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Why we like F-theory so much
F-theory is perhaps the most general currently controlled framework to

think about (non-perturbative) brane configurations

• beyond pert. Type II orientifolds due to [p,q]-branes

• still within (conformal) Calabi-Yau geometry and thus well-controlled

⇒ framework to understand geometric compactifications w/ branes

Being general pays off: Application to F-theory GUTs

[Beasley,Heckman,Vafa; Donagi,Wijnholt’08]

Hierarchy of localisation:

• SU(5) ↔ 4-cycle

• matter ↔ 2-cycle

• Yukawa ↔ point

E6-point ↔ 10105

Pic: Cordova, 0910.2955
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Progress in F-theory
Where were we 5-6 years ago:

� local model building via field theory on 7-branes see talk by Marchesano

� non-abelian singularities in codimension-one (and two) well understood

� . . . (!)

� no fully fledged (resolved) F-theory 4-fold suitable e.g. for F-GUTs

� not much worked out for codim-2, nothing for codim 3

� no (good) understanding of U(1) gauge groups

� no understanding of gauge fluxes in global geometries

Today, all these questions have been addressed

• Examples for all such cases worked out

• Ongoing work: systematization and -possibly in future - classification

• better understanding of dualities to M-theory, IIB and heterotic

• Pheno applications have triggered formal progress
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Overview
This review will be biased, incomplete and faulty.

I) Setting the stage for F-theory compactifications

II) Non-abelian gauge symmetry

III) Abelian gauge symmetry

IV) Gauge fluxes

V) Frontiers in Phenomenology
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I) Setting the stage for F-theory

compactifications
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The magic of F-theory
F-theory epitomises the geometrisation of physics [Vafa’96]

IIB language:

7-branes wrap 4-cycle S ∈ X6/σ

F-theory language:

S = locus of fiber degeneration

fold Y
CY four−

fold B
base three−

brane S

elliptic fiberdegenerate ell. fiber

IIB picture

compactification space

varying axio-dilaton τ(z)

7-branes

D(-1) corrections

⇐⇒

F-theory picture

base of fibration

complex structure of fibre

codim.-one singular fibres

e.g. τ(z) [Billo et al.’11-’13]

But not all physics is geometrised...

Frontiers in String Phenomenology, Ringberg 2014 – p.6



F-theory via M-theory
F-theory is really defined via duality with M-theory [Witten’96]

• M-theory on elliptic 4-fold → N = 2 theory in R1,2

• F-theory limit = suitable limit of vanishing fibre volume vT 2 → 0

Effective action by dimensional reduction of 11D sugra coupled to

M2/M5-branes in this very subtle F-theory limit

D3-branes on R1,3

D3-brane instantons

gauge fluxes

bulk fluxes

⇐⇒

M2-branes on R1,2

vertical M5-brane instantons

G4-flux ’1 leg along sing. fibres’

G4-flux ’1 leg along smooth fibres’

A lot of recent progress in exploring F-theory from 6D and 4D effective

action perspective see talk by Grimm

[Grimm’10][Grimm,Kerstan,Palti,TW’11][Bonetti,Grimm,(Hohenegger)’11,’12 &13],

including α′-corrections: see talk by Weissenbacher

[Hayashi,Garcia-Etxebarria,Savelli,Shiu’12][Grimm,Savelli,Weissenbacher][Grimm,Pugh]’13
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II) Non-abelian gauge symmetry
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Non-abelian gauge symmetry
Singularity type in co-dim. 1C ↔ gauge group G along 7-brane

Strategies to study F-theory on singular fibration:

1) Resolve singularity = moving in Coulomb branch of 3D M-theory, or

2) Deform singularity = Higgsing of singularity

First consider resolutions:

• resolve singular point in fibre by tree of P1
i i = 1, . . . , rk(G)

=⇒

• Group theory of G ⇐⇒ extended Dynkin diagram

• Each node of Dynkin diagram

↔ stretched open strings

≡ G-gauge bosons
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Codim 1, 2 and 3

G-gauge bosons: [Vafa,Morrison’96]

• non-Cartan part from M2-branes

along chains of P1
i

• Cartan part from C3 = Ai ∧ [Ei]

Enhancement in codimen-

sion 2

extra massless states

from wrapped M2-branes

[Katz,Vafa’96][Witten’96]

Further enhancement in codimension 3:

Yukawa couplings at intersections of matter curves

[Beasley,Heckman,Vafa; Donagi,Wijnholt’08]
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Fiber splittings in codimension
Splitting of P1

i → increase of fibre rank in codimension

Example: SU(5)

GUT surface

(codimension 1)

matter curves

(codimension 2)

Yukawa points

(codimension 3)
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Weierstrass models
Simplest type of T 2-fibration is given by a Weierstrass model:

• PT : y2 = x3 + fxz4 + gz6 (x, y, z) ≃ (λ2x, λ3y, λ1z) ↔ P2,3,1

• f, g depend on coordinates on B3: sections of K̄4 and K̄6

• Fibre degenerates over loci where ∆ := 4f3 + 27g2 = 0

In fact, this describes an elliptic fibration, i.e. a T 2-fibration with a section:
• A section = map that assigns to generic point in base a point in the fibre

• A section gives an embedding of B3 into 4-fold, i.e. identifies B3 with

physical spacetime

• Zero section: [x : y : z] = [1 : 1 : 0] ⇒ {z = 0} is the base

• Every elliptic fibration is birational to a Weierstrass model.

Note on recent developments:

• Many more representations of elliptic/T 2 fibrations as hypersurfaces or

compl. intersections exist

• For now stick to Weierstrass, but will come back to this soon

Frontiers in String Phenomenology, Ringberg 2014 – p.12



Weierstrass fibers in codim. 1
Codim. one fiber types completely known for Weierstrass models

• on K3: ADE type fibers + a few extra cases - [Kodaira’63],[Néron’64]

• on 3-folds monodromies along 7-brane can ’fold’ fibers [Tate’75]

Tate’s algorithm: [Tate’75]; [Bershadsky et al.’96]

• PT : y2 = x3 + fxz4 + gz6 ∆ := 4f3 + 27g2

• f = f0 + f1w + f2w
2 + . . ., g = g0 + g1w + g2w

2 + . . . w = 0 base divisor

• vanishing orders of (f, g,∆) determine codim. fibers together with extra

monodromies (encoded in extra polynomials)

• Locally, in most cases one can achieve Tate form

PT = x3 − y2 − x y z a1 + x2 z2 a2 − y z3 a3 + x z4 a4 + z6 a6 = 0

and ai = ai,jw
j for ai.j generic

• In few ’outlier’ cases in addition ai,j must be non-generic

[Katz,Morrison,Schäfer-Nameki,Sully’11]

• Globally there may be obstructions - status not clear
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Fibers in codim 2 & 3
Challenge: Fibers in codimension 2 and 3 not fully classified geometrically

1) Codimension-two

• systematic description of 6D matter points for smooth 7-brane curves

[Grassi,Morrison,11]

• inclusion of self-intersecting 7-branes in 6D → higher tensor reps. [Morrison,Taylor’12]

2) Proposal: ’Box Graphs’ [Hayashi,Lawrie,Morrison,Schäfer-Nameki’14]

• sign decorated representation graph based

on Kodaira fiber

• blue (yellow) weight curves are effective

(anti-effective)

↔ phases of classical Coulomb branch of 3D

field theory [DeBoer,Hori,Oz][Aharony et al.’97],

[Grimm,Hayashi’11][Hayashi,Lawrie,Nameki’13]

• claims to give complete classification of all possible enhanced fiber types in higher

codimension - at least for otherwise generic Weierstrass models
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Resolutions of Weierstrass models
Toric resolutions

• Foundational work (’tops’): [Candelas,Font,(Rajesh)’96][Perevalov,Skarke’97], . . .

• Toric encoding of Tate vanishing orders and resolution divisors as toric ambient

space coordinates

• Example SU(2):

PT : y2 + a1xyz + a3,1yz
3e0 = x3e1 + a2,1x

2z2e0e1 + a4,1xz
4e0 + a6,2z

6e20

Ei : ei = 0 is P1
i -fibration over S ⊂ B3

P1
i = {ei} ∩ {PT |ei=0} ∩ {ya} ∩ {yb}

i = 1 or i = 0

• Explicit construction of toric resolutions of SU(5) GUTs on 4-folds

[Blumenhagen,Grimm,Jurke,TW’09]

• and of SO(10) GUTS: [Chen,Knapp,Kreuzer,Mayrhofer,Knapp’10], . . .
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Specifics in higher co-dimensions
Detailed Resolution including analysis of codim- 2 and 3

• SU(5) fibrations:

• ’algebraic resolution’ [Esole,Yau][Marsano,Schäfer-Nameki]’11

• ’toric resolution’ [Krause,Mayrhofer,TW’11] [Grimm,Hayashi’11]

• Other gauge groups [Collinucci,Savelli’10/12] [Krause,Mayrhofer,TW’12]

[Kuntzler,Schäfer-Nameki] [Tatar,Walters][Lawrie,Schäfer-Nameki]’12

• Different types of resolutions/triangulations are different phases of 3D

Coulomb branch with same 4D physics [Hayashi,Lawrie,Schäfer-Nameki’13]

Recent/ongoing developments:

• Unifying approach behind toric and algebraic and one more type of

resolution [Braun,Schafer-Nameki’14][Esole,Yau’14]

• Announced: Extension to all gauge groups - explicit realization of all

possible phases/Box graphs as resolved geometries

Frontiers in String Phenomenology, Ringberg 2014 – p.16



Deformations versus resolutions
Resolutions = moving in 3D classical Coulomb branch

Some geometries may not admit a crepant resolution

Alternative way to study physics of singular fibration:

(complex structure) deformation = Higgsing

• Gauge and matter states arise from M2-branes along 2-cycles, which

project to string junctions on B

• Makes contact with formalism of multi-pronged strings/[p,q]-strings of

[Gaberdiel,Zwiebach’97],[DeWolfe,Zwiebach’98]

• Exemplified for K3 and K3×T 2/Z2 already in [Braun,Hebecker et al.’08/’09]

• General formalism to determine matter spectrum based on

deformations developed in [Grassi,Halverson,Shaneson’13 & 14]
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III) Abelian gauge symmetry
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The quest for U(1)
Motivation to study non-Cartan U(1)s:

• desirable for phenomenology as extra selection rules

(proton decay, flavour structure,...)

• charged singlets plays role in phenomenology - e.g. as neutrinos or

in SUSY breaking

• precursor to construction of large class of gauge fluxes

• U(1) symmetries and instantons have rich interplay in Type II

and heterotic compactifications

What’s the analogue in F-theory?

General fact from expansion C3 =
∑

i=1 Ai ∧ wi:

non-Cartan U(1)s ↔ extra resolution divisors not fibered over base 4-cycle

Claim: [Morrison,Vafa’96]

These correspond to extra sections of the fibration.
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Mordell-Weil group

1) Elliptic curve: E = C/Λ

↔ addition of points

1

τ τ+1

a

b

Rational points:

• have Q-rational coordinates (x, y, z) in Weierstrass model

y2 = x3 + fxz4 + gz6, [x : y : z] ∈ P2
2,3,1

• form an abelian group under addition = Mordell-Weil group E

E = Zr ⊕ Zk1
⊕ · · · ⊕ Zkn

2) Elliptic fibration: π : Y → B

Rational section σ:

B ∋ b 7→ σ(b) = [x(b) : y(b) : z(b)]

• σ(b) is a K-rational point in fiber

• degenerations in codimension allowed

fold Y
CY four−

fold B
base three−

brane S

elliptic fiberdegenerate ell. fiber
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Mordell-Weil group
Mordell-Weil group E(K)= group of rational sections

• zero-element = zero-section σ0 : b → [1 : 1 : 0] in y2 = x3 + fxz4 + gz6

• group law = fiberwise addition

E(K) = Zr

︸︷︷︸

free part

⊕ Zk1
⊕ · · · ⊕ Zkn

︸ ︷︷ ︸

torsionpart
Physical significance:

• Free part ↔ U(1) gauge symmetries [Morrison,Vafa’96],[Klemm,Mayr,Vafa’98],. . .

• Torsion part ↔ Global structure of non-ab. gauge groups (π1(G))

[Aspinwall,Morrison’98], . . . , [Mayrhofer,Till,Morrison,TW’14] see talk by Mayrhofer

Systematic recent study of U(1)s via rational sections:

X extra selection rules, e.g. crucial in F-theory GUTs

X window to gauge fluxes and chirality

X general interest in any theory with massless U(1)s (landscape studies, . . . )

Antoniadis,Anderson,Bizet,Borchmann,Braun,Braun,Choi,Collinucci,Cvetič,Etxebarria,Grassi,Grimm,

Hayashi, Keitel,Klevers,Küntzler,Krippendorf,Oehlmann,Klemm,Leontaris,Lopes,Mayrhofer, Mayorga,

Morrison, Park,Palti,Piragua,Rühle,S-Nameki,Song,Valandro,Taylor,TW,. . .
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Shioda map

Divisors on elliptic 4-fold Ŷ4 → B:
• zero-section Z

• pullback from base π−1(Db)

• resolution divisors Fm, m = 1, . . . , rk(G)

• rational sections Si

Shioda map

• homomorphism ϕ : E(K)
︸ ︷︷ ︸

group of sections

→ NS(Ŷ4)⊗Q
︸ ︷︷ ︸

group of divisors

[Shioda’89]

ϕ(S − Z) = S − Z − π−1(δ) +
∑

liFi, li ∈ Q

• transversality
∫

Ŷ4
[ϕ(S − Z)] ∧ [X] ∧ [π−1ω4] = 0 X ∈ {Z, Fl, π

−1(Db)}
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Abelian gauge symmetries
F-theory on Y4 ↔ abelian gauge group U(1)rk(E(K))

Physics reason:

• section σ ↔ [S] ≡ [ϕ(σ)] is non-trivial in H1,1(Y4)

Shioda homomorphism ϕ : E(K)
︸ ︷︷ ︸

group of sections

→ NS(Y4)⊗ Q
︸ ︷︷ ︸

group of divisors

[Shioda’89]

• [S]: ’generator’ of U(1) gauge group (by duality with M-theory:

[Morrison,Vafa’96])

C3
︸︷︷︸

3−form

= A
︸︷︷︸

1−form

∧ [S]
︸︷︷︸

2−form

A: U(1) gauge potential

Arithmetic geometry
F−theory
←→ Physics of U(1) selection rules

Detailed field theory analysis: [Cvetic,Grimm,Klevers’12][Grimm,Kapfer,Keitel’13]
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Understanding U(1)s
Questions:

1. Which complex structure restrictions lead to extra sections and thus to

extra U(1)s?

2. What is the fiber structure in codim 2 and 3, i.e. which charged

matter and couplings exist?

3. How does one combine this with non-abelian gauge symmetry?

Elliptic fibrations with non-trivial MW group in principle birational to

Weierstass model with non-generic form for f and g

Guessing non-generic form of f and g hard, but recent progress via

different fiber representations

Before coming to systematics, first consider a simple example
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U(1)s from sections - I
PT : y2 = x3 + a1xyz + a2x

2z2 + a3yz
3 + a4xz

4 +✟
✟✟a6z
6

[Grimm,TW’10]

Sections: Sec0 : [x : y : z] = [1 : 1 : 0], Sec1 : [x : y : z] = [0 : 0 : 1]

Over curve a3 = a4 = 0: fibre singular at (x, y) = (0, 0)

Blow-up: (x, y) → (x s, y s)

• PT : y2s = x3s2 + a1xyzs+ a2x
2z2s+ a3yz

3 + a4xz
4

with (x, y) 6= (0, 0) and (z, s) 6= (0, 0)

• Z : z = 0 ∩ PT = 0 is holomorphic zero section as before

• Resolved extra section is S : s = 0 ∩ PT = 0:

X 1 point in fibre, but entire P1 over curve a3 = a4 = 0

X rational section due to degeneracy over curve

X Holomorphicity of section restored in alternative conifold-type resolution via

complete intersection [Braun,Valandro,Collinucci’11]

M2-branes wrapping split fibre over curve a3 = 0 ∩ a4 = 0 matter of

charge q =
∫

P1
i

w, w = S − Z − K̄
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U(1)s - beyond P2,3,1[6]
X Different reps. of fibre, e.g. as hypersurfaces P1,1,2[4] or P1,1,1[3]

1) Analytic analysis including charged singlets:

• one generic U(1) factor from Bl1P1,1,2[4]: [Morrison,Park’12]

B v2 w+ sw2 = C3 v3 u+ C2 s v2 u2 + C1 s
2 v u3 + C0 s

3 u4

• two generic U(1)s from Bl2P1,1,1[3]:

[Borchmann,Palti,Mayrhofer,TW’13] [Cvetič,Grassi,Klevers,Piragua’13]

vw(c1 w s1 + c2 v s0) + u (b0 v2 s02 + b1 vw s0 s1 + b2 w2 s1
2) + u2(d0 v s0

2 s1 +

d1 w s0 s1
2 + d2 u s0

2 s1
2) = 0

• three generic U(1)s from complete intersection

[Cvetič,Grassi,Klevers,Piragua’13]

2) Toric analysis: [Braun,Grimm,Keitel’13] (see talk by Keitel)

of 16 reps. of torus as hypersurface of toric spaces (cf. [Grassi,Perduca’12]) )

including examples of ’accidental’ non-generic U(1)s
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Engineering G× U(1)n

2 types of restrictions:

1. Generic models:

restrictions of ’Tate polynomials’ of various fiber representations

(whenever available) by simple factorization

gm = gm,iw
i, gm otherwise generic

2. Non-generic models

more general restrictions due to non-trivial relations between gm

ad 1) Generic models: ’Toric tops’ [Bouchard,Skarke’03]

• SU(5)× U(1) in P2,3,1[6] [Mayrhofer,Krause,TW’11][Grimm,Hayashi’11]

generalised in [Mayrhofer,Krause,TW’12]

• P112[4] model: all 4 SU(5) tops in codim1,2,3 [Mayrhofer,Palti,TW’12]

[Borchmann,Palti,Mayrhofer,TW’13]

• P111[3] model: all 5 SU(5) tops in codim1,2,3 [Borchmann,Palti,Mayrhofer,TW’13]

(see also [Cvetič,Grassi,Klevers,Piragua’13] for examples)

• list of all 37 SU(5) tops for 16 hypersurfaces + examples [Braun,Grimm,Keitel’13]
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Engineering G× U(1)n

2) Non-generic models

General pattern: describable as ’special generic’ models of lower-rank

First exemplified for SU(5) in P112[4] model in [Mayrhofer,Palti,TW]’12:

• g4 v2 w+ sw2 = g3 v3 u+ g2 s v2 u2 + g1 s
2 v u3 + g0 s

3 u4

• Constrain gm = gm,iw
i such that if gm,i were generic, then

G = SU(4)

• for gm,i factorising in specific way get instead G = SU(5) with

resolution as a complete intersection

• gives rise to new features, e.g. two types of 10-curves

=⇒ very relevant for pheno!

• no-go of multiple 10-curves for hypersurfaces: [Braun,Grimm,Keitel]’13

Systematic classification for P112[4] recently in [Küntzler,Schäfer-Nameki]’14:

’Tate Trees’
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Fibrations without section
Studied recently: see talks by Grimm and Garcia-Etxebarria

[Braun,Morrison] [Morrison,Taylor] [Anderson,Garcia-Etxebarria,Keitel,Grimm]’14

These have a multi-section = several points in fiber exchanged by

monodromies around branch cuts

Several interesting features, including:

1. More general types of monodromies lead to new non-abelian fiber

types e.g. type IV ∗: E6, F4, G2 (new) [Braun,Morrison]

2. Massless matter charged under a ZN -symmetry remains;

understandable via a Higgsing procedure [Morrison,Taylor]

3. Field Theory analysis via fluxed circle reduction in

[Anderson,Garcia-Etxebarria,Keitel,Grimm]’14
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IV) Gauge fluxes
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G4-Fluxes - Overview
Gauge fluxes described by G4 ∈ H2,2(Y4) with ’1 leg along fiber’

a)
∫

Ŷ4
G4 ∧Da ∧Db = 0 b)

∫

Ŷ4
G4 ∧Da ∧ Z = 0 ∀Di ∈ H2(B), Z: fibre

Construction requires detailed knowledge of geometry of 4-fold Y4

H2,2(Y4) = H2,2
vert(Y4)⊕H2,2

hor(Y4)⊕H2,2
rest(Y4)

H2,2
vert(Y4) generated by elements of H1,1 ∧H1,1: factorisable fluxes

⇐⇒ extra 2-forms obtained by resolution of singularities

• fluxes associated with massless U(1)s [Grimm,TW ’10], [Braun,Collinucci,Valandro

’11], [Krause,Mayrhofer,TW’11],[Grimm,Hayashi’11]

If C3 = A ∧ w ⇒ G4 = F ∧w F ∈ H1,1(B3)

• extra ’special’ fluxes e.g. ’spectral cover’ fluxes [Marsano,Schäfer-Nameki’11]
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G4-Fluxes - Overview
Systematics of H2,2

vert.(Ŷ4):

• either find all independent linear combinations of H1,1 ∧H1,1

[Cvetič,Klevers,Grassi,Piragua’13] [Braun,Grimm,Keitel’13]

• or exploit that each matter surface gives rise to one extra vertical flux

- modulo relations [Borchmann,Mayrhofer,Palti,TW’13]

H2,2

hor(Y4): fluxes for specific compl. structure [Braun,Collinucci,Valandro ’11]

• specific algebraic 4-cycle, e.g. given by complete intersection on

ambient space which lies on Ŷ4 for special complex structure

H2,2
rest(Y4): the rest

• e.g. Cartan fluxes over non-abelian brane which are trivial in ambient

space [Mayrhofer,Palti,TW’13][Braun,Collinucci,Valandro ’14]
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Matter multiplicities in F-theory
# of charged zero modes ↔ background gauge field C3 with G4 = dC3

• chiral index:

ν+ − ν− =
∫

C4
G4

[Donagi,Wijnholt’09],

[Braun,Collinucci,Valandro] [Marsano,S-

Nameki], [Krause,Mayrhofer,TW],

[Grimm,Hayashi]’11 . . .

• What is the spectrum of states beyond the chiral index?

=⇒ need C3 beyond its field strength [(Curio),Donagi’98], . . .

0 J2(Ŷ4)
︸ ︷︷ ︸

∮
C3

′Wilson lines′

H4
D(Ŷ4,Z(2))

︸ ︷︷ ︸

Deligne cohomology

H
2,2
Z

(Ŷ4)
︸ ︷︷ ︸

field strengthG4

0
ĉ2

Framework for computation of non-chiral states: [Bies,Mayrhofer,Pehle,TW’14]

[cf. talk by Christoph Mayrhofer]
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Flux consistency conditions
• Quantisation: G4 +

1
2c2(Ŷ4) ∈ H4(Ŷ4,Z) [Collinucci,Savelli ’10 &’12]

• D3/M2 tadpole: NM2
+ 1

2

∫

Ŷ4
G4 ∧G4 = 1

24χ(Ŷ4)

• F-term condition: G4 ∈ H2,2(Ŷ4):

Xfor H2,2
vert(Ŷ4) for H2,2

hor(Ŷ4) fixes compl. structure

• D-term condition: from detailed analysis of F/M- theory effective

action [Grimm ’10] [Grimm,Kerstan,Palti,TW ’11]

DX = − 2
VB

∫

Ŷ4
J ∧G4 ∧ wX

Chiral examples of SU(5) GUTs on resolved 4-folds:

Xexplicit example of 3-generation SU(5)× U(1)X model

[Krause,Mayrhofer,TW ’11], [Marsano,Clemens,Pantev,Raby,Tseng’12]

Xexplicit examples of chiral SU(5)× U(1)i models

[Cvetic,Klevers,Grassi,Piragua][Grimm,Braun,Keitel] [Borchmann,Mayrhofer,Palti,TW]
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Gluing data/T-branes
So far have assumed zero VEV for charged massless fields ΦR, Φ̃R̄

Simple 4D field theory model: VD ≃ |φ|
2 − |φ̃|2 − ξ, ξ ≃

∫

S
F ∧ J

2 different types of VEVs possible:

1. 〈φφ̃〉 6= 0 in D-flat manner

= brane recombination ↔ complex structure deformation (Higgsing)

2. ’Chiral’ VEV 〈φ〉 6= 0 , 〈φ̃〉 = 0

D-flatness ↔ F 6= 0

= ’Gluing data’[Donagi,Wijnholt’11]/’T-branes’ [Cecotti,Cordova,Heckman,Vafa’10]

Phenomenological relevance of ’gluing’:

Degrees of freedom affect matter spectrum and couplings

Conceptual interest in ’gluing’:

Extra data not present in pure geometry as it does involve ’gauge flux’

In particular, not accessible via Coulomb branch of resolution
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Gluing data/T-branes
How is gluing data captured in compactifications?

1) Approach of [Anderson,Heckman,Katz’14]

• Gluing = 3-form moduli
∫
C3

on Xsmth in singular limit

• Compensating flux captured in

G4 on resolved space

• Encoded in element in ’singular limit’ of Deligne cohomology

0 J2(Xsmth)
︸ ︷︷ ︸

∮
C3

′Wilson lines′

H4
D(Xsmth,Z(2))

︸ ︷︷ ︸

Deligne cohomology

H
2,2
Z

(Xsmth)
︸ ︷︷ ︸

field strengthG4

0
ĉ2

2) Announcement of [Collinucci,Savelli, to appear]

Can be understood via certain matrix factorizations directly in singular limit
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V) Frontiers in F-Phenomenology
(small selection)
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F-theory GUT Phenomenology
initiated by [Beasley,Heckman,Vafa; Donagi,Wijnholt’08]

• GUT breaking SU(5)→ SU(3)× SU(2)× U(1)Y :

hypercharge flux due to localisation of GUT brane in codimension

• Doublet-triplet (3-2) splitting (and µ-problem):

localisation of 5̄m , 5Hu , 5Hd on separate curves

• Proton stability: U(1) symmetries and localisation

All of these are now understood in global context, with one exception:

How can one achieve doublet-triplet splitting by hyperfluxes with Hu and

Hd on different curves?

• Need fluxes and curves such that

χ(3,1)−2Y
=

∫

C5H

(F − 2FY ) = 0, χ(1,2)3Y
=

∫

C5H

(F + 3FY ) = ±1

• Proof of principle in IIB limit in [Mayrhofer,Palti,TW’13]

• More on hypercharge flux: [Braun,Collinucci,Valandro’14]
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Yukawa textures
Yukawas ↔ overlap of matter wavefunction at curve intersection point

Approach 1: All families from the same curve

• For single Yukawa point, mass matrix of

rank 1 [Heckman,Vafa’08]

• Subleading non-pert corrections from

D3/M5-instantons see talk by Marchesano

[Marchesano,Martucci’09][Font,Ibanez,Marchesano13]

[Font,Marchesano,Regalado,Zoccarato’13]

• instantons are global data!
Font et al.,1307.8089

Approach 2: Different families from different curves

• U(1) selection rule allows for top coupling, but forbids others

• subleading correction either from instantons or due to Froggatt-Nielson

mechanism after giving VEV to singlets [Palti’09], ...
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Beyond SUSY GUTs
• Push MSUSY up to 1011 GeV, where

quartic Higgs coupl. λ = 0.

• Standard gauge coupling unification

is destroyed.

• Effect can be cancelled in principle

against hypercharge-flux correction of

[Blumenhagen’08]

Scenario: see talk by Hebecker

MSUSY = 1011GeV MGUT = 1014GeV [Ibanez,Marchesano,Regalado,Valenzuela’12]

Dimension 6 proton decay from X − Y boson exchange might favour lower

SUSY scale MSUSY = 100 TeV [Hebecker,Unwin’14]

Without TeV-SUSY may be more natural to give up GUT idea

direct SU(3)× SU(2)× U(1)Y phenomenology within F-theory [Lin,TW’14]
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Closing remarks
F-theory phenomenology has triggered great progress in F-theory

compactifications in past 5-6 years

Many more topics should have been covered in this talk, including

• better understanding of duality to IIB [Donagi,Katz,Wijnholt’12]

[Grimm,Kerstan,Palti,TW’11][Braun,Collinucci,Valandro’14]

• connection to heterotic theory [Heckman,Lin,Yau’13]

• M5-instantons [Blumenhagen,Collinucci,Jurke’10][Cvetič,Garcia-

Etxebarria,Richter’09/Halverson’10][Kerstan,TW’12],...

• connections to ’formal field theory’ [Heckman,Morrison,Vafa13], ...

GUTs are a beautiful application, but F-theory is much broader

Elephant in the room:

Moduli stabilization and SUSY breaking:

in principle as in IIB, but more details will be worked out in future
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