F-theory: Progress and Prospects

Timo Weigand

ITP, University of Heidelberg

Why we like F-theory so much

F-theory is perhaps the most general currently controlled framework to think about (non-perturbative) brane configurations

- beyond pert. Type II orientifolds due to [p,q]-branes
- still within (conformal) Calabi-Yau geometry and thus well-controlled
- \Rightarrow framework to understand geometric compactifications w/ branes
- Being general pays off: Application to F-theory GUTs

[Beasley,Heckman,Vafa; Donagi,Wijnholt'08]

Hierarchy of localisation:

- $SU(5) \leftrightarrow 4$ -cycle
- matter \leftrightarrow 2-cycle
- Yukawa \leftrightarrow point

 E_6 -point $\leftrightarrow 10\,10\,5$

Pic: Cordova, 0910.2955

Progress in F-theory

Where were we 5-6 years ago:

✓ local model building via field theory on 7-branes see talk by Marchesano ✓ non-abelian singularities in codimension-one (and two) well understood ✓ ...(!)

- 4 no fully fledged (resolved) F-theory 4-fold suitable e.g. for F-GUTs
- 4 not much worked out for codim-2, nothing for codim 3
- 4 no (good) understanding of U(1) gauge groups
- 4 no understanding of gauge fluxes in global geometries

Today, all these questions have been addressed

- Examples for all such cases worked out
- Ongoing work: systematization and -possibly in future classification
- better understanding of dualities to M-theory, IIB and heterotic
- Pheno applications have triggered formal progress

This review will be biased, incomplete and faulty.

- I) Setting the stage for F-theory compactifications
- II) Non-abelian gauge symmetry
- III) Abelian gauge symmetry
- **IV)** Gauge fluxes
- **V)** Frontiers in Phenomenology

I) Setting the stage for F-theory compactifications

The magic of F-theory

F-theory epitomises the geometrisation of physics [Vafa'96]

IIB picture

compactification space varying axio-dilaton $\tau(z) \iff$ 7-branes D(-1) corrections

F-theory picture base of fibration complex structure of fibre codim.-one singular fibres e.g. $\tau(z)$ [Billo et al.'11-'13]

But not all physics is geometrised...

F-theory via M-theory

F-theory is really defined via duality with M-theory [Witten'96]

- M-theory on elliptic 4-fold $ightarrow \mathcal{N}=2$ theory in $\mathbb{R}^{1,2}$
- F-theory limit = suitable limit of vanishing fibre volume $v_{T^2} \rightarrow 0$

Effective action by dimensional reduction of 11D sugra coupled toM2/M5-branes in this very subtle F-theory limit

D3-branes on $\mathbb{R}^{1,3}$ M2-branes on $\mathbb{R}^{1,2}$ D3-brane instantons
gauge fluxes \longleftrightarrow vertical M5-brane instantonsG_4-flux '1 leg along sing. fibres' G_4 -flux '1 leg along smooth fibres'

A lot of recent progress in exploring F-theory from 6D and 4D effective action perspective see talk by Grimm [Grimm'10][Grimm,Kerstan,Palti,TW'11][Bonetti,Grimm,(Hohenegger)'11,'12 &13], including α' -corrections: see talk by Weissenbacher [Hayashi,Garcia-Etxebarria,Savelli,Shiu'12][Grimm,Savelli,Weissenbacher][Grimm,Pugh]'13 Frontiers in String Phenomenology, Ringberg 2014 – p.7

II) Non-abelian gauge symmetry

Non-abelian gauge symmetry

Singularity type in co-dim. $1_{\mathbb{C}} \leftrightarrow$ gauge group G along 7-brane

Strategies to study F-theory on singular fibration:

- 1) Resolve singularity = moving in Coulomb branch of 3D M-theory, or
- 2) **Deform singularity** = Higgsing of singularity

First consider resolutions:

• resolve singular point in fibre by tree of \mathbb{P}^1_i $i = 1, \ldots, \operatorname{rk}(G)$

- Group theory of $G \iff$ extended Dynkin diagram
- Each node of Dynkin diagram
 ↔ stretched open strings
 ≡ G-gauge bosons

Codim 1, 2 and 3

G-gauge bosons: [Vafa, Morrison'96]

- non-Cartan part from M2-branes along chains of \mathbb{P}^1_i
- Cartan part from $C_3 = A_i \wedge [E_i]$

Enhancement in codimension 2 extra massless states from wrapped M2-branes [Katz,Vafa'96][Witten'96]

Further enhancement in codimension 3:

Yukawa couplings at intersections of matter curves

[Beasley, Heckman, Vafa; Donagi, Wijnholt'08]

Fiber splittings in codimension

Splitting of $\mathbb{P}^1_i \to$ increase of fibre rank in codimension

Example: SU(5)

GUT surface

(codimension 1)

matter curves

(codimension 2)

Yukawa points (codimension 3)

Weierstrass models

Simplest type of T^2 -fibration is given by a Weierstrass model:

- $P_T: y^2 = x^3 + fxz^4 + gz^6$ $(x, y, z) \simeq (\lambda^2 x, \lambda^3 y, \lambda^1 z) \leftrightarrow \mathbb{P}_{2,3,1}$
- f,g depend on coordinates on B_3 : sections of $ar{\mathcal{K}}^4$ and $ar{\mathcal{K}}^6$
- Fibre degenerates over loci where $\Delta := 4f^3 + 27g^2 = 0$

In fact, this describes an elliptic fibration, i.e. a T^2 -fibration with a section:

- A section = map that assigns to generic point in base a point in the fibre
- A section gives an embedding of B_3 into 4-fold, i.e. identifies B_3 with physical spacetime
- Zero section: $[x:y:z] = [1:1:0] \Rightarrow \{z = 0\}$ is the base
- Every elliptic fibration is birational to a Weierstrass model.

Note on recent developments:

- Many more representations of elliptic/ T^2 fibrations as hypersurfaces or compl. intersections exist
- For now stick to Weierstrass, but will come back to this soon

Weierstrass fibers in codim. 1

Codim. one fiber types completely known for Weierstrass models

- on K3: ADE type fibers + a few extra cases [Kodaira'63],[Néron'64]
- on 3-folds monodromies along 7-brane can 'fold' fibers [Tate'75]

Tate's algorithm: [Tate'75]; [Bershadsky et al.'96]

- $P_T: y^2 = x^3 + fxz^4 + gz^6$ $\Delta := 4f^3 + 27g^2$
- $f = f_0 + f_1 w + f_2 w^2 + \dots$, $g = g_0 + g_1 w + g_2 w^2 + \dots$ w = 0 base divisor
- vanishing orders of (f, g, Δ) determine codim. fibers together with extra monodromies (encoded in extra polynomials)
- Locally, in most cases one can achieve Tate form

$$P_{\rm T} = x^3 - y^2 - x y z a_1 + x^2 z^2 a_2 - y z^3 a_3 + x z^4 a_4 + z^6 a_6 = 0$$

and $a_i = a_{i,j} w^j$ for $a_{i,j}$ generic

- In few 'outlier' cases in addition a_{i,j} must be non-generic [Katz,Morrison,Schäfer-Nameki,Sully'11]
- Globally there may be obstructions status not clear

Fibers in codim 2 & 3

Challenge: Fibers in codimension 2 and 3 not fully classified geometrically

1) Codimension-two

- systematic description of 6D matter points for smooth 7-brane curves [Grassi,Morrison,11]
- inclusion of self-intersecting 7-branes in $6D \rightarrow higher tensor reps.$ [Morrison, Taylor'12]
- 2) Proposal: 'Box Graphs' [Hayashi, Lawrie, Morrison, Schäfer-Nameki'14]
 - sign decorated representation graph based on Kodaira fiber
 - blue (yellow) weight curves are effective (anti-effective)

↔ phases of classical Coulomb branch of 3D field theory [DeBoer,Hori,Oz][Aharony et al.'97], [Grimm,Hayashi'11][Hayashi,Lawrie,Nameki'13]

• claims to give complete classification of all possible enhanced fiber types in higher codimension - at least for otherwise generic Weierstrass models

Resolutions of Weierstrass models

Toric resolutions

- Foundational work ('tops'): [Candelas,Font,(Rajesh)'96][Perevalov,Skarke'97], ...
 - Toric encoding of Tate vanishing orders and resolution divisors as toric ambient space coordinates
 - Example SU(2):

 $P_T: y^2 + a_1 x y z + a_{3,1} y z^3 e_0 = x^3 e_1 + a_{2,1} x^2 z^2 e_0 e_1 + a_{4,1} x z^4 e_0 + a_{6,2} z^6 e_0^2$

$$E_i: e_i = 0$$
 is \mathbb{P}^1_i -fibration over $S \subset B_3$

$$\mathbb{P}_{i}^{1} = \{e_{i}\} \cap \{P_{T}|_{e_{i}=0}\} \cap \{y_{a}\} \cap \{y_{b}\}$$

$$i = 1 \text{ or } i = 0$$

- Explicit construction of toric resolutions of SU(5) GUTs on 4-folds [Blumenhagen,Grimm,Jurke,TW'09]
- and of SO(10) GUTS: [Chen,Knapp,Kreuzer,Mayrhofer,Knapp'10], ...

Specifics in higher co-dimensions

Detailed Resolution including analysis of codim- 2 and 3

- SU(5) fibrations:
 - 'algebraic resolution' [Esole, Yau][Marsano, Schäfer-Nameki]'11
 - 'toric resolution' [Krause, Mayrhofer, TW'11] [Grimm, Hayashi'11]
- Other gauge groups [Collinucci,Savelli'10/12] [Krause,Mayrhofer,TW'12]
 [Kuntzler,Schäfer-Nameki] [Tatar,Walters][Lawrie,Schäfer-Nameki]'12
- Different types of resolutions/triangulations are different phases of 3D Coulomb branch with same 4D physics [Hayashi,Lawrie,Schäfer-Nameki'13]

Recent/ongoing developments:

- Unifying approach behind toric and algebraic and one more type of resolution [Braun,Schafer-Nameki'14][Esole,Yau'14]
- Announced: Extension to all gauge groups explicit realization of all possible phases/Box graphs as resolved geometries

Deformations versus resolutions

- Resolutions = moving in 3D classical Coulomb branch
- Some geometries may not admit a crepant resolution
- Alternative way to study physics of singular fibration: (complex structure) deformation = Higgsing
 - Gauge and matter states arise from M2-branes along 2-cycles, which project to string junctions on B
 - Makes contact with formalism of multi-pronged strings/[p,q]-strings of [Gaberdiel,Zwiebach'97],[DeWolfe,Zwiebach'98]
 - Exemplified for K3 and K3× T^2/\mathbb{Z}_2 already in [Braun,Hebecker et al.'08/'09]
 - General formalism to determine matter spectrum based on deformations developed in [Grassi, Halverson, Shaneson'13 & 14]

III) Abelian gauge symmetry

The quest for U(1)

Motivation to study non-Cartan U(1)s:

- desirable for phenomenology as extra selection rules (proton decay, flavour structure,...)
- charged singlets plays role in phenomenology e.g. as neutrinos or in SUSY breaking
- precursor to construction of large class of gauge fluxes
- U(1) symmetries and instantons have rich interplay in Type II and heterotic compactifications
 What's the analogue in F-theory?

General fact from expansion $C_3 = \sum_{i=1}^{N} A_i \wedge w_i$:

non-Cartan U(1)s \leftrightarrow extra resolution divisors not fibered over base 4-cycle

Claim:

[Morrison, Vafa'96]

These correspond to extra sections of the fibration.

Mordell-Weil group

- 1) Elliptic curve: $\mathcal{E} = \mathbb{C}/\Lambda$ \leftrightarrow addition of points
- Rational points:

$$y^2 = x^3 + fxz^4 + gz^6$$
, $[x:y:z] \in \mathbb{P}^2_{2,3,1}$

• form an abelian group under addition = Mordell-Weil group E

$$E = \mathbb{Z}^r \oplus \mathbb{Z}_{k_1} \oplus \cdots \oplus \mathbb{Z}_{k_n}$$

2) Elliptic fibration: $\pi : Y \to \mathcal{B}$ Rational section σ :

$$\mathcal{B} \ni b \mapsto \sigma(b) = [x(b) : y(b) : z(b)]$$

- $\sigma(b)$ is a K-rational point in fiber
- degenerations in codimension allowed

Mordell-Weil group

Mordell-Weil group E(K) = group of rational sections

- zero-element = zero-section $\sigma_0: b \to [1:1:0]$ in $y^2 = x^3 + fxz^4 + gz^6$
- group law = fiberwise addition

Physical significance:

- Free part $\leftrightarrow U(1)$ gauge symmetries [Morrison, Vafa'96], [Klemm, Mayr, Vafa'98],...
- Torsion part \leftrightarrow Global structure of non-ab. gauge groups $(\pi_1(G))$ [Aspinwall,Morrison'98], ..., [Mayrhofer,Till,Morrison,TW'14] see talk by Mayrhofer

Systematic recent study of U(1)s via rational sections:

- \checkmark extra selection rules, e.g. crucial in F-theory GUTs
- \checkmark window to gauge fluxes and chirality
- \checkmark general interest in any theory with massless U(1)s (landscape studies, ...)

 $\label{eq:antoniadis} Anderson, Bizet, Borchmann, Braun, Braun, Choi, Collinucci, Cvetič, Etxebarria, Grassi, Grimm, Choi, Cvetič, Etxebarria, Choi, Cvetič, Etxebarr$

 $Hayashi,\ Keitel, Klevers, Küntzler, Krippendorf, Oehlmann, Klemm, Leontaris, Lopes, Mayrhofer,\ Mayorga,$

Morrison, Park,Palti,Piragua,Rühle,S-Nameki,Song,Valandro,Taylor,TW,... Frontiers in String Phenomenology, Ringberg 2014 – p.21

Shioda map

Divisors on elliptic 4-fold $\hat{Y}_4 \to \mathcal{B}$:

- zero-section Z
- pullback from base $\pi^{-1}(D_{\rm b})$
- resolution divisors F_m , $m = 1, \ldots, \operatorname{rk}(G)$
- rational sections S_i

Shioda map

- homomorphism $\varphi : \underbrace{E(K)}_{\text{group of sections}} \to \underbrace{NS(\hat{Y}_4) \otimes \mathbb{Q}}_{\text{group of divisors}}$ [Shioda'89]
 - $\varphi(S-Z) = S Z \pi^{-1}(\delta) + \sum l_i F_i, \qquad l_i \in \mathbb{Q}$
- transversality

$$\int_{\hat{Y}_4} [\varphi(S - Z)] \wedge [X] \wedge [\pi^{-1}\omega_4] = 0 \qquad X \in \{Z, F_l, \pi^{-1}(D_b)\}$$

Abelian gauge symmetries

F-theory on $Y_4 \leftrightarrow$ abelian gauge group $U(1)^{\operatorname{rk}(E(K))}$

Physics reason:

• section $\sigma \leftrightarrow [\mathcal{S}] \equiv [\varphi(\sigma)]$ is non-trivial in $H^{1,1}(Y_4)$

Shioda homomorphism $\varphi : \underbrace{E(K)}_{\text{group of sections}} \to \underbrace{NS(Y_4) \otimes \mathbb{Q}}_{\text{group of divisors}}$

[Shioda'89]

• [S]: 'generator' of U(1) gauge group (by duality with M-theory:

[Morrison, Vafa'96])

 $\underbrace{C_3}_{-\text{form}} = \underbrace{A}_{1-\text{form}} \land \underbrace{[S]}_{2-\text{form}} \qquad A: U(1) \text{ gauge potential}$

Arithmetic geometry $\stackrel{\text{F-theory}}{\longleftrightarrow}$ Physics of U(1) selection rules

Detailed field theory analysis: [Cvetic,Grimm,Klevers'12][Grimm,Kapfer,Keitel'13]

Understanding U(1)s

Questions:

- 1. Which complex structure restrictions lead to extra sections and thus to extra U(1)s?
- 2. What is the fiber structure in codim 2 and 3, i.e. which charged matter and couplings exist?
- 3. How does one combine this with non-abelian gauge symmetry?

Elliptic fibrations with non-trivial MW group in principle birational to Weierstass model with non-generic form for f and g

Guessing non-generic form of f and g hard, but recent progress via different fiber representations

Before coming to systematics, first consider a simple example

U(1)s from sections - I

$$P_T: y^2 = x^3 + a_1 x y z + a_2 x^2 z^2 + a_3 y z^3 + a_4 x z^4 + a_6 z^6$$
 [Grimm,TW'10]

Sections: $Sec_0 : [x : y : z] = [1 : 1 : 0], Sec_1 : [x : y : z] = [0 : 0 : 1]$

Over curve $a_3 = a_4 = 0$: fibre singular at (x, y) = (0, 0)

Blow-up: $(x, y) \rightarrow (x s, y s)$

- $P_T: y^2s = x^3s^2 + a_1xyzs + a_2x^2z^2s + a_3yz^3 + a_4xz^4$ with $(x, y) \neq (0, 0)$ and $(z, s) \neq (0, 0)$
- $Z: z = 0 \cap P_T = 0$ is holomorphic zero section as before
- Resolved extra section is $S: s = 0 \cap P_T = 0$:
 - \checkmark 1 point in fibre, but entire \mathbb{P}^1 over curve $a_3=a_4=0$
 - \checkmark rational section due to degeneracy over curve
 - ✓ Holomorphicity of section restored in alternative conifold-type resolution via complete intersection [Braun,Valandro,Collinucci'11]

M2-branes wrapping split fibre over curve $a_3 = 0 \cap a_4 = 0$ matter of charge $q = \int_{\mathbb{P}^1_i} w$, $w = S - Z - \bar{K}$

U(1)s - beyond $\mathbb{P}_{2,3,1}[6]$

✓ Different reps. of fibre, e.g. as hypersurfaces $\mathbb{P}_{1,1,2}[4]$ or $\mathbb{P}_{1,1,1}[3]$

1) Analytic analysis including charged singlets:

- one generic U(1) factor from $Bl^1 \mathbb{P}_{1,1,2}[4]$: [Morrison,Park'12] $B v^2 w + s w^2 = C_3 v^3 u + C_2 s v^2 u^2 + C_1 s^2 v u^3 + C_0 s^3 u^4$
- two generic U(1)s from $\operatorname{Bl}^2\mathbb{P}_{1,1,1}[3]$:

 $\begin{aligned} & [\mathsf{Borchmann},\mathsf{Palti},\mathsf{Mayrhofer},\mathsf{TW'13}] \ [\mathsf{Cvetic},\mathsf{Grassi},\mathsf{Klevers},\mathsf{Piragua'13}] \\ & \mathrm{v}\,\mathsf{w}(c_1\,\mathsf{w}\,s_1+c_2\,\mathrm{v}\,s_0)+\mathrm{u}\,(b_0\,\mathrm{v}^2\,s_0{}^2+b_1\,\mathrm{v}\,\mathsf{w}\,s_0\,s_1+b_2\,\mathrm{w}^2\,s_1{}^2)+\mathrm{u}^2(d_0\,\mathrm{v}\,s_0{}^2\,s_1+d_1\,\mathrm{w}\,s_0\,s_1{}^2+d_2\,\mathrm{u}\,s_0{}^2\,s_1{}^2)=0 \end{aligned}$

- three generic U(1)s from complete intersection [Cvetič,Grassi,Klevers,Piragua'13]
- 2) Toric analysis: [Braun,Grimm,Keitel'13] (see talk by Keitel)

of 16 reps. of torus as hypersurface of toric spaces (cf. [Grassi,Perduca'12])) including examples of 'accidental' non-generic U(1)s

Engineering $G \times U(1)^n$

2 types of restrictions:

1. Generic models:

restrictions of 'Tate polynomials' of various fiber representations (whenever available) by simple factorization

 $g_m = g_{m,i} w^i$, g_m otherwise generic

2. Non-generic models

more general restrictions due to non-trivial relations between g_m

ad 1) Generic models: 'Toric tops' [Bouchard, Skarke'03]

- $SU(5) \times U(1)$ in $\mathbb{P}_{2,3,1}[6]$ [Mayrhofer,Krause,TW'11][Grimm,Hayashi'11] generalised in [Mayrhofer,Krause,TW'12]
- ■₁₁₂[4] model: all 4 SU(5) tops in codim1,2,3 [Mayrhofer,Palti,TW'12]

 [Borchmann,Palti,Mayrhofer,TW'13]
- P₁₁₁[3] model: all 5 SU(5) tops in codim1,2,3 [Borchmann,Palti,Mayrhofer,TW'13] (see also [Cvetič,Grassi,Klevers,Piragua'13] for examples)
- list of all 37 SU(5) tops for 16 hypersurfaces + examples [Braun,Grimm,Keitel'13]

Engineering $G \times U(1)^n$

2) Non-generic models

General pattern: describable as 'special generic' models of lower-rank First exemplified for SU(5) in $\mathbb{P}_{112}[4]$ model in [Mayrhofer, Palti, TW]'12:

- $g_4 v^2 w + s w^2 = g_3 v^3 u + g_2 s v^2 u^2 + g_1 s^2 v u^3 + g_0 s^3 u^4$
- Constrain $g_m = g_{m,i} w^i$ such that if $g_{m,i}$ were generic, then G = SU(4)
- for $g_{m,i}$ factorising in specific way get instead G = SU(5) with resolution as a complete intersection
- gives rise to new features, e.g. two types of 10-curves \implies very relevant for pheno!
- no-go of multiple 10-curves for hypersurfaces: [Braun,Grimm,Keitel]'13

Systematic classification for $\mathbb{P}_{112}[4]$ recently in [Küntzler,Schäfer-Nameki]'14: 'Tate Trees'

Fibrations without section

Studied recently: see talks by Grimm and Garcia-Etxebarria

[Braun, Morrison] [Morrison, Taylor] [Anderson, Garcia-Etxebarria, Keitel, Grimm]'14

These have a multi-section = several points in fiber exchanged by monodromies around branch cuts

Several interesting features, including:

- 1. More general types of monodromies lead to new non-abelian fiber types e.g. type IV^* : E_6 , F_4 , G_2 (new) [Braun, Morrison]
- 2. Massless matter charged under a \mathbb{Z}_N -symmetry remains; understandable via a Higgsing procedure [Morrison, Taylor]
- 3. Field Theory analysis via fluxed circle reduction in [Anderson,Garcia-Etxebarria,Keitel,Grimm]'14

IV) Gauge fluxes

G_4 -Fluxes - Overview

Gauge fluxes described by $G_4 \in H^{2,2}(Y_4)$ with '1 leg along fiber'

a) $\int_{\hat{Y}_4} G_4 \wedge D_a \wedge D_b = 0$ b) $\int_{\hat{Y}_4} G_4 \wedge D_a \wedge Z = 0$ $\forall D_i \in H^2(B), Z$: fibre

Construction requires detailed knowledge of geometry of 4-fold Y_4

 $\mathbf{H^{2,2}(Y_4)} = \mathbf{H^{2,2}_{vert}(Y_4)} \oplus \mathbf{H^{2,2}_{hor}(Y_4)} \oplus \mathbf{H^{2,2}_{rest}(Y_4)}$

 $\mathbf{H}_{\mathrm{vert}}^{\mathbf{2},\mathbf{2}}(\mathbf{Y}_{\mathbf{4}})$ generated by elements of $H^{1,1} \wedge H^{1,1}$: factorisable fluxes \iff extra 2-forms obtained by resolution of singularities

• fluxes associated with massless U(1)s [Grimm,TW '10], [Braun,Collinucci,Valandro '11], [Krause,Mayrhofer,TW'11],[Grimm,Hayashi'11]

If $C_3 = A \land w \Rightarrow G_4 = F \land w$ $F \in H^{1,1}(B_3)$

• extra 'special' fluxes e.g. 'spectral cover' fluxes [Marsano,Schäfer-Nameki'11]

G_4 -Fluxes - Overview

Systematics of $H^{2,2}_{\text{vert.}}(\hat{Y}_4)$:

- either find all independent linear combinations of $H^{1,1} \wedge H^{1,1}$ [Cvetič,Klevers,Grassi,Piragua'13] [Braun,Grimm,Keitel'13]
- or exploit that each matter surface gives rise to one extra vertical flux
 - modulo relations [Borchmann,Mayrhofer,Palti,TW'13]

 $H_{hor}^{2,2}(Y_4)$: fluxes for specific compl. structure [Braun,Collinucci,Valandro '11]

• specific algebraic 4-cycle, e.g. given by complete intersection on ambient space which lies on \hat{Y}_4 for special complex structure

$\mathbf{H}^{\mathbf{2},\mathbf{2}}_{\mathrm{rest}}(\mathbf{Y_4})$: the rest

• e.g. Cartan fluxes over non-abelian brane which are trivial in ambient space [Mayrhofer,Palti,TW'13][Braun,Collinucci,Valandro '14]

Matter multiplicities in F-theory

of charged zero modes \leftrightarrow background gauge field C_3 with $G_4 = dC_3$

• chiral index:

• What is the spectrum of states beyond the chiral index? \implies need C_3 beyond its field strength [(Curio), Donagi'98], ...

$$0 \longrightarrow \underbrace{J^{2}(\hat{Y}_{4})}_{\oint C_{3} '\text{Wilson lines'}} \longrightarrow \underbrace{H^{4}_{D}(\hat{Y}_{4}, \mathbb{Z}(2))}_{\text{Deligne cohomology}} \xrightarrow{\hat{c}_{2}} \underbrace{H^{2,2}_{\mathbb{Z}}(\hat{Y}_{4})}_{\text{field strength } G_{4}} \longrightarrow 0$$

Framework for computation of non-chiral states: [Bies, Mayrhofer, Pehle, TW'14]

[cf. talk by Christoph Mayrhofer] Frontiers in String Phenomenology, Ringberg 2014 – p.33

Flux consistency conditions

- Quantisation: $G_4 + \frac{1}{2}c_2(\hat{Y}_4) \in H^4(\hat{Y}_4,\mathbb{Z})$ [Collinucci,Savelli '10 &'12]
- D3/M2 tadpole: $N_{M_2} + \frac{1}{2} \int_{\hat{Y}_4} G_4 \wedge G_4 = \frac{1}{24} \chi(\hat{Y}_4)$
- F-term condition: $G_4 \in H^{2,2}(\hat{Y}_4)$: \checkmark for $H^{2,2}_{\text{vert}}(\hat{Y}_4)$ for $H^{2,2}_{\text{hor}}(\hat{Y}_4)$ fixes compl. structure
- D-term condition: from detailed analysis of F/M- theory effective action [Grimm '10] [Grimm,Kerstan,Palti,TW '11]

$$D_X = -\frac{2}{\mathcal{V}_B} \int_{\hat{Y}_4} J \wedge G_4 \wedge \mathsf{w}_X$$

Chiral examples of SU(5) GUTs on resolved 4-folds: \checkmark explicit example of 3-generation $SU(5) \times U(1)_X$ model

- [Krause, Mayrhofer, TW '11], [Marsano, Clemens, Pantev, Raby, Tseng'12] \checkmark explicit examples of chiral $SU(5) \times U(1)_i$ models
- [Cvetic,Klevers,Grassi,Piragua][Grimm,Braun,Keitel] [Borchmann,Mayrhofer,Palti,TW]

Gluing data/T-branes

So far have assumed zero VEV for charged massless fields Φ_R , $\tilde{\Phi}_{\bar{R}}$ Simple 4D field theory model: $V_D \simeq |\phi|^2 - |\tilde{\phi}|^2 - \xi$, $\xi \simeq \int_S F \wedge J$ 2 different types of VEVs possible:

- 1. $\langle \phi \tilde{\phi} \rangle \neq 0$ in D-flat manner = brane recombination \leftrightarrow complex structure deformation (Higgsing)
- 2. 'Chiral' VEV $\langle \phi \rangle \neq 0$, $\langle \tilde{\phi} \rangle = 0$ D-flatness $\leftrightarrow F \neq 0$
 - = 'Gluing data'[Donagi,Wijnholt'11]/'T-branes' [Cecotti,Cordova,Heckman,Vafa'10]
- Phenomenological relevance of 'gluing':

Degrees of freedom affect matter spectrum and couplings

Conceptual interest in 'gluing':

Extra data not present in pure geometry as it does involve 'gauge flux' In particular, not accessible via Coulomb branch of resolution

Gluing data/T-branes

How is gluing data captured in compactifications?

- 1) Approach of [Anderson, Heckman, Katz'14]
 - Gluing = 3-form moduli $\int C_3$ Resolution on X_{smth} in singular limit X_{smth}
 - Compensating flux captured in G₄ on resolved space

• Encoded in element in 'singular limit' of Deligne cohomology

2) Announcement of [Collinucci,Savelli, to appear] Can be understood via certain matrix factorizations directly in singular limit

V) Frontiers in F-Phenomenology (small selection)

F-theory GUT Phenomenology

initiated by [Beasley,Heckman,Vafa; Donagi,Wijnholt'08]

- **GUT breaking** $SU(5) \rightarrow SU(3) \times SU(2) \times U(1)_Y$: hypercharge flux due to localisation of GUT brane in codimension
- Doublet-triplet (3-2) splitting (and μ -problem): localisation of $\overline{\mathbf{5}}_m$, $\mathbf{5}_{H^u}$, $\mathbf{5}_{H^d}$ on separate curves
- **Proton stability**: U(1) symmetries and localisation

All of these are now understood in global context, with one exception:

How can one achieve doublet-triplet splitting by hyperfluxes with H_u and H_d on different curves?

• Need fluxes and curves such that

 $\chi_{(\mathbf{3},1)_{-2Y}} = \int_{C_{\mathbf{5}_{\mathbf{H}}}} (F - 2F_Y) = 0, \qquad \chi_{(1,\mathbf{2})_{3Y}} = \int_{C_{\mathbf{5}_{\mathbf{H}}}} (F + 3F_Y) = \pm 1$

- Proof of principle in IIB limit in [Mayrhofer, Palti, TW'13]
- More on hypercharge flux: [Braun,Collinucci,Valandro'14]

Yukawa textures

Yukawas \leftrightarrow overlap of matter wavefunction at curve intersection point **Approach 1:** All families from the same curve

- For single Yukawa point, mass matrix of rank 1 [Heckman, Vafa'08]
- Subleading non-pert corrections from D3/M5-instantons see talk by Marchesano [Marchesano,Martucci'09] [Font,Ibanez,Marchesano13]

[Font,Marchesano,Regalado,Zoccarato'13]

• instantons are global data!

Font et al.,1307.8089

Approach 2: Different families from different curves

- U(1) selection rule allows for top coupling, but forbids others
- subleading correction either from instantons or due to Froggatt-Nielson mechanism after giving VEV to singlets [Palti'09], ...

Beyond SUSY GUTs

- Push $M_{\rm SUSY}$ up to 10^{11} GeV, where quartic Higgs coupl. $\lambda = 0$.
- Standard gauge coupling unification is destroyed.
- Effect can be cancelled in principle against hypercharge-flux correction of [Blumenhagen'08]

Scenario: see talk by Hebecker

 $M_{\rm SUSY} = 10^{11} {\rm GeV}$ $M_{\rm GUT} = 10^{14} {\rm GeV}$ [Ibanez, Marchesano, Regalado, Valenzuela'12]

Dimension 6 proton decay from X - Y boson exchange might favour lower SUSY scale $M_{SUSY} = 100$ TeV [Hebecker,Unwin'14]

Without TeV-SUSY may be more natural to give up GUT idea direct $SU(3) \times SU(2) \times U(1)_Y$ phenomenology within F-theory [Lin,TW'14]

Closing remarks

F-theory phenomenology has triggered great progress in F-theory compactifications in past 5-6 years

Many more topics should have been covered in this talk, including

- better understanding of duality to IIB [Donagi,Katz,Wijnholt'12]
 [Grimm,Kerstan,Palti,TW'11] [Braun,Collinucci,Valandro'14]
- connection to heterotic theory [Heckman,Lin,Yau'13]
- M5-instantons [Blumenhagen,Collinucci,Jurke'10] [Cvetič,Garcia-Etxebarria,Richter'09/Halverson'10] [Kerstan,TW'12],...
- connections to 'formal field theory' [Heckman, Morrison, Vafa13], ...

GUTs are a beautiful application, but F-theory is much broader

Elephant in the room:

Moduli stabilization and SUSY breaking:

in principle as in IIB, but more details will be worked out in future