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Our goal: 
  
Derive the discrete structure of the Standard Model: 
The gauge group and representations.  
!
The standard approach is to use Grand Unification. 
!
But this does not really work.



Grand Unification
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Fits beautifully in the (16) of SO(10)  
 
And the coupling constants meet each other if there is low energy 
supersymmetry.

The simplicity is undeniable: 

SU(3)× SU(2)× U(1)   ⊂   SU(5)   ⊂   SO(10) 
!
One family matter representation 
!

So how could this be wrong?



Grand Unification

Even the smallest group, SU(5), can break in two ways, to 
SU(3)×SU(2)×U(1) or SU(4)×U(1).	


The Standard Model Higgs is not determined, and does not fit in an 
SU(5) multiplet. 

In QFT the representations are determined if one assumes some kind of 
minimality, but what is the motivation for that? 

No top-down arguments selecting SU(5) or SO(10).

Even if correct GUTs do not lead to a derivation of the SM structure: 



String Theory

Numerous options in addition to GUTs: E6 or SO(10) may have seemed to emerge 
naturally in heterotic strings in 1984-1986, but this is really just a “lamppost” effect.


In other contexts (type-II, F-theory, higher level heterotic) GUTs appear by choice, 
not by necessity.


Automatic restriction to small representations, but not the right ones: 
 
 
 
  

Coupling convergence always requires human intervention.

String theory addresses the third point, and to some extent the 
fourth point, but it really makes the argument far worse.  

Heterotic: 
(16) of SO(10) is automatic, but there are additional fractionally charged representations in 
SU(3)×SU(2)×U(1) which usually appear in the massless spectrum. 

Type-II:  
Undesirable rank-2 tensors



The String Theory Landscape

Our working hypothesis is that the Standard Model is just one of many 
QFT’s that can be realised in the fundamental theory 
(so far string theory is the only candidate for this theory). 
!
So then how can we hope to derive the Standard Model? 
!
We still have two clues, that are inevitable in a large landscape:

Anthropic arguments 

Landscape distributions



We will show that in a certain minimal string setting 
where GUT realizations are available, anthropic 
arguments work far better: 

Gauge group determined to be SU(3)×SU(2)×U(1).	

Matter determined to be a number of standard families. 
Correct charge quantization without GUTs. 
Standard Model Higgs determined. 

Assuming at least one unbroken non-abelian and at 
least one unbroken electromagnetic interaction



GUTs, anomalies and Charge Quantization

The observed charged quantization is excellent evidence 
for BSM physics. 
!
Imagine we end up with a consistent theory of quantum 
gravity that imposes no constraints on QFT. Then this 
would allow particles with arbitrary real charges. It is hard 
to accept that we just happen to live in a universe with 
quantized charges. 
!
One often hears the arguments that anomaly cancellation 
imposes charge quantization.  
!



GUTs, anomalies and Charge Quantization

… but this is not true. 
!
One can add scalars or vector-like particles of arbitrary real 
charge. 
!
It is true that one Standard Model family with the observed 
charges is the smallest non-trivial chiral anomaly-free 
representation of SU(3)×SU(2)×U(1). 	

!
But the existence of three families and perhaps right-handed 
neutrinos ruins the argument. 



GUTs, anomalies and Charge Quantization
One can impose one-family charge quantisation on all three families by 
requiring that they all couple to the same Higgs. 
!
One can also require the see-saw mechanism to work, to restrict the 
charges of right-handed neutrinos to zero. 
!
But in QFT one can always add other charges, including chiral fermions 
with irrational charges (in SM units) that get their mass from the SM Higgs
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GUTs, anomalies and Charge Quantization

We need some kind of BSM physics to explain charge quantization. 
!
String theory is likely to quantize the charges  
(although not necessarily in the right way) 
!
If we already have string theory, do we also need GUTs?



Towards a derivation of the Standard Model

Main anthropic assumption: 
!
We are going to need electromagnetism and a 
handful of particles with various charges.  
!
We are not asking for a particular quantization, 
and we are not requiring particles of charge 6 
(Carbon) to exist, but too simple sets will not do 
(e.g. charges -1,1,2: just Hydrogen and Helium)



Towards a derivation of the Standard Model

Pure QED with set of charges has some problems: 
No fusion-fueled stars, no stellar nucleosynthesis, baryogenesis difficult, ….

But we focus on another problem, namely that there has to be a hierarchy 
between the Planck scale and the masses of the building blocks of life.
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Maximal number of building blocks with mass mp of 
an object that does not collapse into a black hole

Brain with 1027 building blocks requires a hierarchy of 10−9



Towards a derivation of the Standard Model

So to get a substantial number of light atoms, we have to solve a 
hierarchy problem for each of the constituents. 
!
In the Standard Model this is solved by getting the particle masses 
from a single Higgs. 
!
There may be landscape distribution arguments to justify this. 
!
Is having N light fermions statistically more costly than having a 
single light boson?



is needed, and there are indeed anthropic arguments that get much closer to the observed
hierarchy, but they make much stronger assumptions about the laws of physics. See [40]
and [39] for further discussion and references.

Nothing we assumed so far precludes using pure QED with elementary particles as
building blocks for life. This idea encounters numerous challenges. There would be
no fusion-fueled stars, but degenerate stars, like neutron stars or white dwarfs in our
Universe, could take over their rôle [41]). There would be no possibility for Big Bang or
stellar nucleosynthesis. Instead one needs a mechanism analogous to baryogenenis in our
Universe, where a net surplus of fundamental particles over anti-particles is created for all
relevant building blocks of matter. It is totally unclear how to realize that in pure QED.
But we will focus here on another problem, namely the huge hierarchy problem caused
by a substantial number of light particles.4

2.3 The Gauge Hierarchy

In the Standard Model the proliferation of light particles is solved by obtaining all masses
of the light fundamental fermions from a single scale, the mass of the Higgs boson. Note
that the strong scale (set in a natural way by means of dimensional transmutation) dom-
inates the proton and neutron masses, but that is only true because the quark masses are
small.

Inspired by this we add the Higgs mechanism to our list of assumptions. We will
require that the fundamental theory has some high energy gauge group G, broken at
some small scale by the vev of a Higgs to a subgroup H. This is not really an anthropic
assumption, but an assumption about landscape statistics. We are assuming that it is
statistically less costly to make a single scalar light than a number (at least three) of
fermions. If that is the case, one would expect that the high energy gauge group has a
chiral, massless spectrum, with just one light scalar. Anything non-chiral, and all other
bosons would be very massive, because it is too unlikely for them to be light. Of course
this is precisely what we observe.

2.3.1 Naturalness and the Hierarchy Problem

The aforementioned statistical assumptions may seem to run counter to the idea of techni-
cal naturalness. The µ2 mass parameter in the Higgs potential receives quadratic correc-
tions from any high scale, so that its perturbative expansion takes roughly the following
form

µ2
phys = µ2

bare +
X

i

ai⇤
2 , (1)

For simplicity we use here a single large scale ⇤. The existence of a hierarchy problem
is indisputable if there exist particles with masses larger than the weak scale. In string
theory there are particles with Planck masses, and hence in this context one cannot solve

4The particles must be light, but not massless, since massless charged particles have disastrous impli-
cations. We will return to this later.
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the hierarchy problem by denying its existence. Eq. (1) does not imply that µ2
phys is of

order ⇤2, but only that in a su�ciently large ensemble of theories with coe�cients ai of
order 1, the fraction of theories with a desired mass scale µphys = m is of order m2/⇤2.

By contrast, technically natural parameters � renormalize as

�phys = �bare

 
X

i

bilog(⇤/Q)

!
(2)

where Q is some low energy reference scale. The important di↵erence with (1) is not only
that the corrections are logarithmic, and hence of order 1, but also that the corrections
are all proportional to the parameter itself. Hence if the parameter is small, it stays small.

However, whereas (1) determines the statistical distribution of the parameter, (2) does
not. Any fundamental distribution of µ2

bare is washed out by the loop corrections, but this
has the advantage that we can at least estimate the statistical cost. This is not the case
for (2), since knowing the distribution requires knowing something about the fundamental
theory. If, for example, a non-chiral fermion mass is given by �v, where v is a Planck
scale vev (one may think of a modulus), and if � has a flat distribution, the statistical
cost of a single light fermion with mass m is m/⇤, and three light fermions would be more
costly than a single boson, i.e. (m/⇤)3 ⌧ (m/⇤)2. The observed Yukawa couplings for
quarks and leptons do not suggest a flat, but scale invariant distribution [42]. However,
such a distribution requires a cut-o↵ at small �, or else exponentially small values are
highly preferred. This is apparently not the case for the observed Yukawa couplings, nor
for masses of vector-like fermions (since we have not seen any yet). In some string theory
examples, those couplings originate from exponents of actions, which are given by the
surface area of a world-sheet enclosed by three branes (word-sheet instantons). On a
compact surface, these areas are geometrically limited. This would lead to a sharp fall-o↵
of the distribution at small values of the coupling constant, which could well be much
stronger than a power law.

All of this shows that the intuitive idea that “technically natural” always wins against
“technically not natural” is not a foregone conclusion. For technically not natural param-
eters the statistical cost can be computed assuming all terms in (1) have their natural
size. But for technically natural parameters we need to know the unknown cost of a pa-
rameter being very far from its natural value. We are assuming that for three or more
fermions the latter is higher. Then statistically a single Higgs always wins against three
or more non-chiral light fermions. Basically we are viewing the Higgs mechanism as a
solution rather than the cause of the hierarchy problem! An additional advantage of this
assumption is that it is very unlikely that there is more than one Higgs. Models requiring
several low scale Higgs mechanisms to arrive at atomic physics are severely challenged
statistically in comparison to the Universe we observe.

The previous argument would be more convincing if the Higgs hierarchy problem is
reduced by low energy supersymmetry (or other mechanisms such as large extra dimen-
sions or compositeness). Then it would be much more plausible that the statistical cost
of a single Higgs scale outweighs that of three or more fermions [43]. However, since the
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Renormalization of fermion masses

Computable statistical cost of about 10−34 for the observed 
hierarchy. This is the “hierarchy problem”.

Statistical cost determined by landscape distribution of λbare



It is certainly possible that one fundamental scalar wins against N 
fermions for moderate N (even for N ≥ 3). 
!
One would also have to show that one fundamental scalar wins 
against dynamical Higgs mechanism or low energy supersymmetry. 
!
Not enough is known theoretically to decide this, so we take 
experiment as our guiding principle. 
!
Currently it seems we have a single Higgs + nothing. 
!
This suggests that in a landscape the Higgs is not the origin but the 
solution of the Hierarchy problem: it could be the optimal way to 
create the anthropically required large hierarchy.  
!
This would immediately imply that there is only a single Higgs. 



No Higgs?

Statistically, no Higgs is better than one. 
If there is a credible alternative to the SM with only dynamical symmetry breaking, 
that would be a serious competitor.  
!
But generically these theories will have a number of problems. 
!
Consider the SM without a Higgs. It is well-known that in that case the QCD 
chiral condensate will act like a composite Higgs and give mass to the quarks. 
The photon survives as a massless particle.  
!
But the leptons do not acquire a mass, and the quark masses are not tuneable. 
!
Massless charged leptons turn the entire universe into an opaque particle-
antiparticle plasma. (C. Quigg, R. Shrock, Phys.Rev. D79 (2009) 096002) 



String Theory Input
!
We would like to enumerate all QFT’s with a gauge group and chiral 
matter. Non-chiral matter is assumed to be heavy, with the exception 
of at most one scalar field, the Higgs. We demand that after the 
Higgs gets a vev, and all possible dynamical symmetry breakings 
have been taken into account, at least one massless photon survives, 
and all charged fermions are massive. 
!
This condition is very restrictive, but still has an infinite number of 
solutions in QFT.  
!
So at this point we invoke string theory. Its main rôle is to restrict the 
representations. It also provides a more fundamental rationale for 
anomaly cancellation. 
!



Intersecting Brane Models

We will assume that all matter and the Higgs bosons are 
massless particles in intersecting brane models. 
!
The low energy gauge group is assumed to come from S 
stacks of branes. There can be additional branes that do not 
give rise to massless gauge bosons: O(1) or U(1) with a 
massive vector boson due to axion mixing.  
!
We start with S = 1, and increase S until we find a solution. 
!
S = 1 is easy to rule out. So we go to S = 2.



Two stack models

Y = qaQa + qbQb

an anti-symmetric tensor breaks SU(N) to Sp(N) (if N is even) or Sp(N�1) (if N is
odd), or to SU(N�2) ⇥ SU(2). The only way these symmetry breakings could yield a
U(1) is if SU(2) is broken by means of a symmetric tensor to SO(2). But SU(2) has
no complex representations, and hence is not a suitable high-energy theory by itself; it
violates assumption 3. An adjoint representation breaks SU(N) to SU(p)⇥SU(q)⇥U(1),
p + q = N . This looks promising, because at least it produces a U(1). But it is easy to
see that this can never break a chiral representation to a non-chiral one. We will discuss
this in more detail for two-stack models in section 4.2.3.

4.2 Two Stack Models

The next possibility is to obtain the U(1) from two brane stacks. In this paper we will
only consider the possibility that both are unitary, and consider a general U(M)⇥U(N)
two-stack model. The gauge group is SU(M)⇥ SU(N)⇥U(1)2, but anomalies (canceled
by a Green-Schwarz mechanism) will leave at most one linear combination of the two
U(1)’s unbroken. We will write it as Y = qaQa + qbQb where Qa and Qb are the brane
charges of the two stacks. The possibilities for chiral matter representations are then
(note that adjoints are not chiral, so we do not have to consider them)

Q (M,N, qa + qb)

U (A, 1, 2qa)

D (M, 1,�qa)

S (S, 1, 2qa)

X (M,N, qa � qb) (10)

L (1, N,�qb)

T (1, S, 2qb)

E (1, A, 2qb)

where A, S denote (anti)symmetric tensors. We have given these multiplets suggestive
names referring to the Standard Model, but of course those names can correspond to
genuine quarks and leptons only for M = 3 and N = 2. We will use variables Q,U,D, . . .,
which can be any integer, to denote the multiplicity of these representations. If a mul-
tiplicity is negative this implies a positive multiplicity for the conjugate representation.
The representations themselves will be denoted asQ,U,D, . . .. We have chosen to use the
anti-vectors for L and D, because then the Standard Model multiplicities will be positive
integers. Note however that for notational convenience we have not added superscripts
to denote anti-particles. So U and D correspond to anti-quarks in the Standard Model,
and L corresponds to anti-leptons.

4.2.1 Anomaly cancellation conditions

The integer multiplicities are subject to anomaly cancellation. We will denote anomalies
by a three-letter code, where ‘S’,‘W’ and ‘Y’ refer to SU(M), SU(N) and U(1), and ‘G’

22

SU(M)⇥ SU(N)⇥ U(1)

qa, qb determined by axion couplings



Anomalies

There are six kinds of anomalies: 
!

SSS	
WWW	
YYY	
SSY	
WWY	
GGY

SU(M)⇥ SU(N)⇥ U(1)

S     W     Y

Mixed gauge-gravity

} From tadpole cancellation: also for M, N < 3

At most one linear combination of the U(1)’s is anomaly-free 



Anomalies

to gravity. Hence we have anomalies of type SSS, SSY, WWW, WWY, YYY and GGY.
Note that the WWW anomaly is trivial in field theory for N = 2, but in a brane model
the requirement of tadpole cancellation still imposes it as if it were a non-abelian anomaly.
Hence the anomaly contributions of vectors, symmetric and anti-symmetric tensors are 1,
N + 4 and N � 4 respectively, even for N = 2 (the case N = 1 is discussed below). We
will see however that there is a linear dependence among the six anomalies, so that the
WWW anomaly is not really needed. Since we want to assume as little as possible about
the string theory origin of these gauge groups, it is useful to know that the anomalies we
use are really just the field-theoretic ones. Furthermore, we can use the linear dependence
to trade the awkward YYY anomaly for the much more manageable WWW anomaly.

The condition of anomaly cancellation constrains the parameters qa and qb as well as
the particle multiplicities. Note that in brane models, U(1)’s do not have to be anomaly
free, because their anomalies are canceled by the Green-Schwarz mechanism. But in
that case the corresponding gauge boson acquires a mass, and cannot be the one of the
Standard Model. In brane models it may also happen that a non-anomalous U(1) acquires
a mass from mixing with axions, but this is irrelevant for our purposes. There exist models
where this is not the case, and those are the only ones of interest.

The anomaly cancellation conditions can be greatly simplified and brought to the
following form

(S + U)q̃a = C1

(T + E)q̃b = �C2

(D + 8U)q̃a = (4 +M)C1 +NC2 (11)

Lq̃b +Dq̃a = 0

2Eq̃b + 2Uq̃a = C1 � C2

Here q̃a ⌘ Mqa, q̃b ⌘ Nqb, C1 = �(Q�X)q̃b and C2 = (Q +X)q̃a. The Standard model
parameter values are q̃a = �1, q̃b = 1, C1 = C2 = �3, Q = U = D = L = E = 3 and
S = T = X = 0, and of course satisfy these equations for M = 3, N = 2. For any M and
N there are just five independent equations, demonstrating that the WWW equation is
redundant even if N 6= 2.

In the derivation of these equations we used N 6= 1, M 6= 1, qa 6= 0 and qb 6= 0. If
N or M are equal to one, the SSS and WWW anomaly conditions continue to hold in a
brane model, because they follow from the requirement of tadpole cancellation. If N = 1
this leads to the strange results that the open string sector E contributes to anomaly
cancellation, even though it contains no massless states! However, the reason (11) is not
necessarily valid is that the SSY and/or WWY anomaly cancellation conditions have no
meaning anymore if M and/or N are equal to 1.

If we choose just one of the two brane stack multiplicities equal to one, we lose one
equation, but we still have five left. Since the original set of six equations has a redun-
dancy, one may expect to obtain exactly the same equations, and by inspection this is
indeed correct. Note that for N = 1 or M = 1 the anomaly cancellation conditions are
not just the field theoretic ones, but that there is one stringy SSS or WWW condition.
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Only five independent ones. In most cases of interest, 
the stringy SU(2)3 anomaly is not an independent constraint 

(qa = 0 and/or qb = 0 must be treated separately; see paper)



Abelian theories

Single U(1): Higgs must break it, no electromagnetism left 
  U(1)×U(1): No solution to anomaly cancellation for two stacks

So in two-stack models we need at least one non-abelian factor in 
the high-energy theory.



Strong Interactions
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interaction to bind these particles into bound states with larger charges (hadrons and 
nuclei in our universe).  
!
For this to work there has to be an approximately conserved baryon number. 
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not become part of a larger group at the “weak” scale. 
!
Note that SU(2) does not have baryon number, and the weak scale is near the 
constituent mass scale. We cannot allow baryon number to be broken at that scale. 
!
But let’s just call this an additional assumption. 
!



Higgs Choice

Therefore we do not consider bi-fundamental Higgses breaking both U(M) 
and U(N). We assume that U(N) is the broken gauge factor. Then the only 
Higgs choices are L,T and E. 
!

!
This implies that at least one non-abelian factor is not broken by the Higgs. 
We take this factor to be U(M). 



SU(M)×U(1) 

Higgs can only break U(1), but then there is no electromagnetism. 
!
Hence there will be a second non-abelian factor, broken by the Higgs. 



M = 3, N = 2

Higgs = L
Decompose L, E, T: chiral charged leptons avoided only if  

                                      L = E, T = 0 

Substitute in anomaly equation:

For M = 3, N = 2: S = 0

Sq̃a =

✓
5�N �M

2M

◆
C1

Therefore we get standard QCD without symmetric tensors.



M = 3, N = 2

Sq̃a =
1
2(C2 � C1). Now we substitute this into the third equation of (11), and obtain

(5�N)C1 = MC2 (12)

For N = 2 and M = 3 this result implies that C1 = C2, and hence S = 0 (note that
there is a second solution to the condition C2 = C1, namely M = 4, N = 1, and we will
see later what that implies). Hence to avoid chiral leptons for M = 3 we must set S = 0.
Since the anti-symmetric tensor of SU(3) is an anti-triplet we are now in the desirable
situation of an SU(3) gauge group with matter only in the fundamental representation.

We will present the rest of the argument without directly using the anomaly conditions
(11), because this is more insightful, and the derivation of (11) is straightforward, but
rather tedious. The quark multiplets split up in the following way

Q(3, qa) +Q(3, qa + 2qb) +X(3, qa) +X(3, qa � 2qb)� U(3,�2qa)�D(3, qa) , (13)

where we have conjugated U and D in order to have only triplets. We have to pair all
these components. The first term can be paired with a component of X and with D,
without any constraints on charges. But the second component can only be paired with
U, since qb 6= 0. Hence if Q 6= 0, we find the relation qa+2qb = �2qa, i.e. 3qa = �2qb, and
Q = U . This charge relation implies immediately that there is no partner for the second
component of X, so that X must vanish. Then the first component of Q can only pair
with D, and we get D = Q. If Q = 0, we can apply the same reasoning to X, with the
result 3qa = +2qb, and X = U = D. This is just the solution with X $ Q interchange
that exists on general grounds. If Q and X both vanish there is no solution, since qa 6= 0.

All anomalies involving SU(3) already cancel, and the quark contribution to the U(1)
trace anomaly cancels by itself. The relation between the charges qa and qb is the familiar
one from SU(5), and so we know that all particles have their familiar charges. We choose
the Standard Model normalization conventions. We get the following equations for L, T
and E

SSY 1
2Q� 1

2L+ 4T = 0

GGY �L+ 3T + E = 0

YYY �3
4Q� 1

4L+ 3T + E = 0

which imply that L = E = Q and T = 0. Note that the SU(2) anomaly 3Q�L+6T �2E
is not really needed, and follows from the others. We do not need to check that the Higgs
does indeed give mass to all quarks and leptons, because this is the Standard Model.

Triplet Higgs

The triplet Higgs can break SU(2)⇥U(1) in two ways [52], depending on the signs of two
terms in the Higgs potential. The Higgs vev can either take the form

hHi =
✓
0 0
0 v

◆
, (14)
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Quark sector

Q+X−D = 0	

Q = U  if and only if  qa+2qb  = −2qa	

                    or 
X = U  if and only if  qa−2qb  = −2qa 

In both cases we get an SU(5) type charge relation, and 
hence standard charge quantization
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M = 3, N = 2

Hence either Q = 0 or X = 0; the choice is irrelevant. 
 
Take X = 0. 
Then D = Q = U, T = 0, L = E 
Remaining anomaly conditions: L = Q 
!
Hence the only solution is a standard model family, occurring Q times.

The branes a and b are in principle unrelated, and can generally not 
be combined to a U(5) stack 



M = 3, N = 2

Higgs = T
The symmetric tensor can break SU(2)×U(1) in two ways, either to U(1), in the 
same way as L, or to SO(2).

No allowed Higgs couplings to give mass to the charged components of L, E and T,  
so we must require E = L = T = 0. Then there is no solution.

Breaking to U(1)  (same subgroup as L)

Breaking to SO(2)
Then SO(2) must be electromagnetism. Y-charges forbid cubic T couplings, so T = 0 to 
avoid massless charged leptons. Quark charge pairing (to avoid chiral QED, broken by 
QCD) requires Q =−X. If we also require S = 0, everything vanishes.

Note: stronger dynamical assumption: S = 0



M > 3  and/or  N > 2

Unless Q = −X, we get quarks and anti-quarks coupling to SU(N) 
representations that are not mutually conjugate. Hence dynamical 
symmetry breaking breaks SU(N) completely. 
!
If we also use the fields D and U (for M = 3) then SU(N)×U(1) 
contains a current that is non-chiral. It must be a linear combination  
!
                                       Qem =  Λ + Y 
!

Where Λ ∈ SU(N). There can be at most one such U(1) factor. 
  

(Q = −X: see paper)



M > 3  and/or  N > 2

Lepton charge pairing:

at least possible in principle to obtain a solution. It follows that any solution must involve
the U(1), and that there can be only one U(1), because otherwise a linear combination
would live entirely within G, which was already ruled out.

The Main Argument

We will now determine the possibilities for the surviving U(1), assuming Q 6= �X. It
will in any case be a linear combination of a generator of the non-abelian flavor group
SU(N) and Y .

Qem = ⇤+ Y (21)

Note that we use the entire unbroken flavor group here. The Higgs just breaks SU(N) to
a subgroup, which by dynamical symmetry breaking is broken to a smaller subgroup. But
in any case, the final result is of the form (21), with ⇤ = diag(�1, . . . ,�N), and

P
i �i = 0.

The advantage of working with the full group SU(N) is that the results can be applied
directly to all choices for the broken subgroup G listed above. Furthermore it will contain
all possibilities of dynamical symmetry breaking of the flavor group as well as the most
general Higgsless case.

To avoid massless charged leptons it is in any case essential to avoid chiral ones. This
implies that the trace of Qem in the lepton sector much vanish. Note that this trace is
also the leptonic contribution to the mixed anomaly of Qem with gravity. So if this trace
does not vanish, the strong SU(M) interactions would have to produce chiral massless
charged baryons to match it. But we have already assumed that this will not happen.
This trace yields the equation

� L+ (N � 1)E + (N + 1)T = 0 . (22)

which can be added to the set of anomaly equations.
These can now be solved completely in terms of C1 and C2. The result is

U = 3+M
6 C1

S = 3�M
6 C1

D = NC2 � M
3 C1

Lq̃b = �NC2 +
M
3 C1

Eq̃b = �1
2C2 +

M
6 C1

T q̃b = �1
2C2 � M

6 C1

For M = 3 this implies S = 0. As was the case for N = 2 this follows from lepton
charge pairing, but under the slightly stronger condition that no non-abelian factor is left
unbroken in the flavor group. Note that in the case N = 2 we also used T = 0. We see
now that only (22) is needed.

The derivation of (22) holds only if there is a non-vanishing contribution to Qem from
Y . Hence it can be avoided if the Higgs mechanism breaks the Y charge. This happens
for the SU(N) ! SO(N) breaking pattern for H = T, and for the SU(N) ! Sp(N)
breaking pattern for H = E, N even. We will discuss these cases separately in section 5.
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Combined with the five anomaly constraints this gives the following solution

For M = 3, S = 0 automatically!

to gravity. Hence we have anomalies of type SSS, SSY, WWW, WWY, YYY and GGY.
Note that the WWW anomaly is trivial in field theory for N = 2, but in a brane model
the requirement of tadpole cancellation still imposes it as if it were a non-abelian anomaly.
Hence the anomaly contributions of vectors, symmetric and anti-symmetric tensors are 1,
N + 4 and N � 4 respectively, even for N = 2 (the case N = 1 is discussed below). We
will see however that there is a linear dependence among the six anomalies, so that the
WWW anomaly is not really needed. Since we want to assume as little as possible about
the string theory origin of these gauge groups, it is useful to know that the anomalies we
use are really just the field-theoretic ones. Furthermore, we can use the linear dependence
to trade the awkward YYY anomaly for the much more manageable WWW anomaly.

The condition of anomaly cancellation constrains the parameters qa and qb as well as
the particle multiplicities. Note that in brane models, U(1)’s do not have to be anomaly
free, because their anomalies are canceled by the Green-Schwarz mechanism. But in
that case the corresponding gauge boson acquires a mass, and cannot be the one of the
Standard Model. In brane models it may also happen that a non-anomalous U(1) acquires
a mass from mixing with axions, but this is irrelevant for our purposes. There exist models
where this is not the case, and those are the only ones of interest.

The anomaly cancellation conditions can be greatly simplified and brought to the
following form

(S + U)q̃a = C1

(T + E)q̃b = �C2

(D + 8U)q̃a = (4 +M)C1 +NC2 (11)

Lq̃b +Dq̃a = 0

2Eq̃b + 2Uq̃a = C1 � C2

Here q̃a ⌘ Mqa, q̃b ⌘ Nqb, C1 = �(Q�X)q̃b and C2 = (Q +X)q̃a. The Standard model
parameter values are q̃a = �1, q̃b = 1, C1 = C2 = �3, Q = U = D = L = E = 3 and
S = T = X = 0, and of course satisfy these equations for M = 3, N = 2. For any M and
N there are just five independent equations, demonstrating that the WWW equation is
redundant even if N 6= 2.

In the derivation of these equations we used N 6= 1, M 6= 1, qa 6= 0 and qb 6= 0. If
N or M are equal to one, the SSS and WWW anomaly conditions continue to hold in a
brane model, because they follow from the requirement of tadpole cancellation. If N = 1
this leads to the strange results that the open string sector E contributes to anomaly
cancellation, even though it contains no massless states! However, the reason (11) is not
necessarily valid is that the SSY and/or WWY anomaly cancellation conditions have no
meaning anymore if M and/or N are equal to 1.

If we choose just one of the two brane stack multiplicities equal to one, we lose one
equation, but we still have five left. Since the original set of six equations has a redun-
dancy, one may expect to obtain exactly the same equations, and by inspection this is
indeed correct. Note that for N = 1 or M = 1 the anomaly cancellation conditions are
not just the field theoretic ones, but that there is one stringy SSS or WWW condition.
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The Main Argument
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For M = 3 this implies S = 0. As was the case for N = 2 this follows from lepton
charge pairing, but under the slightly stronger condition that no non-abelian factor is left
unbroken in the flavor group. Note that in the case N = 2 we also used T = 0. We see
now that only (22) is needed.

The derivation of (22) holds only if there is a non-vanishing contribution to Qem from
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for the SU(N) ! SO(N) breaking pattern for H = T, and for the SU(N) ! Sp(N)
breaking pattern for H = E, N even. We will discuss these cases separately in section 5.
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M > 3  and/or  N > 2

⇤ = diag(�1, . . . ,�N )

qb + �i = ↵qa

Quark charge pairing is possible only for α = 0, ±3 

Charges of Q:  
Charges of X: 
Charges of D: 
Charges of U,S: 
Lepton Charges:

qa � qb � �i

qa + qb + �i

qb + �i; 2qb + �i + �j

�qa

2qa

Define

All solutions satisfy Standard Model charge quantization! 



M > 3  and/or  N > 2

Tr ⇤ = q̃b

✓
3

M
� 1

◆

⇤ : n⇥ {�qb}+ n+ ⇥ {�qb + 3qa}+ n� ⇥ {�qb � 3qa}

R = �(Q+X)
q̃a
q̃b

2 Z
n+ =

Q

R

n� = �X

R

N = n+ n+ + n�

We can obtain a solution for any Q and X

The trace of Λ must vanish

Hence M = 3!



M > 3  and/or  N > 2

D = n(Q+X)

U = (N � n)(Q+X)

L = nR

E =
1

2
(N � n+ 1)R

T = �1

2
(N � n� 1)R

The spectrum can be computed

Absence of massless charged leptons only for N = 2!



Conclusions

The Standard Model is the only anthropic solution within the set of two-stack models. 

Family structure, charge quantization, the weak interactions and the Higgs choice are 
all derived. 

Standard Model charge quantization works the same way, for any value of N,  
even if N+3 ≠ 5. 

The GUT extension offers no advantages, only problems (doublet-triplet splitting) 

Only if all couplings converge (requires susy), GUTs offer an advantage. 

The general class is like a GUT with its intestines removed, keeping only the good 
parts: GUTs without guts.



Couplings

and then we get the following result for gY

g2Y = g21sin
2(✓) =

1

2

g2ag
2
b

Ng2aq
2
b +Mg2bq

2
a

(54)

For N = 2,M = 3, qa = �1
3 , qb =

1
2 this yields

g2Y = g2asin
2(✓) =

3g2ag
2
b

3g2a + 2g2b
(55)

For SU(5) (ga = gb ⌘ g) this yields the familiar result gY =
q

3
5g. The relation (55) can

be written as
1

↵Y

=
2

3

1

↵s

+
1

↵w

(56)

This agrees with [57]. Precisely the same relation was found in [58] for a class of Pati-
Salam models. In this class there is a relation between the three gauge couplings of
SU(4) ⇥ SU(2)L ⇥ SU(2)R if the two SU(2) factors have a related brane origin. More
recently, the same relation was found in a class of U(5) F-theory models with hypercharge
flux breaking [59].

Extrapolating the measured coupling constants to higher energies from their values at
100 GeV (g1 = .357, g2 = .652, g3 = 1.212) we find that relation (56) is satisfied at a scale
Mnon-susy = 1013.76 GeV, with

g1 = 0.5511, g3 = ga = 0.570 and g2 = gb = 0.5391 (57)

where we used the non-supersymmetric �-function coe�cients. With supersymmetric
�-functions and a susy breaking scale at 1 TeV we find Msusy = 1016.15 GeV, with

g1 = 0.699, g3 = ga = 0.696 and g2 = gb = 0.702 (58)

In the supersymmetric case the scale where (56) holds is of course the usual susy-GUT
scale, and there is an obvious candidate for the physics associated with that scale: GUT
unification. In the non-supersymmetric case there is no unification into a larger gauge
group, and it is less obvious what happens.

The natural guess is that at 1013.76 GeV = 5.75⇥ 1013 GeV we reach the string scale,
and that the gauge groups U(M) and U(N) are described by a Dirac-Born-Infeld action
at that scale. But there are other possibilities if one allows dimensions to decompactify
at di↵erent scales, and the result also depends on the dimension of the branes on which
the unitary groups live. We will not pursue this point further in this paper. The afore-
mentioned scale just gives a rough indication of the location of “new physics” in this class
of models.
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see also: 
Ibañez, Munos, Rigolin, 1998; 
Blumenhagen, Kors, Lüst, Stieberger, 2007 

This is satisfied at 5.7×1013 GeV  (1.4×1016 GeV for susy) 


