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Anyons [1–5] are probably the most interesting objects I have encountered in physics.

Anyons captivate because of their mathematical beauty, because studying them means to enter
into the heart of topology, of knot and braid theories, of tensor categories.

Meanwhile anyons are fascinating because of their deep physical meaning. They emerge as
quasiparticles of an exceptional type of organization of matter, which is purely quantum in
nature: topological order [6, 7]. In contrast to all other types of orders (crystals, ferromagnets,
or even superfluids or superconductors) topological order cannot be described by a classical local
field. It is not readable from the individual components (atoms, electrons, photons), it is hidden
in the pattern of many-particle entanglement established among them.

In a topologically ordered state a system of individuals constitute a global entity, which acquires
a macroscopic self-identity that transcends the identities of the microscopic constituents. The
laws that govern the emergent collectivity are topological laws: they are invariant under local
deformations of the system. This is in radical opposition to the nature of the original microscopical
laws (electromagnetic or gravitational forces), which are strongly dependent on geometrical details
such as distances or angles.

Anyons are profoundly counterintuitive. Their braiding statistics has dramatically shattered our
system of beliefs regarding the possible statistics for quantum particles [1–5]. Specially striking
is the case of non-Abelian anyons [8–17]: How is it possible that the result of sequentially
exchanging pairs in a set of indistinguishable particles might depend on the order in which the
exchanges were performed?

We do have mathematical languages to describe anyons and represent their bizarre properties. We
could say, for example, that an anyon can be identified with an irreducible representation of the
group of braids, and that its non-Abelian character is a natural consequence of the composition of
braids being non-commutative. But that we are able to name or represent anyons with appropriate
mathematical tools does not mean that we thoroughly understand what they are, nor, specially,
does it mean that we can explain under which conditions they emerge from a physical system.

There is still a large gap between the topological mathematical rules governing anyons and the
physical laws dictating the behavior of the underlying physical system. What is the correspondence
between a certain type of anyon statistics and the pattern of many-particle entanglement that
gave it birth? Which particular combination of microscopic degrees of freedom, interactions
among them and external fields, made such pattern emerge? We can still not give precise
answers to these questions.
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It appears to me that finding physically meaningful languages to describe anyons can help us
sharpen our knowledge about them. I believe that if we are able to capture the essence of anyons
using an intuitive, comprehensive physical vocabulary, we will be closer to fill the lacunas between
the mathematical and the physical, between the global and the local faces of topological orders.
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The set of anyon types emerging from a certain topological order satisfies a collection of fusion
and braiding rules [18–22]. These rules determine the way in which anyons fuse with each other
to give rise to other anyon types, and the form in which they braid around each other. A set
of anyon types together with their fusion and braiding rules define an anyon model. Different
topological orders give rise to distinct anyon models, which perfectly mirror their corresponding
underlying physical states.

A first natural question we can ask is: What are the possible anyon models that can exist? The
answer to this question can be easily expressed in a formal manner. For an anyon model to exist
its fusion and braiding rules cannot be arbitrary. They have to fulfill a collection of consistency
conditions which can be written as a set of equations, known as the Pentagon and Hexagon
equations [20, 22]. An anyon model is therefore a solution of these equations. Wang [21]
has tabulated all modular anyon models with up to four anyon types. These correspond, for
example, to truncated Lie algebras such as SU(2)2, or SO(3)3, the celebrated Fibonacci model.
Bonderson [22] has developed an algorithm to numerically solve the pentagon and hexagon
equations under certain conditions, tabulating a series of very interesting anyon models for up to
ten topological charges.

From a purely mathematical perspective, it is known that the language underlying anyon models
is modular tensor category. Firstly, the structures of anyon models originated from conformal field
theory [32,33] and Chern-Simons theory [34]. They were further developed in terms of algebraic
quantum field theory [35, 36] and then made mathematically rigorous in the language of braided
tensor categories [37–39]. Within this beautiful (and complex) mathematical formalism the
answer to the question above can be also simply phrased: any possible anyon model corresponds
to a unitary braided modular tensor category.

But if we want to delve into our physical knowledge of anyons, we should refine the question above.
We should ask ourselves not only what the possible anyon models are, but, more importantly,
what the relational architecture of possible anyon models is. We should be able to find answers to
questions such as: Is there a hidden organization in the set of anyon models? Can we construct
complex anyon models from other simpler ones? Which are the elementary pieces? What is
the glue mechanism of these pieces? In clarifying these questions, it seems unclear whether
generating solutions to the Pentagon and Hexagon equations or enumerating possible unitary
braided theories can be by themselves illuminating enough.

6



In establishing relations between different anyon models, something that we know is how to
disintegrate certain complex anyon models into other simpler ones. This procedure, called anyon
condensation [50–59], works by making two or more different anyon types become the same.
Though no fully general description is known, for the special case in which the condensing anyons
have trivial statistics, it is possible to systematically obtain a condensed anyon model from a more
complex (uncondensed) one. Anyon condensation does not tell us, however, about the reverse
process, that is, about how to build up more complex anyon models by putting simpler ones
together. To go in this ”up” direction, we have only straightforward operations at our disposal,
such as, for instance, making the tensor product of two or more given anyon models.

Here, I believe it is crucial to develop pathways to orderly construct anyon models. This can help
us enormously to apprehend the subjacent texture of anyon models and thereby the anatomy of
topological orders.
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This work is an attempt to find out the skeleton of anyon models.

I present a construction to systematically generate anyon models. The construction uses a
set of elementary pieces or fundamental anyon models, which constitute the building blocks to
construct other, more complex, anyon models. A principle of assembly is established that dictates
how to articulate the building blocks, setting out the global blueprint for the whole structure.
Remarkably, the construction generates essentially all tabulated anyon models [21,22]. Moreover,
novel anyon models (non-tabulated, to my knowledge) arise.

The construction is formulated in a very physical, visual and intuitive manner. An anyon model
corresponds to a system of bosons in a lattice. By varying the number of bosons and the
number of lattice sites, towers of more and more complex anyon models are built up. It is a
Boson-Lattice construction. Importantly, the Boson-Lattice systems used in the construction are
not real physical systems from which anyon models emerge. Here, Boson-Lattice systems are
themselves anyon models.

To formulate the construction I develop a language for anyon models. In this language an anyon
model is represented by a graph or a collection of graphs, which encode the properties of the
anyon model. Topological charges (anyon types) are represented by graph vertices. Fusion rules
can be read from the connectivity pattern of the graphs. Braiding rules are obtained through
diagonalization of the graphs. This graph language is the first contribution of this work. It
provides an enlightening way to encode anyon models, allowing to both easily visualize and
extract their properties.

The elementary pieces of the Boson-Lattice construction are the Abelian Zn anyon models. In
the language of graphs these models are represented by periodic one-dimensional lattices, in
which each lattice site is connected to its next (to the right) neighbour. Triggered by this graph
representation, the first key idea to develop the construction arises: I make a conceptual leap
by identifying a Zn model with a single particle in a periodic lattice with n sites. This visual
image condenses the essence of the anyon model into a particle in a lattice. It inspires the next
crucial step: the conception of the principle of assembly. The assembly of the building blocks is
defined as a bosonization procedure, in which particles corresponding to different building blocks
are made indistinguishable. The resulting Boson-Lattice system characterizes the constructed
anyon model.
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I give a prescription to assign a graph to the Boson-Lattice system. The graph is defined
as the connectivity graph of the corresponding Fock states. The central result of this work
states that, with this definition, the Boson-Lattice graph always embodies a modular anyon
model. A dictionary is established between the elements of the Boson-Lattice graph (Fock
states, connectivity pattern, eigenvalues and eigenstates), and the properties of the anyon model
(topological charges, fusion rules, braiding rules). The special features of the Boson-Lattice
graph assure that the extracted properties are well defined and satisfy the required consistency
conditions.

To illustrate the construction I consider several examples of anyon models arising within the
Boson-Lattice formalism. It is pleasing to see how series of well known anyon models are generated
by varying the number of bosons and the number of lattice sites. SU(2)k anyon models are
constructed as Boson-Lattice systems of k bosons in a lattice of 2 sites. The Fibonacci anyon
model corresponds to a Boson-Lattice system of 2 bosons in a lattice of 3 sites. The series of
SO(3)k models are built up as systems of 2 bosons in lattices of k sites. Furthermore, other non-
tabulated anyon models emerge, as, for instance, those corresponding to Boson-Lattice systems
of 2 bosons in 4 lattice sites, or 3 bosons in 3 lattice sites.

The Boson-Lattice construction is a fractal construction. Anyon models created by assembling
the building blocks Zn can be used themselves as elementary pieces to generate new models at
a second level of the construction. Nicely, the principle of assembly is the same at any level of
the construction, giving rise to a self-similar pattern that replicates itself at any scale. Might this
fractal architecture be the one behind anyon models?

The formalism can be generalized by adding internal degrees of freedom to the bosons partic-
ipating, by using multidimensional lattices, or, additionally, by considering fermions instead of
bosons. It is very interesting to see how further series of anyon models, such as, for instance,
quantum double models [18], can arise from such generalizations.

The construction reveals an anatomy for anyon models. I have focused here on building up mod-
ular anyon models, for which corresponding topological field theories and conformal field theories
exist. It would be revealing to investigate how known structures and concepts in topological
quantum field theory and conformal field theory can be interpreted within the language of the
Boson-Lattice construction. And, conversely, to see how the construction might shed light onto
the skeleton of topological field theories and conformal field theories themselves.
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The Boson-Lattice approach can guide us to develop a construction for topological states and
Hamiltonians at the microscopic level. The Boson-Lattice blueprint can serve as a dual blueprint
to design the corresponding many-particle wave functions. Moreover, the actual Boson-Lattice
system that abstractly represents the anyon model, can help us to design the microscopic de-
grees of freedom and interactions composing the topological model from which the anyon model
emerges. I believe the Boson-Lattice system can be regarded as a dual physical entity, able to
encode at the same time the global and the local, the mathematical and the physical ingredients
of a topological order.

I find extremely interesting to draw a map of connections among the many-body wave func-
tions and Hamiltonians generated by the Boson-Lattice construction and those arising in seminal
topological systems and models, such as fractional quantum Hall systems [8–14], quantum loop
models [19, 60–62] and string-net models [63–66].

As an essential outcome, this work reveals that the mathematical language describing anyon
models can be identical to the one describing bosonic lattice systems. It states that the fusion
rules and braiding rules characterizing anyon models can be represented by simple, intuitive
physical objects, such as Fock states or tunneling Hamiltonians.

It is indeed remarkable that the connectivity graph of Fock states of a bosonic lattice system can
encode the non-trivial consistency conditions required for an anyon model to exist. While devel-
oping the Boson-Lattice formalism I was thrilled to see how the construction succeeded in always
generating anyon models with the correct properties, for any number of bosons and lattice sites,
at any level of the construction. I was urged to understand the reason behind this extraordinary
coincidence. Nicely, in trying to find intuitive grounds for it, an unexpected connection emerged:
a correspondence between Boson-Lattice graphs and curved space geometries.

This connection anticipates an intriguing duality between anyon models and curved space-time
geometries, between anyon models and gravity. Understanding and developing this duality is a
challenge I feel compelled to achieve.
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An Anyon model

An anyon model

An anyon model [18–22] is characterized by a finite set of conserved topological charges or anyon
types:

{a, b,⋯, c}. (1)

These charges obey the fusion algebra:

a × b = ∑
c

N c
ab c, (2)

where the multiplicities N c
ab are non-negative integers that indicate the number of ways that

charge c can be obtained from fusion of the charges a and b. The fusion algebra is commutative
and associative.

There exists a unique trivial charge 0 that satisfies N b
a0 = δab.

Each charge a has a conjugate charge ā such that N0
ab = δbā.

The fusion multiplicities obey the relations:

N c
ab = N

c
ba = N

ā
bc̄ = N

c̄
āb̄

(3)

∑eN
e
abN

d
ec = ∑f N

d
afN

f
bc. (4)

Meanwhile, the charges obey a set of braiding rules that determine the way in which they braid
around each other. Self-braiding of charge a with itself is encoded in the topological spin θa,
which is a root of unity. The diagonal matrix of topological spins is called the topological T -matrix
of the anyon model:

Tab = θaδab. (5)

The mutual braiding of charges a and b is given by the elements of the topological S-matrix,
which is a symmetric matrix defined as:

Sab = ∑
c

N c
ab̄

θc
θaθb

dc, (6)

where dc is the quantum dimension of charge c, determined through the fusion multiplicities.

When the topological S-matrix is unitary, the anyon model is called modular. A modular anyon
model corresponds to a topological quantum field theory.
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Tabulating Anyon models

Tabulating anyon models

The fusion rules and braiding rules of an anyon model fulfill a set of multivariate polynomial
equations known as the Pentagon and Hexagon equations. Finding all possible anyon models
seems then easy. We just need to find all possible solutions to these equations. However, the
number of variables and equations involved grows rapidly with the number of charges, which
makes difficult to systematically solve them.

By classifying all topological quantum field theories up to four topological charges, Wang [21]
has tabulated all possible modular anyon models with up to four particle types.

By using a numerical program, Bonderson [22] has been able to solve the Pentagon and Hexagon
equations for many interesting fusion rules. This has allowed to tabulate a list of anyon models
with up to 6 particles restricted to multiplicity-free fusion rules (N c

ab = 0,1). Several additional
models relevant for non-Abelian quantum Hall states [8, 11] have been listed for 10 and 12
particles.
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I introduce a language to describe anyon models. This language encodes the
properties of an anyon model in a collection of graphs, which I call topological
graphs. Graph encoding provides a visual and enlightening way of representing
anyon models.

First, I introduce the concept of a topological algebra, an algebra of operators
able to encode the fusion rules of an anyon model. I analyze in depth its properties,
as well as the conditions for an algebra to be topological. I give special focus to
the fact that a topological algebra can also encode valuable information about
the braiding properties of an anyon model. Everyone familiar with anyon models
has learnt as a mantra the beautiful result by Verlinde [67]: the topological S-
matrix of a modular anyon model diagonalizes the fusion rules. Yet I think that
the meaning and the consequences or extensions of this idea have been neither
realized nor exploited enough. The results and connections I present are not the
review from texts I have read. They have followed from the genuine need to give
an orderly structure to the concepts that were naturally emerging in my way to
conform (from the pure definition of fusion and braiding rules) an appropriate
language to express the Boson-Lattice construction.

Finally, I represent a topological algebra with a collection of graphs. This repre-
sentation allows to easily visualize the properties of the anyon model. Topological
charges are represented by graph vertices. Fusion rules can be read from the
connectivity patterns of the graphs. Braiding rules are obtained through diago-
nalization of the graphs.

Graphs have been extensively used in physics and mathematics to represent matri-
ces. Here, I reveal that topological graphs compose a useful language to embody
anyon models. They constitute a befitting language to formulate the Boson-
Lattice construction I will develop in the following sections.



The language
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Topological Algebra

Topological algebras

I introduce the concept of topological algebra, as a useful way to encode, firstly, the fusion rules
of an anyon model.

Definition. An algebra of operators

A = {Xa,Xb, . . .}, (7)

is a topological algebra if it fulfills:

XaXb = ∑
c

N c
abXc, (8)

with the tensors N c
ab defining a set of well defined fusion rules as described above. The operators

in the algebra are in one to one correspondence with the topological charges of the anyon model.

The topological algebra of an anyon model: matrix representation.

Given an anyon model with topological charges {a, b, . . .} and fusion rules a × b = ∑cN
c
ab c, we

can always find a topological algebra associated with the anyon model in the following way.

Let me consider a Hilbert space of dimension n equal to the number of topological charges in
the anyon model. Let me denote the canonical basis in this Hilbert space by

{∣a⟩ , ∣b⟩ , . . .}, (9)

where each state is associated with a charge in the anyon model. I define a set of n×n matrices
with matrix elements given by:

⟨c∣Xa∣b⟩ = N c
ab. (10)

Result. With the definition (10) the set of matrices {Xa} satisfies the condition (8) and is thus
a topological algebra associated with the anyon model.

Proof. Using the associative property of the fusion rules we have:

⟨i∣XaXb∣j⟩ = ∑
k

⟨i∣Xa∣k⟩ ⟨k∣Xb∣j⟩ =

= ∑
k

N i
akN

k
bj = ∑

c

N c
abN

i
cj = ∑

c

N c
ab ⟨i∣Xc∣j⟩ . (11)
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Topological Algebra

Properties of a topological algebra

A topological algebra exhibits the following properties, which are inherited from the properties of
fusion rules:

○ the algebra is Abelian. From the commutativity property of the fusion rules encoded by
the algebra, it follows that:

XaXb = ∑
c

N c
abXc = ∑

c

N c
baXc =XbXa. (12)

○ the identity operator is the operator corresponding to the trivial charge 0:

⟨a∣X0∣b⟩ = N
a
0b = δab. (13)

○ acting on the trivial state, the operator Xa gives

Xa ∣0⟩ = ∣a⟩ , (14)

since we have:

⟨b∣Xa∣0⟩ = N
b
a0 = δab. (15)

○ the operator associated with the conjugate charge is the adjoint operator. From
the properties of the fusion rules it follows that:

⟨c∣Xā∣b⟩ = N
c
āb = N

c̄
ab̄ = N

b
ac = ⟨b∣Xa∣c⟩ = ⟨c∣X†

a∣b⟩ , (16)

and therefore

Xā =X
†
a. (17)

○ the operators in the algebra are normal. Combining the properties above we have:

[Xa,X
†
a] = [Xa,Xā] = 0. (18)

It is interesting to see how the properties of the fusion rules are translated into a set of illuminating
properties of the algebra: the operators are normal and mutually commuting, which allows for
their simultaneous diagonalization.
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When is an algebra a topological algebra?

We have seen above how to define an algebra encoding the fusion rules of an anyon model.

But if we are given a certain algebra, how do we know that this algebra is topological?, that is,
how do we know that it defines a set of well defined fusion rules?

In the following result I give the necessary and sufficient conditions that an algebra needs
to fulfill in order to be topological. This result will be very useful when building up topological
algebras in the Boson-Lattice construction I develop in the next sections.

Result. Let us consider the following set of n linear operators on a Hilbert space of dimension
n:

A = {X0 = 1,X1,⋯,Xn−1}. (19)

This set defines a topological algebra if and only if the following conditions are satisfied:

1. The operators commute with each other: [Xa,Xb] = 0, ∀a, b.

2. For each Xa ∈ A there exists Xā ∈ A such that Xā =X
†
a.

3. There exists a state ∣0⟩ for which the set of states {∣a⟩ =Xa ∣0⟩} defines an orthonormal
basis.

4. In such basis the operators have natural entries: ⟨c∣Xa∣b⟩ = 0,1,2,⋯.

With these conditions the set of operators A is an algebra satisfying:

XaXb = ∑
c

N c
abXc, (20)

with N c
ab = ⟨c∣Xa∣b⟩ defining a set of well defined fusion rules.

Proof. It is clear that a topological algebra fulfills the set of conditions listed above.

To see that an algebra fulfilling conditions 1-4 is topological, we proceed as follows.



Topological Algebra

First, we prove that A fulfills Eq.(20). From properties 1. and 3. we have:

Xa ∣b⟩ =XaXb ∣0⟩ =Xb ∣a⟩ , (21)

and therefore

XaXb ∣d⟩ =XaXd ∣b⟩ = ∑
c

Xd ∣c⟩ ⟨c∣Xa∣b⟩ = ∑
c

⟨c∣Xa∣b⟩Xc ∣d⟩ = ∑
c

N c
abXc ∣d⟩ . (22)

Second, we prove that N c
ab = ⟨c∣Xa∣b⟩ are well defined fusion rules, since they fulfill:

○ N c
ab = N

c
ba,

since we have N c
ab = ⟨c ∣Xa∣ b⟩ = ⟨c ∣Xb∣a⟩ = N

c
ba,.

○ N b
a0 = δab,

since we have N b
a0 = ⟨b ∣Xa∣0⟩ = δab.

○ N c
ab

= N b̄
ac̄

= N c̄
āb̄

,

since we have ⟨c ∣Xa∣ b⟩ = ⟨b̄ ∣Xa∣ c̄⟩ = ⟨c̄ ∣X†
a∣ b̄⟩

↔ ⟨0 ∣X†
cXaXb∣0⟩ = ⟨0 ∣XbXaX

†
c ∣0⟩ = ⟨0 ∣XcX

†
aX

†
b ∣0⟩.
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Diagonalization of a topological algebra

A topological algebra A is a collection of mutually commuting normal operators. Therefore
there exists an orthonormal basis of eigenstates common to all operators in the algebra. For an
anyon model, these eigenstates encode valuable information about the braiding properties of
the model.

The following result holds for any topological algebra.

Result. There exists a unitary matrix U that simultaneously diagonalizes the operators {Xa}

of the topological algebra, so that:

U †XaU = Fa, (23)

with {Fa} a collection of diagonal matrices. The unitary matrix S satisfies the equation:

N c
ab = ∑

`

U †
`c

Ua`
U0`

Ub`, (24)

where U``′ = ⟨`∣U ∣`′⟩ are the matrix elements of U .

Equation (24) reminds us of Verlinde’s equation [67–70] for a modular anyon model, which
relates the fusion rules N c

ab with the topological S-matrix. Indeed, as we will see later, for a
modular anyon model, the topological S-matrix exactly corresponds to a symmetric choice of the
unitary matrix U . Here, it is important to note that the result above is valid for any topological
algebra, independently of whether it corresponds to a modular anyon model or not.

Proof. Let me denote the orthonormal basis of common eigenstates of the algebra {Xa} by
{∣ψa⟩}, with

Xb ∣ψa⟩ = λ
(a)
b ∣ψa⟩ , (25)

and λ
(a)
b the eigenvalue corresponding to the operator Xb. Encoding the eigenvectors in the

unitary matrix U and the set of eigenvalues in the set of diagonal matrices Fb:

⟨a′∣U ∣a⟩ = ⟨a′∣ψa⟩

⟨a′∣Fb∣a⟩ = λ
(a)
b δaa′ ,

we have:

U †XaU = Fa. (26)



The language

To prove equation (24) we solve Xa from the above expression and take matrix elements to
obtain:

⟨c∣Xa∣b⟩ = ∑
`

⟨c∣U ∣`⟩ ⟨`∣Fa∣`⟩ ⟨`∣U
†
∣b⟩

N c
ab = ∑

`

U †
`c ⟨`∣F

∗
a ∣`⟩Ub`. (27)

Comparing (27) with (24) it suffices to prove that:

Ua`
U0`

= ⟨`∣F ∗
a ∣`⟩ . (28)

To prove (28) let me consider a set of states of the form:

∣ϕ`⟩ = ∑
a

⟨`∣F ∗
a ∣`⟩ ∣c⟩ . (29)

Since we have that

⟨c∣Xa∣ϕ`⟩ = ∑
b

⟨c∣Xa∣b⟩ ⟨b∣ϕ`⟩ = ∑
b

⟨`∣N c
abF

∗
b ∣`⟩ = ∑

b

⟨`∣N b̄
ac̄Fb̄∣`⟩

= ⟨`∣FaFc̄∣`⟩ = ⟨`∣Fa∣`⟩ ⟨c∣ϕ`⟩ , (30)

it follows that

Xa ∣ϕ`⟩ = λ
(`)
a ∣ϕ`⟩ , (31)

and therefore the state ∣ϕ`⟩ is proportional to the eigenstate ∣ψ`⟩. We thus have

Ua`
U0`

=
⟨a∣ψ`⟩

⟨0∣ψ`⟩
=

⟨`∣F ∗
a ∣`⟩

⟨`∣F ∗
0 ∣`⟩

= ⟨`∣F ∗
a ∣`⟩ . (32)
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One dimensional representations of the topological algebra

The result above tells us that the common eigenstates of a topological algebra are in one to one
correspondence with the one-dimensional representations of the algebra.

To see this we note that the set of eigenvalues

{λ(`)a = ⟨`∣Fa∣`⟩ }a=0,⋯,n−1 (33)

is (for each ` = 0,⋯, n − 1) a one dimensional representation of the topological algebra A, since
we have

FaFb = ∑
c

N c
abFc, (34)

and therefore

⟨`∣Fa∣`⟩ ⟨`∣Fb∣`⟩ = ∑
c

N c
ab ⟨`∣Fc∣`⟩ . (35)

Since equation (28), proven above, states that the common eigenstates of the algebra have
components proportional to the eigenvalues:

⟨ψ`∣a⟩ ∝ ⟨`∣Fa∣`⟩ = λ
(`)
a , (36)

it follows that these eigenstates are in one to one correspondence with the one-dimensional
representations of the algebra.

A common eigenvector with all positive components

A beautiful property of a topological algebra is the existence of a common eigenvector, whose
components are all positive. Without loss of generality, this eigenvector can be written as

∣ψ0⟩ =
1

D
∑
a

da ∣a⟩ , (37)

where da > 0, d0 = 1, and D =
√
∑a d

2
a. The positive numbers da correspond to the largest

eigenvalues of the operators Xa.

This property follows from Perron-Frobenius theorem [71, 72], which applies to non-negative
irreducible matrices. In the language of graphs that I introduce later, it becomes transparent
that the operators of a topological algebra are direct sums of irreducible operators, so that the
theorem applies.



The language

Diagonalization and the S-matrix

In light of the results above and taking into account the definition of the topological S-matrix,
we can state the following useful connections between the S-matrix of an anyon model and the
eigenvectors of the corresponding topological algebra 1

○ The S-matrix of an anyon model is a symmetric matrix of eigenvectors of the topological
algebra. We have:

Sab = ⟨a∣ψb⟩ , (38)

where {∣ψb⟩} is a set of eigenvectors fulfilling ⟨a∣ψb⟩ = ⟨b∣ψa⟩.

The quantum dimensions of the anyon model correspond to the components of the common
eigenvector ∣ψ0⟩, whose components are all positive:

dc =
⟨c∣ψ0⟩

⟨0∣ψ0⟩
. (39)

These results hold for any anyon model, modular or not.

○ For a modular anyon model, the S-matrix is a unitary symmetric matrix. It therefore
corresponds to a symmetric orthonormal basis of eigenstates of the topological algebra. As
any orthonormal basis of the topological algebra, it fulfills:

N c
ab = ∑

`

S†
`c

Sa`
S0`

Sb`. (40)

This equation is Verlinde’s equation [67].

○ For a non-modular anyon model the S-matrix is not unitary. It corresponds to a non-
orthonormal set of eigenvectors of the topological algebra. It fulfills the equation:

XaS = SEa, (41)

where Ea is a diagonal matrix with elements ⟨b∣Ea∣c⟩ = δbc ⟨ψb∣Xa∣ψb⟩, corresponding to a
set of eigenvalues of Xa. Element by element we have:

∑
b

N c
abSb` = Sc`

S∗a`
S0`

. (42)

This is a generalization of Verlinde’s equation. It is valid for any anyon model, modular or
not.

1The proof of the results above is straightforward by combining the definition of the topological S-matrix with
the information given before regarding diagonalization of a topological algebra. I will present the details of this
proof elsewhere.
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Topological algebras and anyon models

Given an anyon model there is always a topological algebra associated with it, which encodes its
fusion rules. However, given a topological algebra (a set of well defined fusion rules) there is not
necessarily an anyon model satisfying the corresponding fusion rules.

For example, it is clear that if the topological algebra does not admit a symmetric set of eigen-
vectors, there will be no anyon model corresponding to it. Also, if the algebra does not admit
a symmetric eigenbasis, we can be sure that there will be no modular anyon model with such
fusion rules.

Remarkably, even if there is a symmetric set of eigenvectors, it is not guaranteed that an anyon
model exists 2. The following result summarizes the conditions under which an anyon model can
exist with the fusion rules of a given topological algebra.

Given a topological algebra, an anyon model associated with it corresponds to a symmetric
choice Sab of one dimensional representations of the algebra satisfying the equation:

Sab = ∑
c

N c
ab̄

θc
θaθb

dc, (43)

where N c
ab are the fusion multiplicities, θa are roots of unity, with θ0 = 1, and dc are the

components of the algebra eigenvector with all positive components.

This result is indeed an alternative formulation of the Pentagon and Hexagon equations. It can
provide us with a guided route to obtain the possible anyon models associated with a given set of
fusion rules. First, we search for the possible symmetric sets of eigenvectors of the algebra. This
step highly reduces the possible candidates for topological S-matrices. Then, we check whether
these matrices fulfill equation (43) for a certain choice of the θa.

The phrasing above can be enlightening. For example, it becomes clear that anyon models with
the same fusion rules have S-matrices corresponding to different symmetric choices of a set of
eigenvectors (for example, they can correspond to reorderings of the same set of eigenvectors).

This formulation will be very useful to prove the existence of modular anyon models corresponding
to topological algebras in the Boson-Lattice construction I describe in the next sections.

2It is illuminating to construct examples of topological algebras which do not correspond to anyon models, even
when a symmetric eigenbasis exists. In a forthcoming work I will give explanatory examples of different interesting
situations.

33



The language

34



Topological Graphs

Topological graphs

I represent a topological algebra with a collection of graphs.

Each operator Xa in the topological algebra is represented by a weighted directed graph Ga
defined as follows:

Vertices. The vertices of the graph are in one to one correspondence to the states of the
canonical basis, each of them corresponding to a charge of the anyon model.

Connectivity. Two vertices ∣b⟩ and ∣c⟩ are connected if the matrix element ⟨c∣Xa∣b⟩ is
different from zero. The link is oriented from ∣b⟩ to ∣c⟩.

Links-weight. The link connecting vertex ∣b⟩ to vertex ∣c⟩ has weight ⟨c∣Xa∣b⟩ = N
c
ab. A link

with weight n = 0,1,2,⋯ is represented by a n-multiple line.

The table below shows an example (for an anyon model of five charges) of graph encoding of a
set of fusion rules.
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Topological Graphs

Properties of topological graphs

Topological graphs exhibit the following properties, which are inherited from the properties of
the topological algebra.

○ From the vertex ∣0⟩ there is only one outgoing link (to the vertex ∣a⟩ in graph Ga) and one
incoming link (from the vertex ∣ā⟩).

○ Current conservation law. The sum of the squares of the multiplicities of links entering a
vertex is equal to the one of links going out from it. For a graph Ga and a vertex ∣b⟩ we
have:

∑
c

N c
abN

c
ab = ⟨b∣X†

aXa∣b⟩ = ⟨b∣XaX
†
a∣b⟩ = ∑

d

N b
adN

b
ad. (44)

For a graph with weights either 0 or 1, the number of links is conserved at each vertex:

∑
c

N c
ab = ∑

d

N b
ad. (45)

○ Loops. A vertex can be connected to itself, forming a loop. This occurs for non-vanishing
diagonal matrix elements

⟨b∣Xa∣b⟩ ≠ 0. (46)

○ Conjugate graphs. Graphs corresponding to conjugate charges have the same links, with
arrows reversed:

⟨c∣Xa∣b⟩ = ⟨b∣Xā∣c⟩ . (47)

Similarly, conjugate vertices share the same links with arrows reversed:

⟨c̄∣Xa ∣̄b⟩ = ⟨b∣Xa∣c⟩ . (48)

○ Connectivity. A topological graph is always a disjoint union of connected graphs.
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Topological Graphs

Generating topological graph

A graph is called connected if there is a path that connects any pair of vertices.

The operator X corresponding to a connected graph is irreducible. It fulfills that for every pair
i, j there exists a positive integer m such that:

⟨i∣Xm
∣j⟩ ≠ 0. (49)

A connected topological graph defines a very interesting kind of topological graph. All other
graphs in the topological algebra can be derived from it. They are indeed polynomials of this
graph. I will call it generating or fundamental graph, since it encodes the complete topological
algebra.

In the Boson-Lattice construction I develop here, an anyon model will be encoded in a generating
graph, from which all properties of the model can be read.

A general topological graph is always the disjoint union of connected graphs 3. Therefore the
corresponding operator is the direct sum of irreducible operators. Thanks to this property, the
Perron-Frobenius theorem applies, and the existence of an eigenvector with all positive compo-
nents is guaranteed.

3The graph language provides an enlightening way to prove this property. The details of this proof will be
presented elsewhere.
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I introduce the building blocks of the Boson-Lattice construction.

These are the Abelian anyon models Zn. I describe them using
the language of topological graphs introduced in the previous
section.

A conceptual leap is made by identifying a Zn model with a
particle in a one-dimensional periodic lattice of n sites. With
this identification, the elementary pieces of the Boson-Lattice
construction are defined as particles in lattices.
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Zn models

Zn models

A Zn anyon model 4 is characterized by a set of n charges:

{0,1,⋯, n − 1}, (50)

which fulfill the fusion rules:

a × b = a + b (mod n). (51)

The mutual braiding statistics of charges a and b is given by the element Sab of the S-matrix:

Sab =
1

√
n
ei

2π
n
a⋅b. (52)

The self statistics of charge a is given by the topological spin θa:

θ2
a = e

−i 2π
n
a2 . (53)

A physical realization of a Zn model can be
obtained by representing the charges of the
model with fractional electric charges attached
to magnetic fluxes [1, 2, 20]. A topological
charge a is represented by a fractional charge
qa = a

e
n attached to a flux φa = aφ0, where e

is the electron charge and φ0 is the quantum
of flux.

The mutual statistics Sab is obtained as the
Aharonov-Bohm phase that charge-flux com-
posites qa and qb acquire when going around
each other.

4The Zn anyon models I define here are Abelian modular anyon models corresponding to SU(n)1 conformal
field theories.
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Zn models

Graph representation of Zn models

Hilbert space. The Hilbert space corresponding to a Zn model has dimension n. I denote the
canonical basis by:

{∣0⟩ , ∣1⟩ ,⋯, ∣n − 1⟩}. (54)

Topological algebra. Following the definition introduced in the previous section, the topological
algebra of the model is given by the set of operators:

A = {1,X,X2,⋯,Xn−1
}, (55)

with

X =
n−1

∑
x=0

∣x + 1⟩ ⟨x∣ , (56)

where ∣x⟩ = ∣x (modn)⟩. The operator X fulfills Xn = 1.

Generating graph. The charge 1 represented by the operator X is a generating or fundamental
charge.

The graph associated with it, GX , is the one in which each vertex is linked to its next (to the
right) neighbour. That is, it is an oriented lattice with periodic boundary conditions. Fusion
rules and braiding rules of the model are encoded in this graph.

S-Matrix. The S-matrix of the model is directly obtained by diagonalizing the operator X. The
eigenstates of X are Fourier transformed states of the form:

∣q⟩ =
1

√
n

n−1

∑
x=0

ei
2π
n
q⋅x

∣x⟩ . (57)

The unitary and symmetric matrix diagonalizing the algebra is thus:

Sqx =
1

√
n
ei

2π
n
q⋅x, (58)

which corresponds to the S-matrix of the Zn anyon model.
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Zn models

The leap to a particle in a lattice

The generating graph contains complete information of the anyon model. Fusion and braiding
rules can be read from the graph.

The operator X is the (chiral) translation operator in a one-dimensional lattice with periodic
boundary conditions.

Abstraction. I identify a Zn anyon model with a particle in a lattice of n sites with periodic
boundary conditions and chiral tunneling operator:

X =
n−1

∑
x=0

a†
x+1ax, (59)

where ax(a†
x) is the annihilation (creation) operator of a particle in the lattice site x.

This identification establishes the essence of the elementary pieces of the construction.

The building blocks are particles in lattices.

The construction will assemble particles in lattices.
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Using the language and the building blocks described in the previous sec-
tions, I present a formalism to systematically construct anyon models.

An anyon model is built up by assembling k identical building blocks of
length n. The Hilbert space of the model is obtained by bosonization of
the Hilbert spaces of the building blocks.

Based on the graphs of the building blocks, I give a prescription to construct
a graph in the bosonized Hilbert space. This graph is conceived such that
it always corresponds to the generating graph of a modular anyon model.

A one-to-one correspondence is established between the properties of the
Boson-Lattice system (Fock states, tunneling connectivity patterns, eigen-
values and eigenstates) and the properties of the anyon model (topological
charges, fusion rules, quantum dimensions, S and T matrices).

This Boson-Lattice construction systematically generates, by varying the
number of bosons and the number of lattice sites, a series of well known
tabulated anyon models. In particular, it generates anyon models corre-
sponding to truncated Lie algebras such as SU(2)k, Fibonnaci, SO(3)k,
or SO(5)k. Interestingly, the construction also yields anyon models which
are not tabulated.



The construction

50



Bosonization

The bosonization idea

In the last section I have shown that a building block anyon model (a Zn model) is completely
characterized by:

○ a Hilbert space H(1, n), corresponding to a single particle in a one-dimensional lattice of
n sites with periodic boundary conditions.

○ a generating graph G(1, n), corresponding to the chiral tunneling operator of the particle
in such a lattice.

I give now a prescription to assemble these building blocks in order to sequentially generate new
anyon models.

To construct a new anyon model I consider k identical building blocks of length n.

I define the Hilbert space H(k,n) associated with the new anyon model as the one resulting
from bosonization (symmetrization) of the tensor product of the k identical Hilbert spaces of the
building blocks:

H(k,n) = S H(1, n) ⊗⋯⊗H(1, n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k copies

. (60)

The Hilbert space H(k,n) is the one of k bosons in a one-dimensional lattice of n lattice sites
with periodic boundary conditions.

The new Hilbert space is constructed by making the k particles become indistinguishable. It
is important to emphasize that in this bosonization strategy the particles that are made indis-
tinguishable are not physical objects, but mathematical constructions used to encode an anyon
model.
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Bosonization

The Boson-Lattice Hilbert space

I give here some definitions in the Hilbert space H(k,n) which will be useful to describe the
anyon model associated with it.

The Fock basis. I consider the basis of Fock states. Each Fock state is characterized by the
corresponding occupation numbers of the lattice sites:

∣i⟩ ≡ ∣n
(i)
0 , n

(i)
1 ,⋯, n

(i)
n−1⟩ , (61)

with n
(i)
` being the occupation number of site `, and ` = 0,⋯, n−1. The total number of bosons

is equal to k, ∑` n
(i)
` = k.

The trivial state. I choose a reference state, ∣0⟩, as the Fock state with all bosons occupying
the same lattice site (for example, the site ` = 0.)

∣0⟩ ≡ ∣k,0,⋯,0⟩ . (62)

I call this state the trivial state.

The generating state. I denote as ∣1⟩ the Fock state obtained from the state ∣0⟩ by transferring
one boson to site 1:

∣1⟩ ≡ ∣k − 1,1,⋯,0⟩ . (63)

I call this state the generating state.

Conjugation. I define the unitary operation C as the one mapping each Fock state to its mirror
image with respect to the site 0:

∣i⟩
C
Ð→ ∣̄i⟩ = C ∣i⟩

n
(i)
`

C
Ð→ n

(i)
n−`. (64)

As a reflection, the unitary C fulfills C† = C and thus C2 = 1.

Global translation. I define the unitary operation T as the one mapping each Fock state to the
one in which each boson has been moved one site to the right:

∣i⟩
T
Ð→ T ∣i⟩

n
(i)
`

T
Ð→ n

(i)
`−1. (65)

The unitary T fulfills T † = Tn−1.
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The Graph

The Boson-Lattice graph

associated with the Hilbert space H(k,n) I define a graph G(k,n) which will be the generating
graph of the corresponding anyon model. The conception of this graph is an essential step to
develop the Boson-Lattice construction.

Boson-Lattice Graph: Definition.

The Boson-Lattice Graph G(k,n) associated with the Hilbert space H(k,n) of k bosons in
a periodic lattice of n sites is defined as follows:

Vertices. The vertices of the graph are in one to one correspondence with the Fock states
in the Hilbert space H(k,n).

Connectivity and links-weight. Two vertices are connected if the corresponding Fock
states are connected by tunneling of one boson to the next (to the right) lattice site. The
link is given a weight 1.

The connectivity pattern of the Boson-Lattice graph is inspired by the connectivity of the building
block graph, the generating graph of the anyon model Zn. There, two vertices are connected if
the corresponding one-particle states are connected by tunneling of the particle to the next (to
the right) lattice site.

It is illuminating to write down the expression for the operator X corresponding to the graph G.
It can be written as:

X = ∑
i↝i′

∣i′⟩ ⟨i∣ ←→ G, (66)

where i ↝ i′ indicates that the sum runs over pairs of Fock states ∣i⟩, ∣i′⟩, such that ∣i′⟩ can be
obtained from ∣i⟩ through tunneling of one particle to the next (to the right) lattice site.

Using creation and annihilation operators we can write X as:

X =
n−1

∑
`=0

A†
`+1A`. (67)
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Here,

A†
` ∣⋯, n`,⋯⟩ = ∣⋯, n` + 1,⋯⟩

A` ∣⋯, n`,⋯⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

0 if n` = 0

∣⋯, n` − 1,⋯⟩ otherwise.
(68)

The operators A` satisfy the commutation relations:

[A` ,A
†
`′] = δ``′P`, (69)

where P` is the projector onto the subspace of Fock states with n` = 0. It is crucial to note
that the operators A` are not one-particle bosonic operators. The operator X is therefore a
many-body operator different from the one-particle tunneling operator:

X ≠
n−1

∑
`=0

a†
`+1a`. (70)

Here, a†
` (a`) is the creation (annihilation) operator of one boson at site `.
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Properties of the operator X

The operator X corresponding to the Boson-Lattice graph fulfils the following properties.

○ T-invariance: T †XT =X

Taking into account that T †A`T = A`−1, we have:

T †XT = ∑
`

A†
`A`−1 =X. (71)

○ Conjugation: CXC =X†

Given that CA`C = An−`, we have:

CXC = ∑
`

A†
n−`−1An−` = ∑

`

A†
`−1A` =X

†. (72)

○ X is normal: [X,X†] = 0

From the commutation relations of the operators A` (69), we have:

[X,X†] = ∑
`,`′

[A†
`+1A` , A

†
`′+1A`′] = ∑

`

[A†
`+1A` , A

†
`A`+1] =

= ∑
`

P` − P`+1 + P`P`+1 − P`P`+1 = 0. (73)

○ X ∣0⟩ = ∣1⟩

○ ⟨a∣X ∣b⟩ = 0,1

These properties imply properties for the Boson-Lattice graph which will entitle it to be the
generating graph of an anyon model.
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The Graph

Boson-Lattice graph properties

As defined above the Boson-Lattice graph exhibits the following properties:

○ T invariance. The graph is invariant under the unitary T , the global translation by one
site. Given a vertex ∣a⟩ the graph looks the same from the translated vertex ∣a′⟩ = T ∣a⟩:

⟨c∣X ∣a⟩ = ⟨c∣T †XT ∣a⟩ = ⟨c′∣X ∣a′⟩ . (74)

○ Conjugate graph. Under the conjugation operation C, the arrows of the links are reversed.
Given a vertex ∣a⟩ the graph looks the same from the conjugate vertex ∣ā⟩ = C ∣a⟩, but
arrows are reversed:

⟨c∣X ∣a⟩ = ⟨c∣CCXCC ∣a⟩ = ⟨c̄∣X†
∣ā⟩ = ⟨ā∣X ∣c̄⟩ . (75)

○ From the vertex ∣0⟩ there is only one outgoing link (to the vertex ∣1⟩) and one incoming
link (from the vertex ∣1̄⟩ = C ∣1⟩):

δ1b = ⟨b∣X ∣0⟩ = ⟨0∣X ∣̄b⟩ = δ1̄b̄. (76)

○ Links have weight 1. There are no links with multiple lines.

○ Current conservation law. At each vertex the number of incoming links is equal to the
number of outgoing links. This number is equal to the number of occupied sites in the
corresponding Fock state.

This can be easily seen by noticing that a Fock state with r occupied states can lead (by
chiral tunneling of one particle) to r different Fock states. Reversely, such Fock state can
be obtained (by chiral tunneling of one particle) from r different Fock states.

Formally, equality of number of incoming links #i and outcoming links #o can be shown as a
consequence of X being normal:

⟨a∣XX†
∣a⟩ = ⟨a∣X†X ∣a⟩ (77)

⇐⇒ ∑
b

⟨a∣X ∣b⟩ ⟨a∣X ∣b⟩ = ∑
b

⟨b∣X ∣a⟩ ⟨b∣X ∣a⟩ (78)

⇐⇒ #i = ∑
b

⟨a∣X ∣b⟩ = ∑
b

⟨b∣X ∣a⟩ = #o, (79)

where (79) follows from (78) since ⟨a∣X ∣b⟩ = 0,1.

○ The graph is connected. Given two arbitrary Fock states, there exists a sequence of
consecutive tunneling moves of one particle to the next (to the right) lattice site that
connects one Fock state with the other.
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Central result

Boson-Lattice central result

The central result of the Boson-Lattice construction I present here, states that the Boson-Lattice
graph I have defined above is the generating graph of a modular anyon model. The result is
formulated as follows:

The Boson-Lattice graph G(k,n) associated with the Hilbert space
H(k,n) of k bosons in a one-dimensional lattice of n sites is the
generating graph of a modular anyon model for any number of bosons
k and any number of lattice sites n.

The topological charges of the Boson-Lattice anyon model are in one to one
correspondence with the Fock states of the Boson-Lattice system.

The fusion rules and braiding rules of the anyon model are encoded in the
graph G.

The graph G can be completed to a set of graphs which define the topo-
logical algebra of the anyon model.

The S-matrix of the anyon model is obtained from diagonalization of the
topological algebra.

It is remarkable that a graph defined through connectivity rules between Fock states of a boson
lattice system is able to encode an anyon model. Furthermore, series of tabulated modular anyon
models can all be encoded in Boson-Lattice graphs.

In the following I describe a blueprint to obtain the properties of a Boson-Lattice anyon model from
the Boson-Lattice graph. A correspondence is established between the elements characterizing
the graph and the properties of the anyon model. The graph features guarantee that the obtained
fusion and braiding rules are well defined and satisfy the required consistency equations.
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Topological charges

Topological charges

The topological charges of the anyon model associated with the Boson-Lattice system H(k,n)
are in one to one correspondence with the Fock states of the system:

{a, b,⋯, c} ←→ {∣a⟩ , ∣b⟩ ,⋯, ∣c⟩}. (80)

The number of topological charges equals the dimension of H(k,n).

The trivial charge 0 is represented by the Fock state ∣0⟩, with all bosons in the same lattice site.

The charge 1, represented by the Fock state ∣1⟩, will be the generating charge of the model.

Conjugation. Given a charge a, the conjugate charge ā corresponds to the conjugate Fock state:

ā←→ C ∣a⟩ = ∣ā⟩ . (81)

Since C2 = 1, we have that ¯̄a = a.

Translation equivalence relation. The global translation T defines an equivalence relation in
the set of charges. Two charges are equivalent if the corresponding Fock states are obtained
from each other by applying a power of the operator T :

a ∼ b⇐⇒ ∣b⟩ = T r ∣a⟩ for some r = 0,1,⋯, n − 1. (82)

For each charge a the class of translated charges is denoted by

{a, ta,⋯, tn−1a}, (83)

in one to one correspondence with the set of translated Fock states

{∣a⟩ , T ∣a⟩ ,⋯, Tn−1
∣a⟩}. (84)

The class of the trivial charge will be denoted by:

{0, t,⋯, tn−1
}. (85)
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Fusion rules of charge 1

The Boson-Lattice graph G(k,n) is the topological graph corresponding to charge 1:

1↔ G ↔X. (86)

The fusion rules of charge 1 can be therefore read from the connectivity pattern of G, or,
equivalently, from the matrix elements of the operator X:

N b
1a = ⟨b ∣X ∣a⟩ . (87)

The conjugate charge 1̄ is assigned the topological graph G∗, which corresponds to the operator
X†:

1̄↔ G∗ ↔X†. (88)

Its fusion rules are:

N b
1̄a = ⟨b ∣X†

∣a⟩ = ⟨a ∣X ∣ b⟩ . (89)

The special properties of the graph assure that these fusion rules are well defined, since they
fulfill:

○ Na
10 = δ1a

since we have X ∣0⟩ = ∣1⟩ and therefore Na
10 = ⟨a ∣X ∣0⟩ = δ1a.

○ N0
1a = δa1̄

since we have N0
1a = ⟨0 ∣X ∣a⟩ = ⟨ā ∣X ∣0⟩ = ⟨1̄∣a⟩ = δa1̄.

○ N b
1a = N

b̄
1̄ā

= N ā
1b̄

since we have ⟨b ∣X ∣a⟩ = ⟨b̄ ∣X†∣ ā⟩ = ⟨ā ∣X ∣ b̄⟩.
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Fusion rules of charge t

The charge tr is assigned the operator T r. Since we have that N b
tra = ⟨b ∣T r ∣a⟩ = δb,tra, the

charge tr is thus an Abelian charge with fusion rules:

tr × ts = tr+s (n)

a × tr = atr. (90)

The nucleus of the topological algebra

The set of operators

{X,X†, T} (91)

constitute the nucleus of the topological algebra of the anyon model. They are normal, they
commute with each other, and their fusion rules are well defined. As we see below, they can be
completed to a topological algebra.
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X can be completed to a topological algebra

The operator X as defined above can be completed to a topological algebra of operators:

A = {1,X1,X2,⋯}, (92)

where the operator Xa is associated with the charge a, and X1 ≡ X. The fusion rules of the
model are then given by

N c
ab = ⟨c∣Xa∣b⟩ . (93)

The following result shows how to complete the topological algebra:

The algebra of polynomials. For each charge a there exists a unique operator Xa of the
form:

Xa = pa(X,X
†, T ), (94)

where pa is a polynomial of integer coefficients of the operators X,X† and T satisfying:

Xa ∣0⟩ = ∣a⟩ , (95)

⟨c∣Xa∣b⟩ = 0,1,2,⋯. (96)

This set of polynomials defines the topological algebra of the anyon model.

The existence of the algebra of polynomials follows from the connectivity properties of the Boson-
Lattice graph. Since the graph is connected, every state ∣a⟩ can be reached from the state
∣0⟩ by consecutive application of the operator X. Equivalently, a combination of consecutive
applications of the operators X, X† and T connects any state ∣a⟩ with the state ∣0⟩. Thus there
is always a polynomial Xa of integer coefficients of these operators that fulfills Xa ∣0⟩ = ∣a⟩.

In the following section I will explicitly find these polynomials for a series of examples of Boson-
Lattice models.
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The polynomials are unique. Once we have found an algebra of polynomials satisfying the
conditions above, we can be sure that no other exists. To prove that, we consider two different
sets of polynomials {Xa} and {X ′

a}. Since the operators X,X†, and T commute with each
other, we have that [Xa,Xb] = [X ′

a,Xb] = [X ′
a,X

′
b] = 0. Therefore:

Xa ∣b⟩ =XaXb ∣0⟩ =XbXa ∣0⟩ =XbX
′
a ∣0⟩ =X

′
a ∣b⟩ , (97)

and thus Xa =X
′
a.

The polynomials define a topological algebra. By definition, the polynomials fulfill the necessary
and sufficient conditions given in the first section for a topological algebra. The only non-trivial
property we need to prove is that:

○ For each Xa there exists Xā such that Xā =X
†
a.

This is shown by noticing that: X†
a = p

†
a = CpaC, and therefore

X†
a ∣0⟩ = CXaC ∣0⟩ = ∣ā⟩ , (98)

so that Xā =X
†
a.



The construction
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Braiding

S and T matrices of the Boson-Lattice model

The braiding rules of the Boson-Lattice model are encoded in the Boson-Lattice graph G. The
special properties of this graph guarantee that the braiding rules are well defined and correspond
to those of a modular anyon model.

Quantum dimensions. The Boson-Lattice graph G is a strongly connected graph. Therefore the
corresponding operator X is a non-negative irreducible matrix. The Perron-Frobenius theorem
states that the operator X has a real eigenvalue λ0 (largest in absolute value) with a corresponding
eigenvector ∣ψ0⟩ whose components are all positive. Without loss of generality we can write this
state as:

∣ψ0⟩ =
1

D
∑
a

da ∣a⟩ , (99)

where da > 0, d0 = 1 and D =
√
∑a d

2
a. The components of this vector define the quantum

dimensions of the anyon model. The topological charge a has quantum dimension da and the
anyon model has quantum dimension D.

The S-matrix. The operators in the Boson-Lattice topological algebra are normal operators.
Since the algebra is Abelian, it follows that there exists an orthonormal basis of common eigen-
vectors {∣ψa⟩}. The characteristic features of the Boson-Lattice algebra assure that these eigen-
vectors can be chosen such that the unitary matrix S:

Sab = ⟨a∣ψb⟩ (100)

is a symmetric matrix. Moreover, a Boson-Lattice algebra is such that there is essentially a unique
way of choosing this unitary matrix as a symmetric one5. This matrix defines the S-matrix of the
anyon model.

5Different symmetric choices of a unitary matrix correspond to anyon models that are trivially related, for
example, they can be mirror image models under parity (S∗ = CSC).
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The construction

The T-matrix. The special properties of the Boson-Lattice algebra also guarantee that the
S-matrix defined above satisfies the following property. It can be written as:

(ST )
3
= ΘS2, (101)

where

Tab = θaδab (102)

and

Θ =
1

D
∑
a

d2
aθa = e

i2πc/8. (103)

The diagonal matrix T defines the T -matrix of the Boson-Lattice model 6. The diagonal elements
θa define the topological spins of the charges, and the constant c is the central charge of the
modular anyon model.

6It can be shown that for a modular anyon model equation (101) is equivalent to equation (43). Details of
proof will be given elsewhere.
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Braiding

The special properties of Boson-Lattice graphs

Given an arbitrary graph, the set of conditions it has to fulfill to be the generating graph of a
modular anyon model is highly demanding. First, the graph has to be the generating graph of
a topological algebra. Second, it has to admit a symmetric eigenbasis of eigenvectors. Finally,
such eigenbasis has to fulfill the non-trivial condition given in equation (43).

This array of conditions is so restrictive that it seems clear that a randomly chosen graph for a
Boson-Lattice system has low chances to represent a modular anyon model. Moreover, there is
in principle no reason to think that such fortunate graph could even exist for a Boson-Lattice
system.

The Boson-Lattice graph I have defined succeeds in generating well defined modular anyon models
for any number of bosons and lattice sites. The special connectivity properties of the graph make
it possible to fulfill the non-trivial constellation of conditions that guarantee the existence of a
modular anyon model.

Not less surprising is the fact that, as I show in the next section, series of known tabulated anyon
models can all be encoded into Boson-Lattice graphs.

71





To see the Boson-Lattice construction at work I consider several
examples of Boson-Lattice anyon models constructed with the
formalism introduced above.

Given a system with k bosons in a lattice with n sites, I analyze
the corresponding bosonic Hilbert space. I identify the Boson-
lattice graph and show that the corresponding operator X can
be completed to a topological algebra. This algebra encodes
the fusion rules of the model. Diagonalization of the topological
algebra allows us to derive the braiding properties of the Boson-
Lattice anyon model.

The set of fusion and brading rules obtained with the Boson-
Lattice formalism define a well-defined anyon model. In some
cases, the constructed Boson-Lattice models correspond to tab-
ulated models, such as SU(2)k or SO(3)k. Interestingly, we
will see how the construction also yields other well-defined anyon
models that are not tabulated.





Boson-Lattice examples

I analyze the anyon model corresponding to k bosons in a lattice
of 2 sites.

I identify the Boson-Lattice generating graph, construct the topo-
logical algebra and characterize the fusion and braiding rules of
the anyon model. I show that it corresponds to the modular
anyon model SU(2)k.

It is illuminating to see how in the language of the Boson-Lattice
construction, the SU(2)k anyon model corresponds to a particle
in a lattice of k + 1 sites with open boundary conditions. The
elements of the S-matrix of the anyon model acquire a physical
interpretation as the eigenfunctions of such a particle.
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Boson-Lattice examples
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k bosons in 2 sites

Boson-Lattice graph

The Hilbert space of k bosons in 2 lattice sites has dimension k + 1. The Fock states can be
labelled by:

∣x⟩ =
(a†

0)
k−x

√
(k − x)!

(a†
1)
x

√
x!

∣vac⟩ , x = 0,⋯, k, (104)

where a†
0 (a†

1) creates a particle in the 0 (1) lattice site, and ∣x⟩ denotes the Fock state with
k − x bosons in the 0 site and x bosons in the 1 site.

The corresponding anyon model has k+1 topological charges, in one to one correspondence with
the Fock states. We label them by:

{0,1,⋯, k} ←→ {∣0⟩ , ∣1⟩ ,⋯, ∣k⟩}. (105)

Following the prescription of the construction, the Boson-Lattice graph corresponds to a one-
dimensional lattice of k+1 sites in which each vertex is connected to its two next neighbors. The
two ending vertices are not connected to each other.

The operator X corresponding to the Boson-Lattice generating graph can be written as:

X =
k−1

∑
x=0

∣x + 1⟩ ⟨x∣ + h.c. (106)

This is a hermitian operator that corresponds to the (real) tunneling operator of one particle
in a one-dimensional lattice of k + 1 sites with open boundary conditions.
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Boson-Lattice examples
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k bosons in 2 sites

Topological algebra

The generating operator X can be completed to a topological algebra. To show this we search
for the algebra of polynomials of X,

A = {1,p1[X],⋯,pk[X]}, (107)

that satisfy

p`[X] ∣0⟩ = ∣`⟩ , ` = 0,⋯, k. (108)

By inspection of the generating graph G it is straightforward to see that the polynomials are
obtained by the recursive relation:

p`+1[X] =Xp`[X] − p`−1[X], (109)

with p0[X] = 1 and p1[X] =X.

Explicitly, we obtain:

p0 = 1, p1 =X, p2 =X
2
− 1, p3 =X

3
− 2X, ⋯ (110)

Additionally, the following boundary equation is fulfilled:

Xpk[X] − pk−1[X] = 0. (111)

The polynomials above define by construction a topological algebra. To explicitly show that they
correspond to non-negative matrices, we draw the corresponding topological graphs.
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Boson-Lattice examples
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k bosons in 2 sites

Topological graphs and Fusion rules

From the Boson-Lattice generating graph we can directly read the fusion rules of the generating
charge 1. These are:

Fusion rules

X ∣0⟩ = ∣1⟩ 1 × 0 = 1
X ∣x⟩ = ∣x − 1⟩ + ∣x + 1⟩ ←→ 1 × x = (x + 1) + (x − 1) 1 < x < k
X ∣k⟩ = ∣k − 1⟩ 1 × k = k − 1

Interestingly, they exactly correspond to those of the topological charge 1
2 in the anyon model

SU(2)k
7.

By composing the generating graph with itself we can generate the topological graphs depicted
in the figure. The fusion rules of the anyon model are directly obtained from these graphs. They
are:

x1 × x2 =
m

∑
x=∣x1−x2∣

x, (112)

where m = min{x1 + x2,2k − x1 − x2}.

They exactly correspond to the fusion rules of the anyon model SU(2)k.

7Note that the charges of the anyon model SU(2)k are usually labelled by {0, 1
2
,1,⋯, k

2
}. Here, they are

labelled by {0,1,2,⋯, k}.
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Boson-Lattice examples
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k bosons in 2 sites

S-matrix

Diagonalization of the operator X yields eigenstates of the form:

∣ψq⟩ = ∑
x

Sqx ∣x⟩ , (113)

where

Sqx =

√
2

√
k + 2

sin
π

k + 2
(q + 1)(x + 1). (114)

They are sine functions that vanish at the boundaries of the one-dimensional lattice. They are
the eigenmodes of a particle in a lattice of k sites with open boundary conditions.

Pleasingly, they define a unitary symmetric matrix that exactly corresponds to the S-matrix of
the SU(2)k anyon model.

It is remarkable that something as physical (and simple) as the tunneling Hamiltonian of
a particle in a one-dimensional lattice with open boundaries, can encode the apparently
complex mathematical properties of the anyon model SU(2)k.
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Boson-Lattice examples

I analyze the anyon model corresponding to 2 bosons in
a lattice of 3 sites.

I identify the Boson-Lattice generating graph, construct
the topological algebra and characterize the fusion and
braiding rules of the anyon model.

I show that it corresponds to the modular anyon model
Fib ×Z3.
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Boson-Lattice examples

Boson-Lattice graph

The Hilbert space of 2 bosons in 3 lattice sites has dimension 6. I denote the states in the Fock
basis by

{∣0⟩ , ∣1⟩ , ∣2⟩ , ∣3⟩ , ∣4⟩ , ∣5⟩}. (115)

The corresponding anyon model has thus 6 topological charges.

Following the prescription given in the previous section, the Boson-Lattice generating graph G is
the one depicted below.
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2 bosons in 3 sites

Topological Algebra

For this model, the completion of the generating operator X to a topological algebra is straight-
forward. We have that

∣0⟩ = 1 ∣0⟩ ∣2⟩ = T ∣0⟩ ∣4⟩ = T 2 ∣0⟩
∣1⟩ =X ∣0⟩ ∣3⟩ =XT ∣0⟩ ∣5⟩ =XT 2 ∣0⟩ .

(116)

Therefore the set of operators

A = {1,X,T,XT,T 2,XT 2
} (117)

is the algebra of polynomials (of the operators X and T ) we are looking for. They commute with
each other, they have positive entries (since both X and T have positive entries), and we have
X† =XT 2, T † = T 2 and (XT )† =XT . They define the topological algebra.
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Boson-Lattice examples

Topological graphs

It is illuminating to draw the set of graphs corresponding to the topological algebra. This can be
done just by composition of the graphs corresponding to the operators X and T .

Nicely, the graph corresponding to the operator XT decomposes into three identical copies of
the generating graph of the Fibonacci model.
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2 bosons in 3 sites

Equivalence to Fib ×Z3

The topological algebra

A = {1,X,T,XT,T 2,XT 2
} (118)

has two subalgebras:

Fibonacci subalgebra {1,XT} XT ⋅XT = 1 +XT

Z3 subalgebra {1, T, T 2} T ⋅ T = T 2

T ⋅ T 2 = 1.

(119)

It is useful to write the operators XT and T as:

XT = XFib ⊗ 13

T = 12 ⊗ XZ3 ,
(120)

where

XFib = [
0 1
1 1

] , XZ3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1
1 0 0
0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (121)

and 12 (13) is the 2 × 2 (3 × 3) identity matrix. Defining

AFib = {12,XFib} (122)

AZ3 = {13,XZ3
,X2

Z3
}, (123)

the topological algebra A can be written as the tensor product of the topological algebra of the
Fibonacci model and the topological algebra of the Z3 model:

A = AFib ⊗AZ3 . (124)

The fusion rules of the Boson-lattice model are therefore those of the anyon model

Fib ×Z3. (125)
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Boson-Lattice examples

S-Matrix

Diagonalization of the graphs yields a unique (up to conjugation) symmetric and unitary matrix,
which defines de S-matrix of the anyon model. This matrix can be written as the tensor product:

S = SFib ⊗ SZ3 , (126)

where SFib and SZ3 are, respectively, the S-matrix of the Fibonnaci anyon and the Z3 anyon
models.
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2 bosons in 3 sites

T-Matrix

The topological T -matrix is determined by equation (43), relating the S-matrix to the T -matrix.
It can be written as:

T = TFib ⊗ TZ3 , (127)

where TFib and TZ3 are, respectively, the T -matrix of the Fibonnaci anyon and the Z3 anyon
models.

91





Boson-Lattice examples

I analyze the anyon model corresponding to 2 bosons
in a lattice of n sites, with n odd.

I identify the Boson-Lattice generating graph, con-
struct the topological algebra, and characterize the
fusion and braiding rules of the anyon model.

I show that it corresponds to the modular anyon
model SO(3)n × Zn.

Notice that for n = 3 we have SO(3)3 ≡ Fib, recov-
ering the result of the previous section.
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Boson-Lattice examples

Hilbert space

The Hilbert space of 2 bosons in n = 2` + 1 lattice sites has dimension (` + 1) × n. The Fock
states can be labelled by the relative distance r between the two particles and the position x of
one of them (for example, the one with the smallest value of x):

∣r, x⟩ = T x ∣r,0⟩ , r = 0,⋯, `

x = 0,⋯, n − 1. (128)

Since n is odd, for a fixed relative position r there are always n possible Fock states.
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2 bosons in n sites

Boson-Lattice graph

The corresponding anyon model has (` + 1) × n topological charges. Following the prescription
of the construction, the Boson-Lattice generating graph G is depicted below for n = 5, n = 7 and
n = 9.
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Boson-Lattice examples

Topological Algebra

By inspection of the generating graph G we can directly see that the algebra of polynomials we
are looking for is:

A = {XrT
x r = 0,⋯, `; x = 0,⋯, n − 1}, (129)

where X0 = 1, X1 = X and Xr, (for r = 2,⋯, `) are polynomials of the operators X and T ,
obtained through the recursive relation:

Xr =XXr−1 −Xr−2 T. (130)
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2 bosons in n sites

The SO(3)k subalgebra

To show that A is a topological algebra, let me consider the operator Q =XT ` ∈ A. This is the
generating operator of the subalgebra

{1,Q = Q1,Q2,⋯,Q`}, Qr =XrT
r`. (131)

It fulfills:

1 ×Q = Q

Q ×Qr = Qr−1 +Qr+1

Q ×Q` = Q`−1 +Q`. (132)

The corresponding graph is depicted below. It is very similar to the generating graph of the
anyon model SU(2)`, except for the important fact that the graph has now a loop at the last
vertex. Is this graph a topological graph?
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Boson-Lattice examples

Let me consider the operator Q2 in the subalgebra above. Reordering the elements of the
subalgebra

Qi Ð→ Q̃i = Qp(i), (133)

with the permutation p such that

{0,1,⋯, `} Ð→ {0,2,4,⋯, `, ` − 1,⋯,3,1} ` even

{0,1,⋯, `} Ð→ {0,2,4,⋯, ` − 1, `,⋯,3,1} ` odd, (134)

we have that Q̃ ≡ Q2 fulfills:

1 × Q̃ = Q̃

Q̃ × Q̃r = Q̃r−1 + Q̃r + Q̃r+1

Q̃ × Q̃` = Q̃`−1 + Q̃`. (135)

These fusion rules exactly correspond to the ones of the anyon model SO(3)n.
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2 bosons in n sites

The generating operator Q corresponds to the tunneling Hamiltonian of one particle in a one-
dimensional lattice of `+1 sites with open boundaries, and in the presence of an impurity potential
at the last site, `. The eigenmodes of this Hamiltonian define a unitary symmetric matrix, which
exactly coincides with the topological S-matrix of the modular anyon model SO(3)n.

It is again remarkable that the Hamiltonian of a particle in a one-dimensional lattice with open
boundaries (and an impurity potential at the last site) can encode the mathematical properties
of the anyon model SO(3)n.

From the results above, we can conclude that the anyon model corresponding to the Boson-Lattice
system of 2 particles in n sites, with n odd, is SO(3)n ×Zn.
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Boson-Lattice examples

I analyze the anyon model corresponding to 2 bosons in a
lattice of 4 sites, as an illustration of the interesting case
of 2 bosons in a lattice with an even number of sites.

I identify the Boson-Lattice graph, construct the topologi-
cal algebra, and characterize the fusion and braiding rules
of the anyon model.

In contrast to the case of 2 bosons in a lattice with an
odd number of sites, the topological algebra of this Boson-
Lattice model is not decomposable as the tensor product
of two topological algebras.

The Boson-Lattice model of 2 bosons in 4 sites is a well
defined anyon model, which is to my knowledge not tabu-
lated.
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Boson-Lattice examples

Boson-Lattice graph

The Hilbert space of 2 bosons in 4 lattice sites has dimension 10. The corresponding anyon model
has therefore 10 topological charges. Following the prescription given in the previous section, we
construct the Boson-Lattice generating graph G depicted below.

102



2 bosons in 4 sites

Topological Algebra

By inspection of the generating graph G we can see that the set of polynomials we are looking
for is:

A = {1, T, T 2, T 3,X,XT,XT 2,XT 3,Q,TQ}, (136)

where the operator Q fulfills:

Q =XX − T (137)

QT 2
= Q. (138)
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Boson-Lattice examples

Topological graphs

To show that A is a topological algebra, it suffices to show that Q has non-negative entries. By
composing the graph X with itself and subtracting the graph corresponding to the operator T ,
we obtain the graph of the operator Q. This is a non-negative graph (links have weight either 0
or 1) that decomposes into two independent graphs.
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2 bosons in 4 sites

Fusion rules

The fusion rules of the model can be directly read from the topological graphs below.
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Boson-Lattice examples

S-Matrix

Diagonalization of the graphs yields a unique (up to conjugation) symmetric and unitary matrix,
which defines the S-matrix of the anyon model.
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2 bosons in 4 sites

T-Matrix

The topological T -matrix is uniquely determined by equation (43), relating the S-matrix to the
T -matrix.
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Boson-Lattice examples

I analyze the anyon model corresponding to 3 bosons
in a lattice of 3 sites.

I identify the Boson-Lattice graph, construct the
topological algebra, and characterize the fusion and
braiding rules of the anyon model.

The anyon model corresponding to 3 bosons in a lat-
tice of 3 sites is a well defined anyon model, which is
to my knowledge not tabulated.
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Boson-Lattice examples

Boson-Lattice graph

The Hilbert space of 3 bosons in 3 lattice sites has dimension 10. The corresponding anyon model
has therefore 10 topological charges. Following the prescription given in the previous section, we
construct the Boson-Lattice generating graph G as depicted below.
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3 bosons in 3 sites

Topological Algebra

By inspection of the generating graph G we can see that the set of polynomials we are looking
for is:

A = {1, T, T 2,X,XT,XT 2,X†,X†T,X†T 2,Q}, (139)

where the operator Q fulfills:

Q =XX†
− 1 (140)

QT = Q. (141)
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Boson-Lattice examples

Topological graphs

By composing the graphs of X and X† and subtracting the identity graph, we obtain the graph
of the operator Q. This is a non-negative graph that decomposes into three independent graphs.
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3 bosons in 3 sites

Fusion rules

The fusion rules of the model can be directly read from the topological graphs below. Interestingly,
this model has multiplicities larger than 1, as it can be seen from the double loop in the graph
corresponding to the charge Q. We have:

Q ×Q = 1 + T + T 2
+ 2Q. (142)

This model is not tabulated in the tables by Bonderson [22], which are restricted to multiplicity-
free anyon models.
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Boson-Lattice examples

S-Matrix

Diagonalization of the graphs yields a unique (up to conjugation) symmetric and unitary matrix,
which defines the S-matrix of the anyon model.
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3 bosons in 3 sites

T-Matrix

The topological T -matrix is uniquely determined by equation (43), relating the S-matrix to the
T -matrix.
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Boson-Lattice examples

I analyze the anyon model corresponding to 3 bosons
in a lattice of N sites.
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Boson-Lattice examples

Boson-Lattice graph

Following the prescription given in the previous section, we construct the Boson-Lattice generating
graph G as depicted below. By considering the graph of equivalence classes (a vertex corresponds
to the class of Fock states that can be obtained from each other by a global translation) the
graph takes the form of a pyramid with a triangular tiling.
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3 bosons in n sites

Topological Algebra

The pyramidal structure of the graph allows to obtain the topological algebra in a recursive
way. Polynomials corresponding to charges at a certain level of the pyramid are obtained from
polynomials at the previous levels as depicted below.
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Boson-Lattice examples

Topological graphs

The pyramidal structure assures that the polynomials correspond to non-negative matrices. This
can be graphically seen by drawing the corresponding graphs. Graphs at a certain level of the
pyramid contain the graphs corresponding to the previous level, so that the operators remain
non-negative after subtraction of graphs from the upper level.
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4 bosons in n sites

The general Boson-Lattice graph

The Boson-Lattice graphs for k bosons in n lattice sites correspond to multidimensional pyramidal
structures. For 4 bosons in n lattice sites, the graph corresponds to a pyramid with a tetrahedral
tiling. The pyramidal structure allows for the existence of a topological algebra of polynomials
of the operators X, X† and T .
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The Boson-Lattice construction succeeds in systematically generat-
ing well defined anyon models. The Boson-Lattice graph is con-
ceived such that 1) it defines a set of well defined fusion rules, and
2) there is always a symmetric choice of eigenvectors of the graph
that can represent the S-matrix of a modular anyon model.

But why is this always like this? Why does the connectivity graph
of Fock states of a bosonic lattice system always have a symmet-
ric matrix of eigenvectors? Beyond possible mathematical general
proofs that I can give, I am here interested in finding an intuitive
argument able to explain this fact.

To this aim I take a closer look into the generating Boson-Lattice op-
erator. I discover an illuminating connection between Boson-Lattice
graphs and curved-space geometries. This connection throws light
into the success of the construction.

But even more, this connection anticipates a beautiful duality be-
tween anyon models and curved space-time geometries, between
anyon models and gravity.



Why does the construction work?

Tunneling in a curved space

The generating operator corresponding to the Boson-Lattice graph has the form:

X = ∑
i↝i′

∣i′⟩ ⟨i∣ = ∑
x

A†
x+1Ax, (143)

where i ↝ i′ indicates that Fock state ∣i′⟩ can be obtained from ∣i⟩ by tunneling of one particle,

and the operators Ax are defined in Eq. 68.

Though the operator X connects Fock states that are connected by one-particle tunneling, X is
a many-body operator different from the one-particle tunneling operator:

X ≠ ∑
x

a†
x+1ax. (144)

But how is then X written in terms of bosonic creation and annihilation operators ax? It is not
difficult to see that the operator Ax can be written as:

Ax =
1

√
nx + 1

ax, (145)

where nx = a
†
xax is the density operator at site x.
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Tunneling in a curved space

This means that the generating operator has the form:

X = ∑
x

a†
x+1 gx ax, (146)

where

gx =
1

√
nx + 1

1
√
nx+1 + 1

. (147)

This reveals that the Boson-Lattice graph is a correlated tunneling operator: the tunneling
amplitude for a particle to hope from site x to site x + 1 depends on the density of particles at
sites x and x + 1. Effectively, a particle tunnels in a space that has been curved by the presence
(by the mass) of the other particles. The metric in that curved space is given by gx.
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Why does the construction work?
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Flat vs. curved space

Flat space vs. curved space

The connection above sheds light on the success of the Boson-Lattice construction. A Boson-
Lattice graph can be obtained from a one-particle tunneling operator by deforming the metric
from flat to curved.

∑
x

a†
x+1ax ←→∑

x

a†
x+1gxax. (148)

It is clear that for the one-particle tunneling operator there exists a symmetric unitary matrix U
of eigenvectors. This corresponds to the Fock basis in momentum space:

Uab = ⟨a∣̃b⟩ = ⟨ã∣b⟩ , (149)

where

∣a⟩ ≡ ∣n0,⋯, nn−1⟩ ∝ [a†
0]
n0⋯[a†

n−1]
nn−1 ∣vac⟩ (150)

∣̃b⟩ ≡ ∣ñ0,⋯, ñn−1⟩ ∝ [ã†
0]
ñ0⋯[ã†

n−1]
ñn−1 ∣vac⟩ , (151)

with

ãq =
1

√
n

n−1

∑
x=0

ei
2π
n
q⋅xax. (152)

This strongly suggests the existence of a unitary symmetric matrix of eigenvectors of the operator
X, which is obtained after the metric transformation from flat to curved space:

Uab ←→ Sab. (153)
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The Boson-Lattice construction is a fractal construction. Anyon models
arising from assembling the building blocks Zn can be used themselves as
elementary pieces to generate more complex anyon models at a second
level of the construction.

Remarkably, the principle of assembly is the same at any level of the
construction. An anyon model generated at a certain level is identified
with a particle in a lattice given by the corresponding Boson-Lattice
graph. Anyon models at the next level are then constructed by as-
sembling bosons in that graph. The bosonization principle of assembly
generates well defined anyon models at any level of the construction.





Higher levels of the construction

Second level of Boson-Lattice construction

To illustrate how the construction works at higher levels, let me consider the case in which the
anyon models SU(2)k are used as building blocks. The Boson-Lattice graph encoding the anyon
model SU(2)k is a one-dimensional lattice of k + 1 sites with open boundaries. Following the
bosonization principle, the Boson-Lattice graph of the model obtained by assembling k′ copies of
SU(2)k corresponds to the connectivity graph of Fock states of k′ bosons in a one-dimensional
lattice of k + 1 sites with open boundaries.

For example, the anyon model resulting from assembling two identical copies of SU(2)2 is
described by the Hilbert space of 2 bosons in a lattice of 3 sites with open boundary conditions.
This Hilbert space has dimension 6. The corresponding anyon model has therefore 6 topological
charges. The Boson-Lattice graph is constructed following the connectivity pattern prescription.
The fusion rules and braiding rules can be obtained. They exactly correspond to the anyon model
SO(5)2.

By varying the number k′ of SU(2)k building blocks the whole tower of anyon models SO(5)k′

can be constructed.
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Closures and openings

The language of topological graphs

The language of topological graphs I have developed provides a visual and enlightening way to
encode anyon models.

One single graph is able to encode complete information about the fusion rules of an anyon
model. Unlike tables of fusion rules in which the essential information about an anyon model
might be sometimes difficult to grasp, hidden inside a huge collection of numbers, a glance at
a topological graph can rapidly tell us about the fundamental properties of an anyon model. Is
the model Abelian or non-Abelian? Does it decompose into a product of simpler models? Which
charges are obtained from which? They are all questions that can be immediately answered after
a quick examination of the connectivity pattern of a topological graph.

Braiding properties can also be nicely extracted from topological graphs. I have emphasized and
discussed how diagonalization of a topological graph can yield important information, sometimes
complete, about the topological S and T matrices of an anyon model. In some cases diagonal-
ization of a topological graph might even turn obvious, as it is the case for anyon models such as
Zn, SU(2)k, or SO(3)k, for which the corresponding graphs are familiar lattice patterns, whose
eigenstates and eigenvalues are evident to us.

Graph representation of matrices is often used in physics and mathematics. Here, I have revealed
the strength of a graph language to represent anyon models.
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Closures and openings

The Boson-Lattice construction

When trying to conceive a construction for anyon models, I had always clear that the Abelian
models Zn could serve as appropriate building blocks. As for the principle of assembly, I had in
mind some kind of procedure that would make copies of elementary anyon models indistinguish-
able, though I did not have a befitting language to articulate the idea of indistinguishability of
anyon models.

The first key idea came through a visual abstraction. The graph language helped me to rep-
resent the Abelian model Zn by a particle in a one-dimensional lattice. Triggered by this idea
the principle of bosonization naturally arose as an appropriate way to implement the notion of
indistinguishability.

There are exponentially many ways to define a graph in a boson lattice system. To define the
Boson-lattice graph as the connectivity graph of Fock states was a guess. A guess that happened
to be right.

The Boson-Lattice construction represents the collapse of two languages into one. It reveals that
the mathematical language to describe anyon models can be the same as the one describing
boson-lattice systems. It provides us with a physically meaningful language (the one of bosons,
Fock states and tunneling Hamiltonians) to describe the mathematical properties (fusion rules
and braiding rules) of anyon models. I believe this physical language can help us in our way to
fill the explanatory gap between the mathematical and the physical sides of topological orders.
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Closures and openings

The construction works

The Boson-Lattice construction provides an orderly systematic way to construct anyon models.
By assembling different numbers of identical building blocks (by varying the number of bosons
k) and by changing their size (varying the number of lattice sites n) the construction succeeds
in generating towers of well known tabulated anyon models.

The construction reveals a skeleton for the space of anyon models. It tells us that towers of more
and more complex anyon models can be constructed by assembling identical anyon models and
making them indistinguishable.
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Closures and openings

Conformal and topological quantum field theories

I have focused in this work on the construction of modular anyon models, for which corresponding
conformal field theories and topological quantum field theories exist. It would be very interesting
to delineate a graph of correspondences between the Boson-Lattice construction and conformal
and topological quantum field theories.

How are known concepts in Chern-Simons theory and conformal field theory expressed in the
Boson-Lattice language? Might the Boson-Lattice construction bring light into our understanding
of the anatomy of conformal field theories and topological quantum field theories?

The Boson-Lattice construction can also serve to build up non-modular anyon models, for which
no conformal field theories exist.
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Closures and openings

Generalizations of the Boson-Lattice construction

The Boson-Lattice construction can be enriched by adding internal degrees of freedom to the
bosons participating. For example, we can consider bosons with color or spin, or also change the
dimensionality of the lattice. In this way, anyon models corresponding to non-chiral topological
orders, such as quantum doubles, can be generated.

Moreover, the construction can be extended to fermions. By considering Fermion-Lattice graphs
other towers of anyon models are built up.

Additionally, other anyon models beyond Zn can be used as initial building blocks at the first
level of the construction.
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Closures and openings

Anyon condensation

In light of the Boson-Lattice construction, the reverse process of disintegrating anyon models
into simpler pieces acquires an enlightened perspective.

Within the Boson-Lattice picture, anyon condensation is a condensation of actual bosons. More-
over, the concept of topological symmetry breaking corresponds to actual symmetry breaking in
the Boson-lattice system.

I find extremely interesting to investigate how anyon condensation is precisely described in the
Boson-Lattice language, and, moreover, whether the Boson-Lattice construction can guide us
to develop a systematic framework to describe anyon condensation, for which no fully general
description is known.
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Closures and openings

A dual construction at the physical level

Especially interesting to me is the prospect of developing a dual construction at the microscopic
physical level. I believe the Boson-Lattice construction for anyon models can inspire the blueprint
of a construction of many-body wave functions and Hamiltonians for the corresponding topolog-
ical orders.

A dual bosonization principle of assembly could be used to orderly build up complex topologically
ordered many-body wave functions from elementary ones. Such systematic framework would
reveal a dual anatomy in the phase space of topologically ordered systems.

In previous work [73–75], I have proposed an Ansatz for the systematic construction of non-
Abelian topologically ordered states by symmetrizing identical copies of simpler states like Abelian
topological states. This type of construction is known to be the one behind non-Abelian quantum
Hall states [8, 11, 12, 76–78]. I have revealed its potential to describe the structure of general
non-Abelian topological states, describing, for example, other families of interesting non-Abelian
states such as quantum doubles or string-net condensates.

How does the notion of indistinguishability of wave functions match the one of indistinguishability
of anyon models? In which way is the symmetrization of many-body wave functions connected
to the Boson-Lattice construction?

I believe the Boson-lattice construction can also guide the systematic construction of parent
Hamiltonians for topological states. Boson-Lattice graphs can encode the physical ingredients
(local degrees of freedom, interactions between them) of the corresponding topological order.
They constitute dual entities able to simultaneously embody the mathematical and physical
parts of topological orders.

It would be alluring to investigate the connections between the many-body wave functions and
Hamiltonians emerging from the Boson-Lattice construction and those of seminal topological
systems and models, such as fractional quantum Hall systems [8–14], quantum loop models
[19, 60–62], and string-net models [63–66].
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Closures and openings

Duality between anyon models and gravity

I have drawn a connection between anyon models and curved-space geometries. Within the
Boson-Lattice approach an anyon model corresponds to a system of bosons in a lattice whose
metric has been curved. Abelian models are associated with flat geometries, whereas non-Abelian
models correspond to curved ones.

This connection is extremely attractive to me. What type of space-geometries do anyon models
correspond to? How can time be included into the theory?

I believe that this connection anticipates a beautiful duality between anyon models and gravity,
which I feel compelled to unveil.
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