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Motivation

MSSM from String Theory

Conventionally in string model building one is looking for string
models which get close to the MSSM, i.e.:

a 4D N = 1 supersymmetric gauge theory

gauge group containing SU(3)C × SU(2)L × U(1)Y

three net chiral generations of quarks and leptons

at least one Higgs doublet pair
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Calabi-Yaus with vector bundles

The basic requirement is that one obtains an effective 4D field
theory with N = 1 SUSY from the heterotic string:
Candelas,Horowitz,Strominger,Witten’85

M1,9 →M1,3 ×M6

a six dimensional Calabi-Yau manifoldM6 with vanishing first
Chern class

a gauge background satisfying the Hermitean Yang–Mills
equations characterized by a vector bundle
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Toroidal orbifold geometries

The idea of orbifolds is that they are very simple geometries yet
shared the main property of Calabi–Yau manifolds namely that
only 4D N = 1 SUSY survives.
Dixon,Harvey,Vafa,Witten’85, Ibanez,Mas,Nilles,Quevedo’87

Toroidal orbifolds are defined as

T 6/G

with some six dimensional torus T 6 and a finite group G, like ZN
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Model building results
MSSM–like models on Calabi–Yaus:

Stable SU(5) vector bundles on Schoen manifold
Donagi,Ovrut,Pantev,Waldram’00, Bouchard,Donagi’05, Braun,He,Ovrut,Pantev’05

Line bundles on complete intersection Calabi–Yaus
Anderson,Gray,Lukas,Palti’11

MSSM–like models on Orbifolds:

T 6/Z6-II Buchmuller,Hamaguchi,Lebedev,Ratz’05,

Lebedev,Nilles,Raby,Ramos-Sanchez,Ratz,Vaudrevange,Wingerter’06

T 6/Z12−I Kim,Kim,Kyae’07

T 6/Z2 × Z2 Blaszczyk,SGN,Ratz,Ruehle,Trapletti,Vaudrevange’09

T 6/Z4 × Z2 Mayorga-Pena,Nilles,Oehlmann’12

T 6/Z8-I,II SGN,Loukas’13

Comprehensive overview Vaudrevange,Nilles’14
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But where is supersymmetry?
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Maybe we should look for non-supersymmetric
string models...
Previous attempts:

Free fermionic construction with non-supersymmetric
boundary conditions

Dienes’94,’06, Faraggi,Tsulaia’07

Non-supersymmetric orbifolds of heterotic theories

Chamseddine,Derendinger,Quiros’88, Taylor’88, Toon’90, Sasada’95,

Font,Hernandez’02

Non-supersymmetric orientifold type II theories

Sagnotti’95, Angelantonj’98 Blumenhagen,Font,Luest’99,

Aldazabal,Ibanez,Quevedo’99

Non-supersymmetric RCFTs

Gato-Rivera,Schellekens’07
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The non-supersymmetric heterotic string

Well-known 10D string theories

The M-theory cartoon displays the modular invariant, anomaly-
and tachyon-free 10D string theories:

However, it disregards one interesting heterotic string theory...
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The non-supersymmetric heterotic string

The non-supersymmetric heterotic string
The low-energy spectrum of the N=0 heterotic string reads:
Dixon,Harvey’86, Alvarez-Gaume,Ginsparg,Moore,Vafa’86

Fields 10D space-time interpretation

B
os

on
s GMN,BMN, φ Graviton, Kalb-Ramond 2-form, Dilaton

AM SO(16)×SO(16) Gauge fields

Fe
rm

io
ns Ψ+ Spinors in the (128,1) + (1,128)

Ψ− Cospinors in the (16,16)

This theory is also modular invariant, anomaly- and tachyon-free
but obviously not supersymmetric
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The non-supersymmetric heterotic string

10D tachyon-free (non)SUSY string theories

Heterotic

11D SUGRA

N = 0

Heterotic E8 × E8

Type I SO(32)

Type 0’ U(32)

Type IIBType IIA

Heterotic SO(32)

Type 0’ USp(32)

N = 1

N = 2

SO(16)×SO(16)
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The non-supersymmetric heterotic string

Construction of the N=0 heterotic string I
Introduce discrete torsion phases in the E8×E8 heterotic string:

I.e. replace the partition function:

ZE2
8

=
∑
spin

Zx
8(τ, τ ) · Ẑ4 [ss′] (τ ) · Ẑ8

[
t
t ′
]

(τ ) · Ẑ8
[

u
u′
]

(τ )

(where s, t ,u label the spin structures) by:

ZN=0 =
∑
spin

T · Zx
8(τ, τ ) · Ẑ4 [ss′] (τ ) · Ẑ8

[
t
t ′
]

(τ ) · Ẑ8
[

u
u′
]

(τ )

with torsion phase

T = (−)st ′−s′t ∗ . . . ∗ (−)s′s+s′+s ∗ . . .
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The non-supersymmetric heterotic string

Construction of the N=0 heterotic string II

Perform the Z2 orbifold of the supersymmetric E8×E8 in the lattice
formulation:

ZE2
8

= Zx
8(τ, τ ) · Γ4(τ ) · Γ16(τ )

where Γ4 and Γ16 are appropriate lattice sums

The Z2 orbifold is defined by twist v0 and gauge shift V0:

v0 = (0,13) , V0 = (1,07)( -1,07)

which breaks target space supersymmetry completely
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The non-supersymmetric heterotic string

Appendix I: Some lattices

Weight lattice Lattice vectors

RD Root n ∈ ZD,
∑

ni ∈ 2Z

VD Vector n ∈ ZD,
∑

ni ∈ 2Z + 1

SD Spinor n ∈ ZD + 1
2eD,

∑
ni ∈ 2Z

CD Cospinor n ∈ ZD + 1
2eD,

∑
ni ∈ 2Z + 1

Γ4 Space-time V4 ⊕ S4

E8 E8 Root R8 ⊕ S8

Γ16 E8×E8 Root E8 ⊕ E8
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The non-supersymmetric heterotic string

This orbifolding replaces the red lattices by green lattices :

Sector Lattices in the theory

(s,t,u) N=1, E8×E8 N=0, SO(16)×SO(16)

B
os

on
s

(1,1,1) V4 ⊗ R8 ⊗ R8 V4 ⊗ R8 ⊗ R8

(1,0,0) V4 ⊗ S8 ⊗ S8 V4 ⊗ S8 ⊗ S8

(1,0,1) V4 ⊗ S8 ⊗ R8 R4 ⊗ C8 ⊗ V8

(1,1,0) V4 ⊗ R8 ⊗ S8 R4 ⊗ V8 ⊗ C8

Fe
rm

io
ns

(0,0,1) S4 ⊗ S8 ⊗ R8 S4 ⊗ S8 ⊗ R8

(0,1,0) S4 ⊗ R8 ⊗ S8 S4 ⊗ R8 ⊗ S8

(0,1,1) S4 ⊗ R8 ⊗ R8 C4 ⊗ V8 ⊗ V8

(0,0,0) S4 ⊗ S8 ⊗ S8 C4 ⊗ C8 ⊗ C8
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Orbifold compactifications

Orbifolding the N=0 theory

A ZN orbifold is defined by the worldsheet boundary conditions:

X i(σ + 1) = e2πikvi X i(σ) , ψi(σ + 1) = e2πi(s
2+kvi)ψi(σ) ,

λI
1(σ + 1) = e2πi( t

2+kV1I) λI
1(σ) , λI

2(σ + 1) = e2πi(u
2+kV2I) λI

2(σ)

encoded in a twist v and gauge shift V = (V1; V2)with:

N vi ≡ 0 , N V1,2 ∈ E8
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Orbifold compactifications

Conditions from modular invariance

We focus ZN orbifold twists that would preserve at least 4D, N=1
supersymmetry if we apply to the E8×E8 theory:

v = (v1, v2,−v1 − v2)

We require that we have modular invariant partition function for
the orbifolded N=0 theory in the lattice formulation:

N
2

(V 2 − v2) ≡ V0 · V ≡ 0

The spectra can be computed as usual from the partition
function...
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Orbifold compactifications

Some Z3 orbifold models
Orbifold shift V Massless spectrum on orbifold:

Gauge group G chiral fermions / complex bosons
1
3(0,12, -2,04)(08) 3(3,1; 16) + 3(3,16; 1) + 27(1,16; 1) + (1,16; 1)

+(1,16; 1) + (1; 128) + (1,10; 16) + 27(1; 16)

U(3)×SO(10)×SO(16)’ 81(3,1; 1) + 3(3,1; 1) + 3(3,10; 1) + 27(1; 1) + 27(1,10; 1)

1
3(16,02)(16,02) 3(6,2−; 1) + 3(1; 6,2−) + 3(15,2+; 1) + 3(1; 15,2+)

+3(6,1; 6,1) + 3(1,4; 6,1) + 3(6,1; 1,4) + (20,2−; 1)

+(1; 20,2−) + (1,4; 1,4) + 29(1; 1,2+) + 29(1,2+; 1)

+(6,1; 6,1) + (6,1; 6,1) + 27(1,2−; 1,2−)

U(6)×SO(4)×U(6)’×SO(4)’ 3(15,1; 1) + 3(1; 15,1) + 3(6,4; 1) + 3(1; 6,4)

+27(1,2+; 1,2+) + 27(1; 1)

1
3(18)(14,04) 3(8; 1,8s) + 3(1; 1,8c) + 3(1; 4,8v) + 3(28; 1) + 3(8; 4,1)

+(70; 1) + (1; 6,8c) + 27(1; 1,6) + 81(1; 1) + 3(1; 1)

+(8; 4,1) + (8; 4,1)

U(8)×U(4)’×SO(8)’ 3(28; 1) + 3(1; 6,1) + 3(1; 4,8c) + 27(1; 1,8s) + 27(1; 1)

All models are free of non-Abelian anomalies and possess at
most one universal anomalous U(1)
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Orbifold compactifications

Twisted tachyons
In some twisted sectors tachyons may arise for certain orbifolds:

Orbifold Twist Tachyons Orbifold Twists Tachyons

T 6/Z3
1
3(1,1,−2) forbidden T 6/Z2 × Z2

1
2(1,−1,0) ; 1

2(0,1,−1) forbidden

T 6/Z4
1
4(1,1,−2) forbidden T 6/Z2 × Z4

1
2(1,−1,0) ; 1

4(0,1,−1) possible

T 6/Z6-I
1
6(1,1,−2) possible T 6/Z2 × Z6-I

1
2(1,−1,0) ; 1

6(1,1,−2) possible

T 6/Z6-II
1
6(1,2,−3) possible T 6/Z2 × Z6-II

1
2(1,−1,0) ; 1

6(0,1,−1) possible

T 6/Z7
1
7(1,2,−3) possible T 6/Z3 × Z3

1
3(1,−1,0) ; 1

3(0,1,−1) possible

T 6/Z8-I
1
8(1,2,−3) possible T 6/Z3 × Z6

1
3(1,−1,0) ; 1

6(0,1,−1) possible

T 6/Z8-II
1
8(1,3,−4) possible T 6/Z4 × Z4

1
4(1,−1,0) ; 1

4(0,1,−1) possible

T 6/Z12-I
1
12(1,4,−5) possible T 6/Z6 × Z6

1
6(1,−1,0) ; 1

6(0,1,−1) possible

T 6/Z12-II
1
12(1,5,−6) possible

The red entries indicate that for these orbifolds twisted oscillator
states may even arise

When tachyons are possible this does not mean that all such
orbifold models actually have tachyons
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Smooth Calabi-Yau compactifications

Smooth Calabi-Yau compactifications

In principle we could compactify the N=0 theory on any smooth
6D manifoldM6.

But then we do not have any practical computation control to
compute spectra!

Therefore we consider smooth Calabi-Yau compactifications with
complex vector bundles of the heterotic N=0 theory

Subject to the Bianchi identities∫
C4

{
trR2 − trF2} = 0 ,

for any closed four-cycle C4 ⊂M6
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Smooth Calabi-Yau compactifications

Computation of the fermionic spectrum

For the determination of fermionic spectra we can rely on
conventional methods

(representation dependent) index theorems: ind(iD/)

cohomology theory

In particular for line bundle backgrounds we may employ the
multiplicity operator

N =
1
6
F3

2 −
1
24
F2 trR2

2

evaluated on all fermionic states
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Smooth Calabi-Yau compactifications

Computation of the bosonic spectrum

On a generic six-manifold I don’t know how to determine the
spectrum or even the number of zero modes of the Laplace
operator ∆.

But for a smooth Calabi-Yau manifoldM6 with a vector bundle we
can use that the Laplace operator ∆ for complex scalars is
related to the Dirac operator iD/ of the would be supersymmetric
fermionic partners.

Hence, we can also (representation dependent) indices and
cohomology theory to determine the spectra of complex scalars.
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Smooth Calabi-Yau compactifications

Further consequences of using a would-be
supersymmetry preserving background

To leading order there are no tachyon on smooth Calabi-Yau
backgrounds in the large volume approximation

To leading order the scalar potential V is determined by F-
and D-terms:

V =
∑

a

∣∣∣∂W
∂Z a

∣∣∣2 +
1
2

D2

whereW is the hypothetical superpotential of the would-be
chiral superfields Z a whose lowest components are the
(massless) complex scalars.
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Smooth Calabi-Yau compactifications

Standard embedding compactifications
In the standard embedding we have the gauge embedding:

SO(16)× SO(16)′ −→ SO(10)× U(1)× SO(16)′

Hence the standard embedding already gives an SO(10) GUT!

Multiplicity Complex bosons Chiral fermions

1 − (16; 1)3 + (16; 1) -3

+(1; 128)0 + (10; 16)0

h1,1 (10; 1)2 + (1; 1) -4 (16; 1) -1 + (1; 16) -2

h1,2 (10; 1) -2 + (1; 1)4 (16; 1)1 + (1; 16)2

h1(End(V )) (1; 1)0 −

The net number of 16 of SO(10) is determined by: h1,1 − h2,1
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Smooth Calabi-Yau compactifications

Resolutions of Z3 orbifolds

Line bundle vector W Massless spectrum in blow-up:

Gauge group G chiral fermions / complex bosons
1
3(0,23,04)(08) 3(3,1; 16)2 + 3(3,16; 1)1 + 27(1,16; 1) -3

U(3)×SO(10)×SO(16)’ 78(3,1; 1) -4 + 3(3,10; 1) -2

1
3(16,02)(16,02) 3(6,2; 1) -2 + 3(1; 6,2) -2 + 3(15,2; 1)1 + 3(1; 15,2)1

+3(6,1; 6,1) -2 + 3(6,1; 1,4)1 + 3(1,4; 6,1)1

U(6)×SO(4)×U(6)’×SO(8)’ +27(1,2; 1) -3 + 27(1; 1,2) -3

3(15,1; 1) -2 + 3(1; 15,1) -2 + 3(6,4; 1)1 + 3(1; 6,4)1

1
3(18)(14,04) 3(8; 1,8v)1 + 3(1; 1,8s) -2 + 3(1; 4,8c)1 + 3(28; 1) -2

+3(8; 4,1) -2 + 78(1; 1) -4

U(8)×U(4)’×SO(4) 3(28; 1) -2 + 3(1; 6,1) -2 + 3(1; 4,8v)1

These spectra :

are free of non-Abelian anomalies

match orbifold spectra up to decoupling of vector-like states
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Orbifold model searches

Standard Model-like theories

Orbifold Inequivalent Tachyon-free SM-like tachyon-free models

twist #(geom) scanned models percentage total one-Higgs two-Higgs

Z3 (1) 74,958 100 % 128 0 0

Z4 (3) 1,100,336 100 % 12 0 0

Z6-I (2) 148,950 55 % 59 18 0

Z6-II (4) 15,036,790 57 % 109 0 1

Z8-I (3) 2,751,085 51 % 24 0 0

Z8-II (2) 4,397,555 71 % 187 1 1

Z2 × Z2 (12) 9,546,081 100 % 1,562 0 5

Z2 × Z4 (10) 17,054,154 67 % 7,958 0 89

Z3 × Z3 (5) 11,411,739 52 % 284 0 1

Z4 × Z4 (5) 15,361,570 64 % 2,460 0 6

Obtained implementing the SUSY breaking Z2 orbifolding of the
lattice formulation in the ”Orbifolder package”
Nilles,Ramos-Sanchez,Vaudrevange,Wingerter’12
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Orbifold model searches

Appendix II: Some definitions

Two orbifold models on the same orbifold geometry are
equivalent when they have:

identical massless bosonic and fermionic and possibly
tachyonic spectra up to charges under Abelian factors

Standard Model-like:

the gauge group contains the SM gauge group with the SU(5)
normalization of the non-anomalous hypercharge Y

a net number of three generations of chiral fermions

at least one Higgs scalar field

vector-like exotic fermions w.r.t. the SM gauge group
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Orbifold model searches

A Standard Model-like theory with three
generations and a single Higgs

Sector Massless spectrum: chiral fermions / complex bosons

Observable 3(3,2)1/6 + 3(3,1)−2/3 + 6(3,1)1/3 + 3(3,1)−1/3 + 3(1,1)1 + 5(1,2)−1/2

+2(1,2)1/2 + 20(1,1)1/2 + 20(1,1)−1/2 + 6(3,1)1/6 + 6(3,1)−1/6 + 2(1,2)0

Obs. & Hid. 3(1,1; 1,2)1/2 + 3(1,1; 1,2)−1/2

Hidden 14(1,2)0 + 10(4,1)0 + 6(4,1)0 + 3(6,1)0 + 2(4,2)0 + 71(1)0

Observable (1,2)−1/2

(3,1)1/6 + (3,1)−1/6 + 2(3,1)1/3 + 13(1,2)0 + 20(1,1)−1/2 + 18(1,1)1/2

Obs. & Hid. (1,1; 4,1)1/2 + (1,1; 4,1)−1/2 + (1,2; 1,2)0

Hidden 14(1,2)0 + 4(4,1)0 + (6,2)0 + 23(1)0

This model with gauge groups Gobs = SU(3)C × SU(2)L × U(1)Y ,
Ghid = SU(4)× SU(2):

contains vector-like fermionic and bosonic exotics

in particular there are states that are charged under both the
hidden and the SM gauge group.
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Conclusion

Summary

We investigate smooth and orbifold compactifications of the
non-supersymmetric heterotic SO(16)×SO(16) string.

On smooth Calabi-Yau backgrounds we could recycle

commonly employed techniques to determine both the
fermionic and bosonic 4D spectra

and argue that the N=0 theory never leads to tachyons on
smooth Calabi-Yaus.

However, twisted tachyons may arise on certain singular orbifolds.

We have performed SM-like model searches on selected orbifold
geometries and found over 12 thousand SM-like theories
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Conclusion

Outlook

There are various very serious open issues:

The Higgs mass will be quadratically dependent on the high
scale

The cosmological constant will be of the order of the string
scale

Associated with the cosmological constant, a destabilizing
dilaton tadpole will be generated

Tachyons may arise perturbatively and non-perturbatively
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