

Non-associative Deformations of Geometry in Double Field Theory

Michael Fuchs

Workshop "Frontiers in String Phenomenology"

based on JHEP 04(2014)141 or arxiv:1312.0719 by R. Blumenhagen, MF,
F. Haßler, D. Lüst, R. Sun

July 31, 2014

Motivation

The Jacobi identity of three QM operators reads

$$\begin{aligned}\text{Jac}_{[,]}(F, G, H) &= [F, [G, H]] + [H, [F, G]] + [G, [H, F]] \\ &= [F(GH) - (FG)H] - [F(HG) - (FH)G] + \dots.\end{aligned}$$

⇒ Algebraically zero for associative operators!

The Jacobi identity is directly connected to associativity

Canonical quantization:

$$\{ , \} \quad \rightarrow \quad \frac{1}{i\hbar} [,]$$

Look at the Poisson bracket in classical mechanics!

$$\{f, g\} := \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q^i}$$

The Poisson bracket defined in this way obeys the Jacobi identity by construction

$$\text{Jac}_{\{,\}}(f, g, h) := \{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0.$$

⇒ QM operators associate/obey the Jacobi identity!

But there are hints for non-associative target spaces in ST!

[Blumenhagen, Lüst, Plauschinn, ...]

This talk: Resolve this contradiction!

Outline

- Conditions for non-associativity in the Hamiltonian formalism
- Open string
 - 1. Review of the known deformation
 - 2. open string deformation in DFT
- Closed string
 - 1. Review of the known deformation
 - 2. Closed string deformation in DFT
 - 3. Possible origin of this deformation

Mathematics of the Hamiltonian Formalism

The Hamiltonian formalism describes dynamics on an even dimensional symplectic manifold equipped with a closed degenerate two form

$$\omega = \omega_{ij} dx^i \wedge dx^j \quad , \det \omega_{ij} \neq 0 \quad \text{and} \quad d\omega = 0.$$

Define the Poisson bracket as

$$\{f, g\} = \omega^{ij} \partial_i f \partial_j g \quad \text{with } \omega^{ij} \omega_{jk} = \delta^i{}_j \text{ and } i, j, k \in 1, \dots, 2D$$

and introduce an evolution parameter t “time” and a real energy function H “Hamiltonian”. Postulate the time evolution by

$$\frac{df}{dt} = \{f, H\}.$$

Jacobi identity of this bracket is

$$\text{Jac}_{\{,\}}(f, g, h) = \omega^{[kI} \partial_I \omega^{jI]} \partial_i f \partial_j g \partial_k h.$$

Zero by assumption $d\omega = 0$ and

$$\omega^{[kI} \partial_I \omega^{jI]} = \omega^{ii'} \omega^{jj'} \omega^{kk'} (d\omega)_{i'j'k'}.$$

Or clear from Darboux's theorem: It is possible to choose local coordinates (q, p) such that

$$\omega = dq^i \wedge dp_i \quad \text{or} \quad \omega = \begin{pmatrix} 0 & 1_D \\ -1_D & 0 \end{pmatrix}.$$

Why $d\omega = 0$?

Hamiltonian mechanics is usually defined on the cotangent bundle T^*M which defines a $2D$ -dim manifold

$$\left(\underbrace{q_1, \dots, q_n}_{\in M}, \underbrace{p_1, \dots, p_n}_{\in T_q^* M} \right)$$

The “tautological one-form” connects the coordinates and their conjugate as

$$\theta = p_i dq^i.$$

Use this to define the symplectic structure

$$\omega = d\theta = dq^i \wedge dp_i.$$

The symplectic structure of T^*M is exact $\Rightarrow d\omega = d^2\theta = 0$

Conclusion

A non-vanishing Jacobi identity is possible if

$$d\omega \neq 0.$$

Beyond the scope of a Hamiltonian defined on T^*M ?

CFT

In general: CFT's are usual QFT's, therefore the CFT operator algebra must be associative (\Leftrightarrow crossing symmetry).

But note: The coordinates are not well defined CFT operators (not even quasi primaries, $h = 0$)!

- The **closed string** worldsheet has an $SL(2, \mathbb{C})/\mathbb{Z}_2$ symmetry

Commutativity expected for vertex operators inserted at the bulk.

- The **open string** worldsheet has an $SL(2, \mathbb{R})/\mathbb{Z}_2$ symmetry

Vertex operators inserted at the boundary (D-brane) must be cyclic, but may be non-commutative, for instance

$$12 = 21 \text{ and } 123 = 231$$

$$123 \neq 132 \text{ or } 1234 \neq 1243.$$

Open Strings

in non-vanishing $\mathcal{F} = B + 2\pi\alpha' dA$ background.

[Chu, Ho, Seiberg, Witten, Cornalba, Schiappa, Schomerus, Herbst, Kling, Kreuzer, ... \sim '98-'01]

For constant \mathcal{F} one gets on the D-brane $\partial\mathbb{H} = \mathbb{R}$

$$\langle X^\mu(\tau)X^\nu(\tau') \rangle_{\mathcal{F}} = -\alpha' [G^{\mu\nu} \log |\tau - \tau'|^2 + i\pi \Theta^{\mu\nu} \epsilon(\tau - \tau')]$$

where the open string metric G and the antisymmetric θ are

$$G^{\mu\nu} = [(g - \mathcal{F})^{-1} g (g + \mathcal{F})^{-1}]^{\mu\nu},$$

$$\theta^{\mu\nu} = -[(g - \mathcal{F})^{-1} \mathcal{F} (g + \mathcal{F})^{-1}]^{\mu\nu}.$$

Open String Product

$$\begin{aligned} & \left\langle : e^{ipX(\tau)} : : e^{ip'X(\tau')} : \right\rangle_{\mathcal{F}} \\ &= e^{-i\pi\alpha' \theta^{\mu\nu} p_\mu p'_\nu \epsilon(\tau-\tau')} \times \langle : e^{ipX(\tau)} : : e^{ip'X(\tau')} : \rangle_0. \\ &= \exp \left[i\pi\alpha' \theta^{\mu\nu} \frac{\partial}{\partial X_1^\mu} \frac{\partial}{\partial X_2^\nu} \right] \times \langle : e^{ipX(\tau)} : : e^{ip'X(\tau')} : \rangle_0. \end{aligned}$$

The background field can be captured by changing the multiplication law to a Moyal-Weyl star-product

$$f \star g := \exp \left[i\pi\alpha' \theta^{\mu\nu} \frac{\partial}{\partial x_1^\mu} \frac{\partial}{\partial x_2^\nu} \right] f(x_1) g(x_2) + \mathcal{O}(\partial\theta).$$

then for instance $\langle V_1 V_2 \rangle_{\mathcal{F}} = \langle V_1 \star V_2 \rangle_{\mathcal{F}=0}$

Higher Orders in $\partial\theta$

$$\begin{aligned} f \star g = f \cdot g + & \frac{i}{2} \theta^{ij} \partial_i f \partial_j g - \frac{1}{8} \theta^{ij} \theta^{kl} \partial_i \partial_k f \partial_j \partial_l g \\ & - \frac{1}{12} (\theta^{im} \partial_m \theta^{jk}) (\partial_i \partial_j f \partial_k g - \partial_i \partial_j g \partial_k f) + \mathcal{O}((\partial\theta)^2, \partial^2\theta, \theta^2) \end{aligned}$$

[Cornalba, Schiappa and Herbst, Kling, Kreuzer '01]

Same as the Kontsevich deformation quantization formula but θ might be a quasi-Poisson $d\theta \neq 0$ tensor here \Rightarrow Non-associative!

$$(f \star g) \star h - f \star (g \star h) \propto \theta^{[\underline{\mu}\rho} \partial_\rho \theta^{\underline{\nu}\sigma]} \partial_\mu f \partial_\nu g \partial_\sigma h \neq 0!$$

Remember: $Jac \propto \theta^{[\underline{\mu}\rho} \partial_\rho \theta^{\underline{\nu}\sigma]}$ as well.

Resolution

Integrate the deformation! Captures

- low-energy effective actions and
- **correlators** [Schomerus, Seiberg, Witten '98: Integration to implement momentum conservation and more general Herbst, Kling, Kreuzer '02]

$$\int d^n x \sqrt{g - \mathcal{F}} (f \star g - f \cdot g) \stackrel{PI}{=} - \int d^n x f \underbrace{\partial_\mu \left(\sqrt{g - \mathcal{F}} \theta^{\mu\nu} \right)}_{\text{DBI-eom}} \partial_\nu g = 0$$

- $\int f \star g \stackrel{eom}{=} \int f \cdot g$
- But $\int f \star g \star h \neq \int f \cdot g \cdot h!$
- Also associative

$$\int d^n x \sqrt{g - \mathcal{F}} (f \star g) \star h - f \star (g \star h) \stackrel{eom}{=} 0.$$

Summary

The open string product matches the expected properties

- $12 = 21$
- $123 \neq 132, 1234 \neq 1243, \dots$
⇒ additional terms in low-energy effective action
- cyclic [also in higher orders Herbst, Kling, Kreuzer '03]
- vanishing Jacobi identity

up to boundary terms.

Open String Product in DFT

DFT [Hull, Zwiebach, Hohm, ...] has only closed string degrees of freedom.
Therefore

- vertex operators are expected to commute,
- the gauge invariant object is H

We use the flux formulation of DFT [Aldazabal, Geissbuhler, Marques, Nunez, Penas].
There the product reads

$$f \triangle g \triangle h := f g h + H^{abc} \partial_a f \partial_b g \partial_c h + R_{abc} \tilde{\partial}^a f \tilde{\partial}^b g \tilde{\partial}^c h + \dots$$

$$\stackrel{\text{DFT}}{=} f g h + \check{\mathcal{F}}_{ABC} \partial^A f \partial^B g \partial^C h.$$

Write this deformation under an integral

$$\int dX e^{-2d} \check{\mathcal{F}}_{ABC} \partial^A f \partial^B g \partial^C h \stackrel{\text{PI}}{=} - \int dX e^{-2d} \underbrace{\mathcal{G}_{AB}}_{\text{eom: } \mathcal{G}_{AB}=0!} f \partial^A g \partial^B h.$$

The same mechanism is present here! Holds for product of n-functions as expected in a closed string setting!

Matter (e.g. RR fields) in form of an energy momentum tensor \mathcal{T}^{AB} changes the eom to

$$\mathcal{G}^{AB} = \mathcal{T}^{AB},$$

which breaks the associativity.

Matter Corrections

Associativity can be restored by adding a \mathcal{T}^{AB} term:

$$f \triangle g \triangle h = f g h + \mathcal{T}^{AB} \left(f \partial_A g \partial_B h + \text{cycl.} \right) + \check{\mathcal{F}}^{ABC} \partial_A f \partial_B g \partial_C h$$

This term arises naturally, if the geometry is also deformed by \mathcal{T}^{AB}

$$f \triangle_2 g := f \cdot g + \mathcal{T}^{AB} \partial_A f \partial_B g$$

which vanishes by continuity equation under an integral!

Closed Strings

in a constant $H = dB$ background on T^3 . Fulfils eom in linear order \Rightarrow still a CFT. [Blumenhagen, Deser, Lüst, Plauschinn, Rennecke '11]

Correlator of the coordinates is corrected as

$$\langle X^\mu(z_1, \bar{z}_1) X^\nu(z_2, \bar{z}_2) X^\sigma(z_3, \bar{z}_3) \rangle_H \propto H^{\mu\nu\sigma} \left[\mathcal{L} \left(\frac{z_{12}}{z_{13}} \right) - \mathcal{L} \left(\frac{\bar{z}_{12}}{\bar{z}_{13}} \right) \right]$$

Using this the Jacobi identity at equal space and time is zero

$$\text{Jac}(X^\mu(z, \bar{z}), X^\nu(z, \bar{z}), X^\sigma(z, \bar{z}))_H = 0.$$

T-duality in all directions gives the winding coordinate \tilde{X} . Their correlator has a crucial +

$$\langle \tilde{X}^\mu(z_1, \bar{z}_1) \tilde{X}^\nu(z_2, \bar{z}_2) \tilde{X}^\sigma(z_3, \bar{z}_3) \rangle_H = \theta^{\mu\nu\sigma} \left[\mathcal{L} \left(\frac{z_{12}}{z_{13}} \right) + \mathcal{L} \left(\frac{\bar{z}_{12}}{\bar{z}_{13}} \right) \right]$$

The contributions now add up in the Jacobi identity

$$\text{Jac}(\tilde{X}^\mu(z, \bar{z}), \tilde{X}^\nu(z, \bar{z}), \tilde{X}^\sigma(z, \bar{z}))_H \propto H^{\mu\nu\sigma}.$$

Dualizing this gives normal coordinates in the T-dual to the H -flux, named R -flux

$$\text{Jac}(X^\mu(z, \bar{z}), X^\nu(z, \bar{z}), X^\sigma(z, \bar{z}))_R \propto R^{\mu\nu\sigma}.$$

⇒ Non-associative target space for non-vanishing R -flux!

How is this possible?

Normal coordinates in non-vanishing $R^{\mu\nu\sigma} = \tilde{\partial}^{[\mu} \beta^{\nu\sigma]}$ means coordinates and winding at the same time. The description needs

$$TM \oplus T^*M.$$

A restriction to TM or T^*M is not possible. This is beyond usual Hamiltonian formalism on T^*M with $\omega = d\theta$. More concretely later!

Correlator of vertex operators gives $\langle V_1 V_2 V_3 \rangle_H = \langle V_1 V_2 V_3 \rangle_0$ and

$$\langle V_1 V_2 V_3 \rangle_R \propto (1 + R^{\mu\nu\sigma} p_{1,\mu} p_{2,\nu} p_{3,\sigma}) \times \langle V_1 V_2 V_3 \rangle_0$$

Capture the R -flux in a deformed tri-product

$$(f \triangle g \triangle h)(x) := f g h + R^{\mu\nu\sigma} \partial_\mu f \partial_\nu g \partial_\sigma h + \mathcal{O}(\theta^2).$$

whose totally antisymmetric tri-bracket of the coordinates reproduces the Jacobi identity.

The tri-product trivializes for tachyon vertex operators by momentum conservation.

Closed String Product in DFT

Motivation: Need for simultaneous winding and momentum.
In the flux formulation the product reads

$$\begin{aligned} f \Delta g \Delta h &= f g h + \mathcal{F}_{ABC} \partial^A f \partial^B g \partial^C h \\ &= f g h + R^{abc} \partial_a f \partial_b g \partial_c h + H_{abc} \tilde{\partial}^a f \tilde{\partial}^b g \tilde{\partial}^c h + \dots \end{aligned}$$

Here the flux is $\mathcal{F}_{ABC} = \Omega_{[ABC]}$ with the Weitzenböck connection
 $\Omega_{ABC} = \partial_A E_B^M E_{CM}$

Constraints in DFT

The generalized Lie-derivative in DFT:

$$\mathcal{L}_\xi V^M = \xi^N \partial_N V^M + (\partial^M \xi_N - \partial_N \xi^M) V^N$$

The gauge algebra does not close, constraints are needed for the fields and the gauge parameters of theory (not coordinates).

For instance the generalized Lie derivative of a generalized scalar f is not a scalar anymore but must be enforced

$$\Delta_{\xi'} \mathcal{L}_\xi f := (\delta_{\xi'} - \mathcal{L}_\xi) \mathcal{L}_\xi f = -\xi_M \partial_N \xi'^M \partial^N f \stackrel{!}{=} 0.$$

Choosing the vielbein as the parameters $\xi = E_B$ and $\xi' = E_A$ gives

$$\Omega_{CAB} \partial^C f \stackrel{!}{=} 0 \quad (\text{note also } \partial_A f \partial^A g = 0).$$

The deformation is zero by demanding closure since

$$\underbrace{\Omega_{[ABC]}}_{\mathcal{F}_{ABC}} \partial^A f \partial^B g \partial^C h \stackrel{!}{=} 0$$

Summary

As expected vertex operators commute and associate due to

- momentum conservation in CFT
- the consistency constraints and
- the Bianchi identity (after partial integration) in DFT.

We have a non-associative target space in CFT and DFT for a non-vanishing R -flux, thus for description on $TM \oplus T^*M$ (see also Blair '14).

Why?

Hamiltonian Origin of the Non-associativity

The appearing Jacobi identity could also arise from the commutator algebra [Andriot, Larfors, Lüst, Paltalong '13 and Blair '14]

$$[x^i, x^j] \propto R^{ijk} p_k \quad \text{and} \quad [x^i, p_j] = i \delta^i_j.$$

Underlying classical symplectic structure reads

[Mylonas, Schupp, Szabo '13, '14 and Bakas, Lüst '13]

$$\omega^{ij} = \begin{pmatrix} R^{ijk} p_k & \delta^i_k \\ -\delta^j_i & 0 \end{pmatrix}.$$

Interpret this as a special case of the DFT generalization

$$\Omega^{\mathcal{I}\mathcal{J}} = \begin{pmatrix} \mathcal{F}^{IJK} P_K & \delta^I_K \\ -\delta_I^J & 0 \end{pmatrix}.$$

Speculative Origin of the Symplectic Structure

Similar to the symplectic structure of T^*M we start with the tautological one-form Θ whose exterior derivative is the symplectic structure Ω

$$\Theta = P_I dX^I$$

Inspired by generalized geometry ($TM \oplus T^*M$) use a twisted derivative $d_{\mathcal{F}^{(3)}} = d + \mathcal{F}^{(3)}$!

The symplectic structure

$$\Omega = d_{\mathcal{F}} \Theta = dP_I \wedge dX^I + \mathcal{F}_{IJK}^{(3)} P^K dX^I \wedge dX^J$$

is precisely the non-associative symplectic structure emerging in Hamiltonian formalism.

Conclusion

No contradiction between the non-vanishing Jacobi identity and the non-associative deformations in string theory and DFT

1. Closed string:

Vertex operators commute and associate due to

- momentum conservation in CFT
- consistency constraints and
- Bianchi identity (after partial integration) in DFT.

The **target space** is non-associative for non-zero R -flux due to $TM \oplus T^*M$ (see also talk by Erik: No non-geometry on the sphere)

Conclusion

2. Open string:

Vertex operators do not commute but are associative due to the

- equation of motion
- consistency constraints and
- continuity equation of energy-momentum tensor in DFT.

Although cured, why was there non-associativity at all (No $TM \oplus T^*M$ here)?

Freed-Witten anomaly: A D3 brane wrapping a T^3 with a constant H -flux is anomalous, therefore a non-constant B -field is forbidden
⇒ no non-associativity at all.

(Note: T-duality gives D0 brane (point particle) in R -flux)

Motivation and Outline

○○○

Conditions for Non-associativity

○○○○○

Open String

○○○○○
○○○

Closed String

○○○○
○○○
○○

Conclusion

○○●

Thank you!