties of the system in the continuum limit,
a closer look at correlation functions in the steady state is necessary [77, 113].
Equal-time correlation functions yield information about the size of the emerg-

14These amplitudes are related to the noise matrix B in the corresponding Fokker-Planck
equations by CCT = B.
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Figure 18: Correlation functions. The spatial, gAA(r), and temporal, gAA(t),
correlation functions are shown as function of r and t, respectively. Re-
sults obtained from stochastic simulations (red circles), numerical solutions of
the Langevin equations (SPDE), Eq. (83), (blue squares), and deterministic
reaction-diffusion equations (PDE), Eq. (66), (green triangles) are compared
for µ = σ = 1. Spatial correlations (left): The spatial correlations decay on a
length proportional to

√
D; in the graph D = 3× 10−6 was chosen. The results

for the deterministic diffusion reaction equations are markedly less damped than
those arising in the stochastic descriptions of the system. Temporal correlations
(right): Temporal correlations show oscillations at frequency Ωnum ≈ 0.103; the
latter is independent from the value of the diffusion D. These oscillations reflect
the rotation of the spiral waves. The results from the SPDE and deterministic
PDE have been obtained using D = 10−5, while stochastic simulations have
been performed on a lattice of length L = 300 with D = 10−4.

ing spirals. As an example, consider the spatial correlation of individuals A,

gAA(|~r − ~r′|) = 〈a(~r, t)a(~r′, t)〉 − 〈a(~r, t)〉〈a(~r′, t)〉 (87)

where the brackets 〈...〉 stand for an average over all histories. In the steady
state, the time dependence drops out and, because of translational and rota-
tional invariance, the latter depends only on the separating distance |~r − ~r′|.
As can be inferred from Fig. 18 there is excellent agreement between results
obtained from lattice simulations and the stochastic partial differential equa-
tions. The damped oscillations reflect the underlying spiraling spatial struc-
tures, where the subpopulations alternate in turn. The autocorrelation function

gAA(|t− t′|) = 〈a(~r, t)a(~r, t′)〉 − 〈a(~r, t)〉〈a(~r, t′)〉 (88)

for a fixed spatial position shows pronounced oscillations with a frequency nu-
merically found to be Ωnum ≈ 0.103 (for σ = µ = 1). These oscillations are
simply due to the rotation of the spiral waves, and the frequency is indepen-
dent of the diffusion constant D, as is to be expected from Eq. (81). Again,
there is excellent agreement between agent-based simulations and a continuum
description in terms of stochastic partial differential equations.

The spirals’ velocities, wavelengths, and frequencies

In subsection 4.3 we have employed the CGLE (68) to derive analytical results
for the emergence of spiral waves, their stability and their spreading velocity, as
well as their wavelength and frequency. Now, we assess the accuracy and validity
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of these analytical predictions by comparing them with values obtained from the
numerical solutions of the SPDE (83). In particular, we will ask whether the
results derived for the deterministic diffusion reaction equations still hold in
the presence of noise. Let us first consider the spreading velocity v∗ of the

Figure 19: Spreading velocity. The velocity v∗ of the spreading front (rescaled
by a factor

√
D) is displayed as a function of the reproduction rate µ. The time

scale is set by setting σ = 1. The analytical predictions (full red line), Eq. (77),
obtained from the CGLE, are compared with numerical results (black circles),
obtained from the numerical solutions of the SPDE, Eq. 83. Figure adapted
from Ref. [73].

emerging wave fronts. The analytical value, inferred from the CGLE, Eq. (77),
reads v∗ = 2

√
c1D, where c1 = µσ/[2(3µ + σ)] is a coefficient appearing in the

CGLE, Eq. (68). The comparison between this analytical prediction and results
obtained from the numerical solution of the SPDE (83) shows nice agreement;
see Fig. 19. The functional form of the spreading velocity as a function of the
reproduction rate can be understood as follows. For small values of µ, much
lower than the selection rate (µ� 1), reproduction is the dominant limiter of the
spatio-temporal evolution. In the limit µ→ 0, the front velocity therefore only
depends on µ. From dimensional analysis, it follows v∗ ∼ √µ, as also confirmed
by the analytical solution, Eq. (77). In contrast, if reproduction is much faster
than selection, µ� 1, the latter limits the dynamics, and we recover v∗ ∼ √σ.
In Fig. 19, as σ = 1, this behavior translates into v∗ being independent of µ in
this limit. While the numerical and analytical results coincide remarkably for
low reproduction rates (i.e. µ ≤ 0.3), systematic deviations (≈ 10%) appear at
higher values.

In Fig. 20, the analytical estimates for the wavelength λ, Eq. (82), are com-
pared with those obtained from the numerical solution of the SPDE, Eq. (83).
We notice that there is an excellent agreement between analytical and numerical
results for the functional dependence of λ on µ. For low reproduction rates we
have λ ∼ 1/

√
µ, while when reproduction occurs much faster than selection, the

dynamics is independent of µ and λ ∼ 1/
√
σ. While the functional form of the

analytical prediction is valid, the analytical amplitude estimate for λ exceeds
that obtained from numerical computations by a constant factor ≈ 1.6, taken
into account in Fig. 20. This deviation can be attributed to two factors. First,
the normal form of the nonlinear dynamics which gives a limit cycle instead
of heteroclinic orbits is only approximate. Second, the noise-induced spatial
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coupling between different regions yields a kind of “stochastic limit cycle” [72],
whose features seem to be captured remarkably well by the renormalized ap-
proximate limit cycle obtained from the normal form analysis.

Figure 20: The spirals’ wavelength. The functional dependence of the wave-
length λ on the rate µ (with σ = 1) is shown for the numerical solutions of the
SPDE, Eq. (83), and compared to the analytical predictions (red line). The
latter is obtained from the CGLE and is given by Eq. (82). It differs from the
numerics by a factor of 1.6; see text. Adjusting this factor, c.f. the blue line, the
functional dependence is seen to agree very well with numerical results. Figure
adapted from Ref. [73].

Scaling relation and critical mobility

Finally, we want to discuss the mechanism driving the transition from a stable
coexistence to extinction at the critical mobility Dc. To address this issue, first
note that varying the mobility induces a scaling effect, as illustrated in Fig. 14.
In fact, increasing the diffusion constant D is equivalent to zooming into the
system. The diffusion constant enters the noisy reaction-diffusion equations
through a diffusive term D∆, where ∆ is the Laplace operator involving second-
order spatial derivatives. Such a term is left invariant when D is multiplied by
a factor α while the spatial coordinates are rescaled by

√
α. Hence, a rescaling

D → αD translates in a magnification of the system’s characteristic size by a
factor

√
α. This implies that the spirals’ wavelength λ is proportional to

√
D

up to the critical Dc .
When the spirals have a critical wavelength λc, associated with the mobility

Dc, these rotating patterns outgrow the system size which results in the loss of
biodiversity. Measuring length in lattice size units and timein unitis of σ = 1,
one numerically finds a universal value λc = 0.8 ± 0.05, independent of the
reproduction strength µ [73]. This allows us to determine the dependence of
the critical mobility Dc on the parameters of the system, simply by employing
the scaling relation, λ(µ,D) ∼

√
D:

Dc(µ) =
( λc
λ(µ,D)

)2

D . (89)

Upon using the value for the wavelength λ(µ,D) obtained from numerical sim-
ulations this yields to the phase diagram shown in Fig. 21. The solid red line
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shows the analytical prediction for λ(µ,D) derived from the complex Ginzburg-
Landau equation and renormalized as described above. This figure corroborates
the validity of the various approaches (SPDE, lattice simulations and CGLE),
which all lead to the same phase diagram where the biodiverse and the uniform
phases are identified. It suggest that the approach outlined in this section may
be employed quite generally to investigate the stochastic nonlinear dynamics of
spatial games.
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Figure 21: Phase diagram. The critical diffusion constant Dc as a function of
the reproduction rate µ yields a phase diagram with a phase where biodiversity
is maintained as well as a uniform one where two species go extinct and only one
survives. Time unit is set by σ = 1. Results from lattice simulations (blue circles
with error bars), and the stochastic PDE (black dots, black lines are a guide to
the eye) are compared with the (renormalized) analytical result obtained from
the complex Ginzburg-Landau equation (red line). Varying the reproduction
rate, two different regimes emerge. If µ is much smaller than the selection rate,
i.e. µ� σ, reproduction is the dominant limiter of the temporal development.
In this case, there is a linear relation with the critical mobility, i.e. Dc ∼ µ, as
follows from dimensional analysis. In the opposite case, if reproduction occurs
much faster than selection (µ � σ), the latter limits the dynamics and Dc

depends linearly on σ, i.e. Dc ∼ σ. Here, as σ = 1 is kept fixed (time-scale
unit), this behavior reflects in the fact that Dc approaches a constant value for
µ� σ. Figure adapted from Ref. [73].

4.5 Summary and discussion

A main point from a phenomenological point of view is that individuals’ mo-
bility as well as intrinsic noise have crucial influence on the self-formation of
spatial patterns. Low exchange rate between neighboring individuals leads to
the formation of small and irregular patterns. In this case coexistence of all
subpopulations is preserved and the ensuing patterns are mainly determined by
stochastic effects. Larger exchange rates (yet of same order as the reaction rates)
yield the formation of relatively regular spiral waves whose rotational nature is
reminiscent of the cyclic and out-of-equilibrium ensuing kinetics. In fact, the
three subpopulations endlessly, and in turn, hunt each other. The location and
density of the spirals’ vortices is either determined by initial spatial inhomo-
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geneities, if these take pronounced shape, or by stochasticity. In the latter case,
internal noise leads to an entanglement of many small spirals and a universal
vortex density of about 0.5 per square wavelength. Increasing the diffusion rate
(i.e. individuals’ mobility), the typical size of the spiral waves rises, up to a
critical value. When that threshold is reached, the spiral patterns outgrow the
two-dimensional system and there is only one surviving subpopulation covering
uniformly the system [73].

The main point from a theoretical point of view is that the language of
interacting particles enabled us to devise a proper treatment of the stochas-
tic spatially-extended system and to reach a comprehensive understanding of
the resulting out-of-equilibrium and nonlinear phenomena. In particular, we
have illustrated how spatio-temporal properties of the system, formulated as a
stochastic agent-based model, can be aptly described in terms of stochastic par-
tial differential equations (SPDE), i.e. diffusion-reaction equations with noise
emerging from the stochasticity of the interaction between individuals. Nu-
merical solutions of the SPDE give the same statistics for the non-quilibrium
steady states as the lattice simulations, with the emerging spiral waves charac-
terized in both cases the same wavelength, overall sizes and frequency. We have
also studied the influence of stochasticity on the properties of the coexistence
state and its spatio-temporal structure, and found that the deterministic diffu-
sion reaction equation (PDE) still yield spiral patterns. In addition, we found
that wavelength and frequency of the spirals are not affected by internal noise.
However, there are major differences between the stochastic and deterministic
descriptions of the system. One of the most important is the influence of the
initial conditions. If initial spatial inhomogeneities are larger than the noise
level, or if noise is absent as in the deterministic descriptions, these initial spa-
tial structures determine the position of the spirals’ vortices. In this situation,
the system “memorizes” its initial state, and the latter crucially influences the
overall size of the emerging spiral waves. In contrast, for rather homogeneous
initial densities (at values of the unstable reactive fixed point), the patterns
emerging from the stochastic descriptions (lattice simulations and SPDE) are
caused by noise and characterized by a universal density of 0.5 spiral vortices
per square wavelength.

Employing a mapping of the diffusion-reaction equation onto the reactive
manifold of the nonlinear dynamics it turned out that the dynamics of the
coexistence regime is in the same “universality class” as the complex Ginzburg-
Landau equation (CGLE). This fact reveals the generality of the phenomena
discussed in this chapter. In particular, the emergence of an entanglement of
spiral waves in the coexistence state, the dependence of spirals’ size on the
diffusion rate, and the existence of a critical value of the diffusion above which
coexistence is lost are robust phenomena. This means that they do not depend
on the details of the underlying spatial structure: While, for specificity, we
have (mostly) considered square lattices, other two-dimensional topologies (e.g.
hexagonal or other lattices) will lead to the same phenomena, too. Also the
details of the cyclic competition have no qualitative influence, as long as the
underlying rate equations exhibit an unstable coexistence fixed point and can
be recast in the universality class of the Hopf bifurcations. It remains to be
explored what kind of mathematical structure corresponds to a broader range
of game-theoretical problems.

In this chapter, we have mainly focused on the situation where the exchange
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rate between individuals is sufficiently high, which leads to the emergence of
regular spirals in two dimensions. However, when the exchange rate is low (or
vanishes), we have seen that stochasticity strongly affects the structure of the
ensuing spatial patterns. In this case, the (continuum) description in terms of
SPDE breaks down. In this situation, the quantitative analysis of the spatio-
temporal properties of interacting particle systems requires the development of
other analytical methods, e.g. relying on field theoretic techniques [108]. Fruit-
ful insights into this regime have already been gained by pair approximations or
larger-cluster approximations [91,119–121]. The authors of these studies inves-
tigated a set of coupled nonlinear differential equations for the time evolution of
the probability to find a cluster of certain size in a particular state. While such
an approximation improves when large clusters are considered, unfortunately
the effort for solving their coupled equations of motion also drastically increases
with the size of the clusters. In addition, the use of those cluster mean-field
approaches becomes problematic in the proximity of phase transitions (near an
extinction threshold) where the correlation length diverges. Investigations along
these lines represent a major future challenge in the multidisciplinary field of
complexity science.

The cyclic rock-paper-scissor model as discussed in this section can be gen-
eralized in manifold ways. As already noted, the model with asymmetric rates
turns out to be in the same universality class as the one with symmetric rates [78].
Qualitative changes in the dynamics, however, emerge when the interaction net-
work between the species is changed. For example, consider a system where
each agent can interact with its neighbors according to the following scheme:

AB
1−→ AA

BC
1−→ BB

CA
1−→ CC (90)

AB
σ−→ A�

BC
σ−→ B�

CA
σ−→ C� (91)

A� µ−→ AA
B� µ−→ BB
C� µ−→ CC (92)

Reactions (90) describe direct dominance in a Moran-like manner, where an in-
dividual of one species is consumed by another from a more predominant species,
and the latter immediate reproduces. Cyclic dominance appears as A consumes
B and reproduces, while B preys on C and C feeds on A in turn. Reactions (91)
encode some kind of toxicity, where one species kills another, leaving an empty
site �. These reactions occur at a rate σ, and are decoupled from reproduction,
Eqs. (92), which happens at a rate µ. Note that reactions (90) and (92) de-
scribe two different mechanisms of reproduction, both of which are important
for ecological systems: In (90), an individual reproduces when having consumed
a prey, due to thereby increased fitness. In contrast, in reactions (92) repro-
duction depends solely on the availability of empty space. As can be inferred
from Fig.22 the spatio-temporal patterns sensitively depend on the strength σ
of the toxicity effect. Actually, as can be shown analytically [122], there is an
Eckhaus instability, i.e., a convective instability: a localized perturbation grows
but travels away. The instabilities result in the blurring seen in Fig. 22.

It remains to be explored how more complex interaction networks with an
increasing number of species and with different types of competition affect the
spatio-temporal pattern formation process. Research along these lines is sum-
marized in a recent review [91].
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Figure 22: Snapshots of the biodiverse state for D = 1 × 10−5. (a), For large
rates σ, entangled and stable spiral waves form. (b), A convective (Eckhaus)
instability occurs at σE ≈ 2; below this value, the spiral patterns blur. (c), At
the bifurcation point σ = 0, only very weak spatial modulations emerge; we
have amplified them by a factor two for better visibility. The snapshots stem
from numerical solution of an appropraite SPDE with initially homogeneous
densities a = b = c = 1/4.
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5 Conclusions and Outlook

In these lecture notes we have given an introduction into evolutionary game the-
ory. The perspective we have taken was that starting from agent-based models
the dynamics may be formulated in terms of a hierarchy of theoretical models.
First, if the population size is large and the population is well-mixed, a set of
ordinary differential equations can be employed to study the system’s dynamics
and ensuing stationary states. Game theoretical concepts of “equilibria” then
map to “attractors” of the nonlinear dynamics. Setting up the appropriate dy-
namic equations is a non-trivial matter if one is aiming at a realistic description
of a biological system. For instance, as nicely illustrated by a recent study on
yeast [22], a linear replicator equation might not be sufficient to describe the
frequency-dependence of the fitness landscape. We suppose that this is rather
the rule than the exception for biological systems such as microbial populations.
Second, for well-mixed but finite populations, one has to account for stochastic
fluctuations. Then there are two central questions: (i) What is the probabil-
ity of a certain species to go extinct or become fixated in a population? (ii)
How long does this process take? These questions have to be answered by em-
ploying concepts from the theory of stochastic processes. Since most systems
have absorbing states, we have found it useful to classify the stability of a given
dynamic system according to the scaling of the expected extinction time with
population size. Third and finally, taking into account finite mobility of indi-
viduals in an explicit spatial model a description in terms of stochastic partial
differential equations becomes necessary. These Langevin equations describe the
interplay between reactions, diffusion and noise which give rise to a plethora of
new phenomena. In particular, spatio-temporal patterns or, more generally,
spatio-temporal correlations, may emerge which can dramatically change the
ecological and evolutionary stability of a population. For non-transitive dy-
namics, like the rock-scissors-paper game played by some microbes [1], there is
a mobility threshold which demarcates regimes of maintenance and loss of biodi-
versity [73]. Since, for the rock-scissors-paper game, the nature of the patterns
and the transition was encoded in the flow of the nonlinear dynamics on the re-
active manifold, one might hope that a generalization of the outlined approach
might be helpful in classifying a broader range of game-theoretical problems and
identify some “universality classes”.

What are the ideal experimental model systems for future studies? We
think that microbial populations will play a major role since interactions be-
tween different strains can be manipulated in a multitude of ways. In addition,
experimental tools like microfluidics and various optical methods allow for easy
manipulation and observation of these systems, from the level of an individual up
to the level of a whole population. Bacterial communities represent complex and
dynamic ecological systems. They appear in the form of free-floating bacteria as
well as biofilms in nearly all parts of our environment, and are highly relevant
for human health and disease [123]. Spatial patterns arise from heterogeneities
of the underlying “landscape” or self-organized by the bacterial interactions,
and play an important role in maintaining species diversity [27]. Interactions
comprise, amongst others, competition for resources and cooperation by sharing
of extracellular polymeric substances. Another aspect of interactions is chemi-
cal warfare. As we have discussed, some bacterial strains produce toxins such
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as colicin, which acts as a poison to sensitive strains, while other strains are
resistant [1]. Stable coexistence of these different strains arises when they can
spatially segregate, resulting in self-organizing patterns. There is a virtually in-
exhaustible complexity in the structure and dynamics of microbial populations.
The recently proposed term “socio-microbiology” [124] expresses this notion in a
most vivid form. Investigating the dynamics of those complex microbial popula-
tions in a challenging interdisciplinary endeavor, which requires the combination
of approaches from molecular microbiology, experimental biophysical methods
and theoretical modeling. The overall goal would be to explore how collective
behavior emerges and is maintained or destroyed in finite populations under the
action of various kinds of molecular interactions between individual cells. Both
communities, biology as well as physics, will benefit from this line of research.

Stochastic interacting particle systems are a fruitful testing ground for un-
derstanding generic principles in non-equilibrium physics. Here biological sys-
tems have been a wonderful source of inspiration for the formulation of new
models. For example, MacDonald [125] looking for a mathematical descrip-
tion for mRNA translation into proteins managed by ribosomes, which bind
to the mRNA strand and step forward codon by codon, formulated a non-
equilibrium one-dimensional transport model, nowadays known as the totally
asymmetric simple exclusion process. This model has led to significant ad-
vances in our understanding of phase transitions and the nature of stationary
states in non-equilibrium systems [126, 127]. Searching for simplified models of
epidemic spreading without immunization Harris [128] introduced the contact
process. In this model infectious individuals can either heal themselves or infect
their neighbors. As a function of the infection and recovery rate it displays a
phase transition from an active to an absorbing state, i.e. the epidemic disease
may either spread over the whole population or vanish after some time. The
broader class of absorbing-state transitions has recently been reviewed [129].
Another well studied model is the voter model where each individual has one
of two opinions and may change it by imitation of a randomly chosen neigh-
bor. This process mimics in a naive way opinion making [130]. Actually, it
was first considered by Clifford and Sudbury [131] as a model for the competi-
tion of species and only later named voter model by Holley and Liggett [132].
It has been shown rigorously that on a regular lattice there is a stationary
state where two “opinions” coexist in systems with spatial dimensions where
the random walk is not recurrent [130, 133]. A question of particular interest
is how opinions or strategies may spread in a population. In this context it
is important to understand the coarsening dynamics of interacting agents. For
a one-dimensional version of the the rock-paper-scissors game Frachebourg and
collaborators [134,135] have found that starting from some random distribution,
the species organize into domains that undergo (power law) coarsening until fi-
nally one species takes over the whole lattice. Including mutation the coarsening
process is counteracted and by an interesting interplay between equilibrium and
non-equilibrium processes a reactive stationary state emerges [136]. The list of
interesting examples, of course, continues and one may hope that in the future
there will be an even more fruitful interaction between biologically relevant pro-
cesses and basic research in non-equilibrium dynamics.

51



Acknowledgement. I am indebted to my students, Jonas Cremer, Alexan-
der Dobrinevsky, Anna Melbinger, Tobias Reichenbach, Steffen Rulands, Anton
Winkler, and postdoctoral fellow, Mauro Mobilia, with whom I had the pleasure
to work on game theory. They have contributed with a multitude of creative
ideas and through many insightful discussions have shaped my understanding
of the topic. Financial support of the German Excellence Initiative via the pro-
gram “Nanosystems Initiative Munich” and the German Research Foundation
via the SFB TR12 “Symmetries and Universalities in Mesoscopic Systems” is
gratefully acknowledged.

52



A Kramers-Moyal expansion

Reaction terms

Since noise terms stemming from the reactions (37) are local, they may be de-
rived considering the stochastic non-spatial system, i.e. the well-mixed system.
Denoting ~a = (a, b, c) the frequencies of the three subpopulations A, B, and C,
the Master equation for the time-evolution of the probability P (~a, t) of finding
the system in state ~a at time t reads

∂tP (~a, t) =
∑
δ~a

[
P (~a+ δ~a, t)W~a+δ~a→~a − P (~a, t)W~a→~a+δ~a

]
. (93)

Hereby, W~a→~a+δ~a denotes the transition probability from state ~a to the state
~a + δ~a within one time step; summation extends over all possible changes δ~a.
The relevant changes δ~a in the densities result from the basic reactions (37);
as an example, concerning the change in the density of the subpopulation A,
it reads δa = 1/N in the reaction A� µ−→ AA, δa = −1/N in the reaction
CA

σ−→ C�, and zero in the remaining ones. Concerning the rates for these
reactions, we choose the unit of time such that, on average, every individual
reacts once per time step. The transition rates resulting from the reactions (37)
then read W = Nσac for the reaction CA σ−→ C� and W = Nµa(1− a− b− c)
for A� µ−→ AA. Transition probabilities associated with all other reactions (37)
follow analogously.

The Kramers-Moyal expansion [137] of the Master equation is an expansion
in the increment δ~a, which is proportional to N−1. Therefore, it may be under-
stood as an expansion in the inverse system size N−1. To second order in δ~a, it
yields the (generic) Fokker-Planck equation [137]:

∂tP (~a, t) = −∂i[Ai(~a)P (~a, t)] +
1
2
∂i∂j [Bij(~a)P (~a, t)] . (94)

Hereby, the summation convention implies sums carried over the indices i, j ∈
{A,B,C}. According to the Kramers-Moyal expansion, the quantities Ai and
Bij read [137]

Ai(~a) =
∑
δ~a

δaiW(~a→ ~a+ δ~a) ,

Bij(~a) =
∑
δ~a

δaiδajW(~a→ ~a+ δ~a) . (95)

Note that B is symmetric.
As an example, we now present the calculation of AA(~a). The relevant

changes δa result from the reactions A� µ−→ AA and CA
σ−→ C�. The corre-

sponding rates as well as the changes in the density of subpopulation A have
been given above; together, we obtain AA(~a) = µa(1 − a − b − c) − σac. The
other quantities are computed analogously; eventually, one finds

AA(~a) = µa(1− a− b− c)− σac ,
AB(~a) = µb(1− a− b− c)− σab ,
AC(~a) = µc(1− a− b− c)− σbc , (96)
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and

BAA(~a) = N−1 [µa(1− a− b− c) + σac] ,

BBB(~a) = N−1 [µb(1− a− b− c) + σab] ,

BCC(~a) = N−1 [µc(1− a− b− c) + σbc] . (97)

The well-known correspondence between Fokker-Planck equations and Ito cal-
culus [59] implies that (94) is equivalent to the following set of Ito stochastic
differential equations:

∂ta = AA + CAAξA ,
∂tb = AB + CBBξB ,
∂tc = AC + CCCξC . (98)

Hereby, the ξi denotes (uncorrelated) Gaussian white noise terms. The matrix
C is defined from B via the relation CCT = B [59]. As B is diagonal, we may
choose C diagonal as well, with the square roots of the corresponding diagonal
entries of B on the diagonal.

Diffusion term

Diffusion couples two nearest neighboring lattice sites ~r and ~r′. The rate for an
individual A to hop from ~r to ~r′ is given by εz−1a(~r)[1 − a(~r′)] (for simplicity,
we drop the time-dependence). Together with the reverse process, i.e. hopping
from site ~r′ to ~r, this yields the non-diagonal part of B(~r, ~r′) (see e.g. [137]):

B(~r, ~r′ 6= ~r) = − ε

Nz

{
a(~r)[1− a(~r′)] + a(~r′)[1− a(~r)]

}
. (99)

Similarly, the diagonal entries of B read

B(~r, ~r) =
ε

Nz

∑
n.n.~r′′

{
a(~r)[1− a(~r′′)] + a(~r′′)[1− a(~r)]

}
, (100)

where the sum runs over all nearest neighbors (n.n.) ~r′′ of the site ~r. It follows
from these expressions that

B(~r, ~r′) =
ε

Nz

∑
n.n.~r′′

(δ~r,~r′ − δ~r′,~r′′)×
{
a(~r)[1− a(~r′′)] + a(~r′′)[1− a(~r)]

}
.

In the continuum limit, with δr → 0, we use the fact that δ~r,~r′ → δrdδ(~r − ~r′)
and obtain

B(~r, ~r′) =
ε

Nz
δrd

d∑
±,i=1

[
δ(~r − ~r′)− δ(~r ± δr~ei − ~r′)

]
×
{
a(~r)[1− a(~r ± δr~ei)] + a(~r ± δr~ei)[1− a(~r)]

}
.

As above, we expand δ(~r ± δr~ei − ~r′) and a(~r ± δr~ei) to second order and
observe that only quadratic terms in δr do not cancel. With ε = DdN2/d and
δr = N−1/d, we thus find:

B(~r, ~r′) =
D

N2
∂~r∂~r′

[
δ(~r − ~r′)a(~r)(1− a(~r)

]
. (101)

The noise matrix B of the Fokker-Planck equation associated with the exchange
processes therefore scales as N−2. In the corresponding SPDE, the contribution
to noise of the exchange processes scales like N−1.
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