Axions and U(1)s in F-theory

Thomas W. Grimm

Max Planck Institute for Physics (Werner-Heisenberg-Institut) Munich

based on:Axions:1404.4268 & 1008.4133Massive U(1)s:1406.5180 with L. Anderson, I. García-Etxebarria, J. Keitel

Ringberg Castle, July 2014

Introduction

- In recent years there has been vast progress in the study of F-theory effective actions in four and six dimensions using an approach via Mtheory.
- The understanding of geometric properties and the physics in the effective actions are going hand in hand.
 - classical moduli action
 - fluxes and charged spectrum
 - massless and massive U(1)'s, gauge theory branches and resolutions
 - α' corrections
- Main motivations:
 - phenomenology: Grand Unified Theories, ...
 - general effective theories within string theory (`minimal models')
 - formulating string theory away from weak coupling (M-theory)

Computing the F-theory effective actions

F-theory encodes physics of seven-branes in higher-dim. geometry: [Vafa]

 $T^2 \times M_9$

- singularities of the elliptic fibration: $y^2 = x^3 + f(u)x + g(u)$
- seven-brane locations (gauge group, matter, ...): $\Delta = 27g^2 + 4f^3$
- No twelve-dimensional low-enegry effective action for F-theory.
 Analyze and define F-theory via M-theory

(1) A-cycle: if small than M-theory becomes Type IIA (2) B-cycle: T-duality \Rightarrow Type IIA becomes Type IIB (3) grow extra dimension: send T^2 - volume T-dual \Rightarrow B-cycle becomes large

⇒ M-theory to F-theory limit connects 6d and 5d effective theories 4d and 3d effective theories τ

B cycle

A cycle

F-theory effective actions via M-theory

 effective actions can be computed via M-theory / 11-dimensional supergravity on the resolved Calabi-Yau manifolds

F-theory effective actions via M-theory

 effective actions can be computed via M-theory / 11-dimensional supergravity on the resolved Calabi-Yau manifolds

Comments on M-theory / F-theory limit

- Concrete way to perform computation in a genuine F-theory setup:
 - compared to 2008 enormous progress (mostly on extracting discrete data):
 - (1) chiral spectrum in 6d, four-form fluxes and chirality in 4d: 5d / 3d Chern-Simons terms \iff 6d / 4d chiral matter deep relations to AdS-CFT refs [Landsteiner etal.] [Loganayagam etal.] [Golkar,Son] relation to $S^3 \times S^1$, $S^5 \times S^1$ partition functions [Di Pietro,Komargodski]
 - (2) U(1) symmetries and their selection rules → review talk by T. Weigand
 → talk by J. Keitel
 - compute continuous quantities: forced to improve understanding of M-theory
 - corrections to K\u00e4hler potential and gauge coupling (GUT unification...)
 Yukawas → mostly in local perspective or by dualities
 - possible approach: corrections to 11d supergravity \rightarrow talk by M. Weissenbacher
 - ⇒ significant progress needed to study moduli stabilization, susy breaking, inflation in F-theory

Goals of this talk

- I like to discuss axions and U(1) gauge symmetries in F-theory compactifications on Calabi-Yau fourfolds and threefolds:
- Stepwise introduce:
 - (1) Systematics of axions in F-theory
 - (2) Axion decay constants and their moduli dependence
 - (3) U(1) gauge symmetries that are massive by 'eating' axions
 - (4) Massive U(1) gauge symmetries to describe physics of elliptic fibrations without section

(1) Axions and their decay constants in F-theory

Generalities: Axions in Type IIB

- Axions are generically present in Type IIB string compactifications:
 - zero-modes of R-R, NS-NS form fields: form-field axions

$$C_0 \qquad C_2 = c^a \,\omega_a \qquad C_4 = \rho_\alpha \,\tilde{\omega}^\alpha \qquad B_2 = b^a \,\omega_a$$

 $\longrightarrow C_0, c^a, b^a$ non-trivially transform under SL(2,Z)

can arise from D7-branes: Wilson line axions

symmetry points in geometrical moduli spaces: geometrical axions
 example: 'large complex structure point' in complex structure moduli space of Calabi-Yau manifold

Axions in F-theory via M-theory

- F-theory on elliptically fibered Calabi-Yau fourfold Y₄ with base B₃ obtained obtained via M-theory
- Axions are arising from M-theory three-form:

(1,1) - forms on CY fourfold two legs in B_3

 $C_3^M = A^{\alpha} \wedge \omega_{\alpha} + i G^a \bar{\Psi}_a - i \bar{G}^a \Psi_a$

(2,1) - forms on CY fourfold one leg in fiber, two legs in B_3

 $A^{\alpha} \longrightarrow$ yields C_4 axions ρ_{α}

 $G^a \longrightarrow$ unifies form-field and Wilson line axions: c^a, b^a, a^p

geometrical axions arise from complex structure moduli space of Y₄
 ⇒ C₀ is geometrical axion in F-theory
 ⇒ no shift symmetry in general F-theory setting

Axion decay constants I

- focus on the (2,1)-form fields G^a in the following (assume $h^{2,1}(B_3) = 0$):
 - complex fields G^a live on complex *N*-dimensional torus:

$$T^{2N} = \frac{H^{2,1}(Y_4, \mathbb{C})}{H^3(Y_4, \mathbb{Z})} \qquad \qquad N = h^{2,1}(Y_4) - h^{2,1}(B_3)$$

 \rightarrow complex structure on T^{2N} is induce by complex structure of Y_4

choice of basis: $\Psi_a = \frac{1}{2} \operatorname{Im}(h^{ab})^{-1} (\beta^b - h^{bc} \alpha_c)$ (α_b, β^b) integral three-forms

 $\longrightarrow h^{ab}$ is a holomorphic function of the complex structure moduli of Y_4

couplings of classical effective theory does only depend on $G^a - \overline{G}^a$ \longrightarrow shift symmetry for $\operatorname{Im} G^a$ (e.g. R-R two-forms, D7-Wilson lines)

Axion decay constants II

- metric for G^a , axion decay constants:

$$f_{ab}^2 = \frac{i}{\mathcal{V}} \int_{Y_4} J \wedge \bar{\Psi}_a \wedge \Psi_b$$

 J, \mathcal{V} is Kähler form and volume of

 $\longrightarrow f_{ab}$ varies non-trivially over Kähler and complex structure moduli space

• Question: Can the axion decay constants be large at special points?

simplest example: N = 1

write locally: $\Psi = \frac{1}{2} \operatorname{Im}(\tau)^{-1} \tilde{\omega} \wedge (dx - \tau dy)$ $f^2 = \frac{1}{\mathcal{V}_{b}} \int_{\mathcal{B}} (\operatorname{Im} \tau)^{-1} J_{b} \wedge \tilde{\omega}^2$

 \rightarrow f_{ab} can receive large contributions from strong coupling regions on B_3 , also needed for GUTs in F-theory

Axion potential

- Large axion decay constants might allow for interesting models of natural axion inflation
 [Freese,Frieman,Olinto]
 → talks G. Shiu,
- Axion potential in F-theory:
 - arises from M5-brane instantons in dual M-theory picture
 - G^a dependence through a theta-function $\Theta(G, h)$ on the torus T^{2N}

$$W_{\rm M5}(z,G,T) = f(z) \ \Theta(G,h) \ e^{-T}$$

$$\Theta(G,h) = \sum_{n_a \in \Gamma} \exp\left(\frac{1}{2}ih^{ab}n_an_b + in_aG^a\right)$$

[Witten] [Ganor] [TG] [TG,Kerstan,Palti,Weigand] [Kerstan,Weigand]

L. McAllister

→ related to talk by C. Angelantonj

axion decay constants large where higher harmonics become relevant, i.e. for $h^{ab} \ll 1 \longrightarrow$ no parametrically safe realization, fine-tuning in special setups?

Summarizing remarks

- it is of key importance to find properties of F-theory vacua that distinguish them from weakly coupled Type IIB
 - key example: 10 10 5 Yukawa → exceptional enhancement → GUTs
 → talk by F. Marchesano
 - → axion decay const. of G^a axions → computable strong coupling corrections → holomorphic function h^{ab} is reminiscent of 3d duality of axions \Leftrightarrow vectors
 - size of axion decay constants have to be determined at various point in complex structure moduli space
- dynamics of axions is crucially depending on scalar potential
 - region of large axion decay constants (compared to Planck mass), requires to include higher harmonics (similar in spirit to [Banks,Dine,Fox,Gorbatov])

(2) Massive U(1) gauge symmetries

Massive U(1)s from geometric Stückelberg

 weakly coupled Type IIB theory: D7-brane U(1)s can admit Stückelberg coupling

- geometrically massive U(1)s in F-theory: [TG,Weigand] [TG,Kerstan,Palti,Weigand]
 - gauging of (2,1)-form axions:

 $dC_3^M = idG^a \wedge \bar{\Psi}_a + A_{\mathrm{U}(1)} \wedge d\omega_{U(1)} + \mathrm{c.c.} \qquad \qquad \text{non-closed (1,1)-form}$

- non-Kähler resolutions: include massive U(1)s in effective theory
- beautiful explicit geometric realization [A. Braun, Collinucci, Valandro]

F-theory on manifolds without section

- Calabi-Yau threefold with genus-one fibration without section:
 - base B_2 is not a submanifold locally described by embedding equations
 - dilaton-axion $\tau(u)$ can be still extracted at each point of B_2 \Rightarrow F-theory well-defined on this space, despite having no Weierstrass model?
 - M-theory on Calabi-Yau threefolds without sections is well defined and can be analyzed using 11d sugra \Rightarrow 5d effective description of F-theory setup!

• <u>Our Proposal:</u>

[Anderson, García-Etxebarria, TG, Keitel]

- (1) F-theory setup contains geometrically massive U(1)s and charged spectrum under these U(1)s
- (2) Derivation from M-theory requires a fluxed circle reduction from $6d \rightarrow 5d$
 - ⇒ new massive and massless 5d combinations of circle Kaluza-Klein vector and 6d massive U(1)
 - ⇒ agreement of 5d effective theories after integrating out massive fields
- recent analysis of geometries without section [V.Braun,Morrison] [Morrison,Taylor]

Local checks via T-duality

- metric for T^2 -fibration Y_3 without section can locally only brought to form:

$$ds^{2}(X) = g_{i\bar{\jmath}}du^{i}d\bar{u}^{j} + \frac{v^{0}}{\mathrm{Im}\tau}|X - \tau Y| \qquad \begin{array}{c} X = dx + \tilde{X} \\ Y = dy + \tilde{Y} \end{array} \qquad \begin{array}{c} \text{non-trivial } T^{2} \\ \text{KK-vectors} \end{array}$$

non-trivial field strength in simplest situation

 $\langle dX
angle = -n \tilde{\omega} \qquad \langle dY
angle = 0$

- M-theory on Y_3 connects to Type IIB theory on extra S^1 : [Witten]
 - non-vanishing flux $G_3 = F_3 \tau H_3$: $F_3 = -n \tilde{\omega} \wedge dy$ flux along the circle
 - Fluxed circle reduction induces gauging with Kaluza-Klein vector A^0

 $\mathcal{D}c = dc + n A^0 \longrightarrow$

 \longrightarrow gauging of the C_2 axion arising from the expansion in $\tilde{\omega}$

Fluxes circle reduction with massive U(1)

combining 6d Stückelberg gauging with gauging from fluxed circle reduction:

$$\mathcal{D}\mathbf{c} = d\mathbf{c} + \mathbf{m}\,A_{U(1)} + \mathbf{n}\,A^0$$

• <u>Massive</u> \tilde{A}^0 and <u>massless</u> A^{mass} linear combinations: $\mathcal{L} = f^2 |\mathcal{D}c|^2 \rightarrow \mathcal{L}_{\text{mass}} = f^2 |\underbrace{mA_{\mathrm{U}(1)} + nA^0}_{A^{\mathrm{mass}}}|$

5d effective theory for massless modes can be compared with M-theory
 need to compute the charges of the 6d states on S¹ under massless Ã⁰

$$\tilde{q}_i = q_j N_i^j$$
 $N_i^j = \begin{pmatrix} m & n \\ -n & m \end{pmatrix} \rightarrow$ geometry of manifolds with bi-section:
 $m = 2\lambda$ $n = -1$

Integrating out all massive states

5d massive states: - charged 6d matter in the 5d Coulomb branch
 Kaluza-Klein states to all 6d multiplets

 $m_s = m_{\text{CB}} + m_{\text{KK}}^n$ Coulomb branch mass $\zeta^I q_I$ Kaluza-Klein mass (level *n*) $n r^{-1}$

one-loop Chern-Simons terms `see' massive spectrum:

$$-\frac{1}{48\pi^{2}}k_{\alpha\beta\gamma}\int_{\mathcal{M}_{5}}A^{\alpha}\wedge F^{\beta}\wedge F^{\gamma}-\frac{1}{384\pi^{2}}\kappa_{\alpha}\int_{\mathcal{M}_{5}}A^{\alpha}\wedge \operatorname{Tr}(R\wedge R) A_{\mu} \text{ or } g_{\mu\nu}$$

$$k_{\alpha\beta\gamma} = \sum_{\text{mass. states}}k_{\mathbf{r}}\cdot q_{\alpha} q_{\beta} q_{\gamma} \operatorname{sign}(m)$$

$$\kappa_{\alpha} = \sum_{\text{mass. states}}\kappa_{\mathbf{r}}\cdot q_{\alpha} \operatorname{sign}(m)$$

$$q_{\alpha} \text{ are the charges of the states under the massless 5d U(1)s}$$

$$k_{\mathbf{r}} = \frac{1}{1} -\frac{19}{8} \operatorname{Re}(1)$$

$$[Bonetti, TG, Hohenegger]$$

Global checks by computing 1-loop CS terms

- compare 1-loop Chern-Simons terms with intersection numbers and second Chern class for Calabi-Yau examples Y₃ without section
 - concrete examples with one massive 6d U(1) have a 'bi-section'
 - to check proposal in global models compute hypermultiplet spectrum charged under massive 6d U(1) by using conifold transition to models with two sections \Rightarrow massless U(1) in 6d \Rightarrow find perfect agreement

many works on F-theory with multiple U(1)s:

[TG,Weigand], [Morrison,Park] [Borchmann,Mayrhofer,Palti,Weigand], [V.Braun,TG,Keitel], [Cvetic,Klevers,Piragua,Song] [A.Braun,Collinucci,Valandro] [Kuntzler,Schäfer-Nameki] ...

- to apply proposal: compute hypermultiplet spectrum by using Chern-Simons terms, i.e. intersection numbers and Chern-classes of Y₃
 → more on geometry and the proposal: talk by Iñaki García-Etxebarria
- extension to Calabi-Yau fourfolds with four-form flux is an important open problem ⇒ Yukawa couplings and U(1) selection rules?

Conclusions

- Axions in F-theory
 - F-theory allows to unify axions from bulk supergravity (form-field axions) and seven-brane sector (Wilson line axions) \Rightarrow (2,1)-form axions
 - axion decay constants of (2,1)-form axions depend on complex structure and Kähler moduli ⇒ controlled large at special points in complex structure moduli space (special seven-brane configurations, strong coupling effects)
 - (2,1)-form axions: key to understand physics of geometrically massive U(1)s
- Massive U(1)s and F-theory on geometries without section
 - proposal: F-theory effective action for such geometries using M-theory dual
 - crucial to include 6d/4d massive U(1)s perform fluxed circle reduction \Rightarrow Kaluza-Klein vector mixes with U(1)s into massless/massive combination
 - spectrum including modes charged under massive U(1) can still be determined

Workshop: Physics and Geometry of F-theory

23 - 26 February 2015 Max-Planck-Institute, Munich