From

Double to Extended Field Theory,

Stringy Geometries and Gauged Supergravities

G. Aldazabal, CAB-IB, Bariloche

Frontiers in String Phenomenology, Ringberg, 2014 Duff, Siegel, Tseytlin, (1990-1993)

Hull, Zwiebach(2009)Hohm, Hull, Zwiebach(2010)

G.A, Andriot, Baron, Bedoya, Berkeley, Berman, Betz, Blair, Blumenhagen, Dall Agata, Dibitetto, Cederwall, Coimbra, Copland, Geissbuller, Fernandez-Melgarejo, Fuchs, Graña, Hassler, Hohm, Hull, Jeon, Kleinschmidt, Kwak, Larfors, Lee, Lust, Malek, Marques, Musaev, Nibbelink, Nuñez, Park, Patalong, Penas, Perry, Renecke, Roest, Rosabal, Rudolph, Samtleben, Thompson, Waldram, West, Zweibach, ...

Hitchin, Gualtieri, Petrini, Strickland-Constable, Waldram,(GG)

O.Hohm talk

Motivations:

- Low energy effective field theories for strings, 10(11) dimensional "sugras" miss "stringy dualities". D(E)FT, could capture duality information
- Metric and 2-form field (RR fields) geometrically unified (Berman's talk)
- Like Riemann Geometry describes Gravity, D(E)FT could provide a "Geometry" for strings

 New configurations, non derivable from effective 10 dimensional sugra theories could be reached from D(E)FT. Relevant for Phenomenology, susybreaking, moduli stabilization..

Plan:

- T(U)-duality as a symmetry of a field theory: D(E)FT
- D(E)FT, "dynamical fluxes" formulation
- DFT(EFT) a "Geometry" for strings?
- Generalized Scherk-Schwarz reductions. Fluxes and gaugings
- Link with (bosonic) sector of Supergravities
- Comments, problems and outlook

Double Field Theory

 $\mathrm{O}(n,\!n)$ (T-duality) explicit in a field theory

Extended Field Theory

 $E_{n(n)}$ (U-duality) explicit in a field theory

Double(Extended) Field Theory

- Coordinate space
- Fields
- Symmetries
- Action

coordinates

DFT

$$p^i \leftrightarrow y_i$$
 $\tilde{p}^i \leftrightarrow \tilde{y}^i$ dual coordinates
 $i = 1, \dots, n$

 $P_M = (p_i, \tilde{p}^i) \quad \leftrightarrow \quad \mathbb{Y} = (y^i, \tilde{y}_i) \quad \text{internal, fundamental representation of} \quad O(n,n)$

$$x^{\mu}$$
 space-time d
 $ilde{x}^{\mu}$ space time duals, fictitious

$$X^{M} = (x^{\mu}, \tilde{x}^{\mu}, \mathbb{Y}) \qquad \text{O(D,D)} \qquad \text{D=d+n}$$

6 KK momentum **T-duality** $\mathcal{P}^{M} = \begin{pmatrix} \tilde{p}_{i} \\ p^{i} \end{pmatrix}$ KK +winding=6+6=12 12D fund. of O(6,6)**U-duality** string charge $\mathcal{P}^{M} = \left(p \, \tilde{p} \, \mathbf{Q} \right)$ 56D fund. of $E_{7,7}$ D1+D3+D5 charge=6+20+6 \mathbf{Q} NS charge=6 KK monopole=6 \vdash $\mathbb{Y}^M \quad \leftrightarrow \quad \mathcal{P}^M$ $E_{7,7}$ $M = 1, \dots, 56$ 56D fund. of 8 $X = (x^{\mu}, \mathbb{Y})$ 4 + 56

fields

DFT

 $\Phi_{MN..}(X^M)$

restrict to

 $\mathcal{H}_{MN}(X), d(X)$

Generalized metric

Invariant dilaton

$$\mathcal{H}_{MN} = \begin{pmatrix} g^{ij} & -g^{ik}b_{kj} \\ b_{ik}g^{kj} & g_{ij} - b_{ik}g^{kl}b_{lj} \end{pmatrix} \in O(D,D) \qquad e^{-2d} = \sqrt{g}e^{-2\phi}$$

Massless bosonic modes of D=10 string theory ($\tilde{x}^i = 0, i = 1, ..., D$)

Symmetries

$$\mathcal{L}_{\xi}V^{M} = LV^{M} + Y_{PQ}^{MN}\partial_{N}\xi_{P}V^{Q}$$

$$\mathcal{L}_{\xi}g_{ij} = L_{\lambda}g_{ij}$$
 Usi
 $\mathcal{L}_{\xi}b_{ij} = L_{\lambda}b_{ij} + 2 \; \partial_{[i}\tilde{\epsilon}_{j]}$ tran

Usual diffeos and gauge transformations in sugra

In general

$$Y^{M}{}_{N}{}^{P}{}_{Q} = \delta^{M}_{Q}\delta^{P}_{N} - \alpha P_{(adj)}{}^{M}{}_{N}{}^{P}{}_{Q} + \beta \delta^{M}_{N}\delta^{P}_{Q} ,$$

	$Y^M Q^N P$	α	β
O(n,n)	$\eta^{MN}\eta_{PQ}$	2	0
$E_{4(4)} = SL(5)$	$\epsilon^{iMN}\epsilon_{iPQ}$	3	$\frac{1}{5}$
$E_{5(5)} = SO(5,5)$	$rac{1}{2}(\gamma^i)^{MN}(\gamma_i)_{PQ}$	4	$\frac{1}{4}$
$E_{6(6)}$	$10d^{MNR}\bar{d}_{PQR}$	6	$\frac{1}{3}$
$E_{7(7)}$	$12K^{MN}{}_{PQ} + \delta^{(M}_P \delta^{(N)}_Q + \frac{1}{2}\epsilon^{MN}\epsilon_{PQ}$	12	$\frac{1}{2}$

Table 1: Invariant Y-tensor and proportionality constants for different dimensions. Here η_{MN} is the O(n,n) invariant metric, ϵ_{iMN} is the SL(5) alternating tensor, $(\gamma^i)^{MN}$ are 16×16 MW representation of the SO(5,5) Clifford algebra, d^{MNR} and K^{MNPQ} are the symmetric invariant tensors of $E_{6(6)}$ and $E_{7(7)}$ respectively, and ϵ^{MN} is the symplectic invariant in $E_{7(7)}$.

Consistency

Two successive gauge transformations parameterized by ξ_1 and ξ_2 , acting on a given field ξ_3 , must reproduce a new gauge transformation parameterized by some given $\xi_{12}(\xi_1,\xi_2)$ acting on the same vector

$$\begin{array}{ll} \text{define} & \Delta_{\xi} \equiv \delta_{\xi} - \mathcal{L}_{\xi} \\ & \Delta_{123}{}^{M} = -\Delta_{\xi_{1}} \left(\mathcal{L}_{\xi_{2}}\xi_{3}^{M} \right) = \left(\left[\mathcal{L}_{\xi_{1}}, \ \mathcal{L}_{\xi_{2}} \right] - \mathcal{L}_{\xi_{12}} \right) \xi_{3}^{M} = 0 \\ \text{with} & \xi_{12} = \mathcal{L}_{\xi_{1}}\xi_{2} \end{array}$$

$$\begin{array}{ll} \text{with} & \delta_{123}{}^{M} = Y^{P}{}_{R}{}^{Q}{}_{S} \left(2\partial_{P}\xi_{[1}^{R} \ \partial_{Q}\xi_{2]}^{M} \ \xi_{3}^{S} - \partial_{P}\xi_{1}^{R} \ \xi_{2}^{S} \ \partial_{Q}\xi_{3}^{M} \right) = 0 \end{array}$$

DFT is a constrained theory

a solution is
$$Y^M P^N Q \ \partial_M \partial_N(\dots) = \eta^M N \partial_M \partial_N(\dots) = \tilde{\partial}^i \partial_i(\dots) = 0$$

"section condition" or "strong constraint"

$$Y^{M}{}_{P}{}^{N}{}_{Q} \ \partial_{M}\partial_{N}(\dots) = \eta^{MN}\partial_{M}\partial_{N}(\dots) = \tilde{\partial}^{i}\partial_{i}(\dots) = 0$$

Fields depend on half of the coordinates

not really doubled !

 ${
m O(D,D)}$ rotation to only x dependence

Are there other solutions to consistency constraints?

DFT action

$$S_{DFT} = \int dX e^{-2d} \left(4 \mathcal{H}^{MN} \partial_M \partial_N d - \partial_M \partial_N \mathcal{H}^{MN} - 4 \mathcal{H}^{MN} \partial_M d \partial_N d + 4 \partial_M \mathcal{H}^{MN} \partial_N d \right)$$
$$+ \frac{1}{8} \mathcal{H}^{MN} \partial_M \mathcal{H}^{KL} \partial_N \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_M \mathcal{H}^{KL} \partial_K \mathcal{H}_{NL} + \Delta_{(SC)} \mathcal{R} \right)$$

- up to two derivatives
- up to cubic terms in the metric
- O(D,D) invariant
- Invariant under generalized diffeos if strong contrained If $\partial_M = (0, \partial_i)$

$$S_{DFT} \rightarrow S_{sugra} = \int dx \sqrt{g} e^{-2\phi} \left(\mathbf{R} + 4(\partial \phi)^2 - \frac{1}{12} H^2 \right)$$

$$\begin{array}{ll} \mbox{DFT action with dynamical fluxes} & {}^{\mbox{Geissbuhler, (2011)}}_{\mbox{Marques, Nuñez, Penas,}\\ G.A, Marques, Nuñez (2014)} \end{array}$$

$$\begin{array}{ll} \mbox{A frame formulation:} & M \in O(D,D) & Hohm, Kwak (2010) \\ \hline E_{\bar{A}}{}^M & \mbox{generalized frame} & \in O(D,D)/H & \bar{A} \in H = O(1,D-1) \times O(D-1,1) \end{array}$$

$$\begin{array}{ll} \mbox{$\mathcal{H}_{MN} = E^{\bar{A}}}_M \ S_{\bar{A}\bar{B}} \ E^{\bar{B}}}_N & \eta_{MN} = E^{\bar{A}}_M \ \eta_{\bar{A}\bar{B}} \ E^{\bar{B}}_N \end{array}$$

can be parametrized as

$$E^{\bar{A}}{}_{M} = \begin{pmatrix} e_{\bar{a}}{}^{i} & e_{\bar{a}}{}^{j}b_{ji} \\ 0 & e^{\bar{a}}{}_{i} \end{pmatrix} , \qquad S_{\bar{A}\bar{B}} = \begin{pmatrix} s^{\bar{a}\bar{b}} & 0 \\ 0 & s_{\bar{a}\bar{b}} \end{pmatrix}$$

with $g_{ij} = e^{\bar{a}}{}_i s_{\bar{a}\bar{b}} e^{\bar{b}}{}_j$ and $s_{\bar{a}\bar{b}} = \text{diag}(-+\cdots+)$

Generalized (dynamical) fluxes $\mathcal{F}_{\bar{A}\bar{B}\bar{C}}(X)$

$$\mathcal{L}_{\xi} E_{\bar{A}}{}^{M} = \xi^{P} \partial_{P} E_{\bar{A}}{}^{M} + (\partial^{M} \xi_{P} - \partial_{P} \xi^{M}) E_{\bar{A}}{}^{P}$$

transforms as a vector

in particular

$$\mathcal{L}_{E_{\bar{A}}} E_{\bar{B}}{}^{M} = \mathcal{F}_{\bar{A}\bar{B}}{}^{\bar{C}} E_{\bar{C}}{}^{M}$$

$$\mathcal{L}_{E_{\bar{A}}} e^{-2d} = -\mathcal{F}_{\bar{A}} e^{2d}$$
fluxes

$$\mathcal{F}_{\bar{A}\bar{B}\bar{C}} = E_{\bar{C}M}\mathcal{L}_{E_{\bar{A}}}E_{\bar{B}}{}^{M} = 3\Omega_{[\bar{A}\bar{B}\bar{C}]}$$
then
$$\mathcal{F}_{\bar{A}} = -e^{2d}\mathcal{L}_{E_{\bar{A}}}e^{-2d} = \Omega^{\bar{B}}{}_{\bar{B}\bar{A}} + 2E_{\bar{A}}{}^{M}\partial_{M}d$$

with $\Omega_{\bar{A}\bar{B}\bar{C}} = E_{\bar{A}}{}^M \partial_M E_{\bar{B}}{}^N E_{\bar{C}N} = -\Omega_{\bar{A}\bar{C}\bar{B}}$

generalized Weitzsenbock connection

DFT action

$$S_{DFT} = \int dX e^{-2d} \mathcal{R}$$

$$\mathcal{R} = \mathcal{F}_{\bar{A}\bar{B}\bar{C}} \mathcal{F}_{\bar{D}\bar{E}\bar{F}} \left[\frac{1}{4} S^{\bar{A}\bar{D}} \eta^{\bar{B}\bar{E}} \eta^{\bar{C}\bar{F}} - \frac{1}{12} S^{\bar{A}\bar{D}} S^{\bar{B}\bar{E}} S^{\bar{C}\bar{F}} - \frac{1}{6} \eta^{\bar{A}\bar{D}} \eta^{\bar{B}\bar{E}} \eta^{\bar{C}\bar{F}} \right] + \mathcal{F}_{\bar{A}} \mathcal{F}_{\bar{B}} \left[\eta^{\bar{A}\bar{B}} - S^{\bar{A}\bar{B}} \right]$$

under generalized diffeos

$$\delta_{\xi} \mathcal{F}_{\bar{A}\bar{B}\bar{C}} = \xi^{\bar{D}} \partial_{\bar{D}} \mathcal{F}_{\bar{A}\bar{B}\bar{C}} + \Delta_{\xi\bar{A}\bar{B}\bar{C}} ,$$

$$\delta_{\xi} \mathcal{F}_{\bar{A}} = \xi^{\bar{D}} \partial_{\bar{D}} \mathcal{F}_{\bar{A}} + \Delta_{\xi\bar{A}}$$

if closure is satisfied

$$\Delta_{123}{}^M = 0$$

$$\Delta_{\xi} \mathcal{F}_{\bar{A}\bar{B}\bar{C}} = \Delta_{\xi\bar{A}\bar{B}\bar{C}} = E_{\bar{C}M} \Delta_{\xi} (\mathcal{L}_{E_{\bar{A}}} E_{\bar{B}}^{M}) = 0$$
$$\Delta_{\xi} \mathcal{F}_{\bar{A}} = \Delta_{\xi\bar{A}} = -e^{2d} \Delta_{\xi} (\mathcal{L}_{E_{\bar{A}}} e^{-2d}) = 0.$$

then $\delta_{\xi} \mathcal{R} = \mathcal{L}_{\xi} \mathcal{R} = \xi^P \partial_P \mathcal{R}$ scalar ! \rightarrow the action is invariant

Is \mathcal{R} a generalized Ricci scalar?

A Double Geometry?

Can we "generalize" Riemann geometry to a "Double Geometry"?

Double Geometry

$$L \to \mathcal{L}$$

$$\nabla_M V^N = \partial_M V^N + \Gamma_{MP}{}^N V^P \qquad \qquad \nabla_M E_{\bar{A}}{}^N = W_{M\bar{A}}{}^{\bar{B}} E_{\bar{B}}{}^N \quad \text{generalized covariant derivative}$$

metric compatibility, torsionless...

 $\nabla_A H^{BC} = 0$

$$\mathcal{T}_{\bar{A}\bar{B}}{}^{M} = (\mathcal{L}_{E_{\bar{A}}}^{\nabla} - \mathcal{L}_{E_{\bar{A}}}) E_{\bar{B}}{}^{M} = 0 \quad \Rightarrow \quad 2\Gamma_{[AB]}{}^{C} = Y^{C}{}_{B}{}^{P}{}_{Q}\Gamma_{PA}{}^{Q}$$

only part of $\Gamma_{MP}{}^N$ (and $W_{M\bar{A}}{}^{\bar{B}}$) is determined $\check{P}_N{}^R \ \hat{P}_S{}^Q \ \Gamma_{MR}{}^S = \hat{P}_R{}^Q \partial_M \check{P}_N{}^R \qquad \hat{P}_{MN} = \frac{1}{2}(\eta_{MN} - \mathcal{H}_{MN}), \qquad \check{P}_{MN} = \frac{1}{2}(\eta_{MN} + \mathcal{H}_{MN}),$

Generalized Ricci tensor,

$$[\nabla_M, \nabla_P]V^P + \frac{1}{2}\nabla_A(\boldsymbol{Y^A}_M{}^B{}_P\nabla_B V^P) = \mathcal{R}_{MP}V^P$$

covariant if consistency constraints are satisfied, partially determined

	Riemannian geometry	Double geometry	
Frame compatibility	$W = \Omega + \Gamma$	$W = \Omega + \Gamma$	
O(D, D) compatibility		$\Gamma_{MNP} = -\Gamma_{MPN}$	
		$W_{M\bar{A}\bar{B}} = -W_{M\bar{B}\bar{A}}$	
Metric compatibility	$\partial_i g_{jk} = 2\Gamma_{i(j}{}^l g_{k)l}$	$\partial_M \mathcal{H}_{PQ} = 2\Gamma_{M(P}{}^N \mathcal{H}_{Q)N}$	
Vanishing torsion	$\Gamma_{[ij]}{}^k = 0$	$\Gamma_{[MNP]} = 0$	
	$W_{[\bar{a}\bar{b}]}{}^{\bar{c}} = 2f_{\bar{a}\bar{b}}{}^{\bar{c}}$	$W_{[\bar{A}\bar{B}\bar{C}]} = 3\mathcal{F}_{\bar{A}\bar{B}\bar{C}}$	
Measure compatibility	$\Gamma_{ki}{}^k = \frac{1}{\sqrt{g}}\partial_i\sqrt{g}$	$\Gamma_{PM}{}^P = e^{2d} \partial_M e^{-2d}$	
	$W_{\bar{b}\bar{a}}{}^{\bar{b}} = f_{\bar{b}\bar{a}}{}^{\bar{b}}$	$W_{\bar{B}\bar{A}}{}^{\bar{B}} = -\mathcal{F}_{\bar{A}}$	
Determined part	Totally fixed	Only some	
	$\Gamma_{ij}{}^k = \frac{1}{2}g^{kl}(\partial_i g_{jl} + \partial_j g_{il} - \partial_l g_{ij})$	projections	
Covariance failure	$\Delta_{\xi}\Gamma_{ij}{}^k = \partial_i\partial_j\xi^k$	$\Delta_{\xi}\Gamma_{MNP} = 2\partial_M\partial_{[N}\xi_{P]}$	
		$+ \Omega_{RNP} \Omega^R{}_{MS} \xi^S$	

Table 1: A list of conditions is given for objects in Riemannian and double geometry, with their corresponding implications on the connections. Every line assumes that the previous ones hold.

	Riemannian geometry	Double geometry
Torsion	$T_{ij}{}^k = 2\Gamma_{[ij]}{}^k$	$\mathcal{T}_{MN}{}^P = 2\Gamma_{[MN]}{}^P + \Gamma^P{}_{MN}$
Riemann tensor	Determined	Undetermined
	$R_{ijl}{}^k = 2\partial_{[i}\Gamma_{j]l}{}^k$	$\mathcal{R}_{MNPQ} = R_{MNPQ} + R_{PQMN}$
	$+2\Gamma_{[i m}{}^k\Gamma_{[j]l}{}^m$	$+\Gamma_{RMN}\Gamma^{R}{}_{PQ} - \Omega_{RMN}\Omega^{R}{}_{PQ}$
Ricci tensor	Determined	Undetermined
	$R_{ij} = R_{ikj}{}^k$	$\mathcal{R}_{MN} = \hat{P}_P{}^Q \mathcal{R}_{MQN}{}^P$
EOM	$R_{ij} = 0$	$\hat{P}_{(M}{}^R\check{P}_{N)}{}^S \ \mathcal{R}_{RS} = 0$
Ricci Scalar	$R = g^{ij} R_{ij}$	$\mathcal{R} = \frac{1}{4} \hat{P}^{MN} \mathcal{R}_{MN}$

Table 1: A list of definitions of curvatures is given for Riemannian and double geometry.

Action from generalized Ricci scalar:

$$S_{DFT} = \int dX e^{-2d} \mathcal{R}$$

$$\mathcal{R} = \mathcal{F}_{\bar{A}\bar{B}\bar{C}} \mathcal{F}_{\bar{D}\bar{E}\bar{F}} \left[\frac{1}{4} S^{\bar{A}\bar{D}} \eta^{\bar{B}\bar{E}} \eta^{\bar{C}\bar{F}} - \frac{1}{12} S^{\bar{A}\bar{D}} S^{\bar{B}\bar{E}} S^{\bar{C}\bar{F}} - \frac{1}{6} \eta^{\bar{A}\bar{D}} \eta^{\bar{B}\bar{E}} \eta^{\bar{C}\bar{F}} \right] + \mathcal{F}_{\bar{A}} \mathcal{F}_{\bar{B}} \left[\eta^{\bar{A}\bar{B}} - S^{\bar{A}\bar{B}} \right]$$

G. A, Baron, Marques, Nuñez, (2011) Geissbuller

Scherk-Schwarz dimensional reductions

split coordinates

 $X = (\mathbb{X}, \mathbb{Y})$

$$\mathbb{Y}^A = (ilde{y}_m, y^m)$$
 $m = 1, \dots, n$ internal $\mathbb{X} = (ilde{x}_\mu, x^\mu)$ $\mu = 1, \dots, d$ s-time

 $D - d \pm n$

ansatz

$$\xi^{M}(X) = \widehat{\xi}^{I}(\mathbb{X}) \ U_{I}^{M}(\mathbb{Y}) \qquad \qquad E^{\bar{A}}{}_{M}(X) = \widehat{E}^{\bar{A}}{}_{I}(\mathbb{X}) \ U^{I}{}_{M}(\mathbb{Y}) \ , \qquad d(X) = \widehat{d}(\mathbb{X}) + \lambda(\mathbb{Y})$$

twist

$$U_I^M(\mathbb{Y}) \in O(n,n)$$
$$\lambda(\mathbb{Y})$$

encode dependence on internal coordinates

Dynamical fluxes split

 $X = (\mathbb{X}, \mathbb{Y})$

 $f_{IJK} = \text{constant}$, $f_I = \text{constant}$. (220, 12 for O(6,6))

 $\mathcal{F}_{\bar{A}\bar{B}\bar{C}}(X) = \mathcal{F}_{\bar{A}\bar{B}\bar{C}}(\mathbb{X})$ $\mathcal{F}_{\bar{A}}(X) = \mathcal{F}_{\bar{A}}(\mathbb{X})$

Gauged DFT

$$S_{GDFT} = v \int d\mathbb{X}e^{-2\hat{d}} \left[-\frac{1}{4} \left(\widehat{F}_{IK}{}^{L} + f_{IK}{}^{L} \right) \left(\widehat{F}_{JL}{}^{K} + f_{JL}{}^{K} \right) \widehat{\mathcal{H}}^{IJ} - \frac{1}{12} \left(\widehat{F}_{IJ}{}^{K} + f_{IJ}{}^{K} \right) \left(\widehat{F}_{LH}{}^{G} + f_{LH}{}^{G} \right) \widehat{\mathcal{H}}^{IL} \widehat{\mathcal{H}}^{JH} \widehat{\mathcal{H}}_{KG} - \frac{1}{6} \left(\widehat{F}_{IJK} + f_{IJK} \right) \left(\widehat{F}^{IJK} + f^{IJK} \right) + \left(\widehat{\mathcal{H}}^{IJ} - \eta^{IJ} \right) \widehat{F}_{I} \widehat{F}_{J} \right]$$

$$v = \int d \mathbb{Y} e^{-2\lambda}$$

$$\mathcal{L}_{\xi} V^{M} = U_{I}^{M} \, \widehat{\mathcal{L}}_{\widehat{\xi}} \widehat{V}^{I} \,,$$
$$\widehat{\mathcal{L}}_{\widehat{\xi}} \widehat{V}^{I} = \mathcal{L}_{\widehat{\xi}} \widehat{V}^{I} - f^{I}{}_{JK} \widehat{\xi}^{J} \widehat{V}^{K}$$

From gauged DFT to gauged supergravity

$$O(D,D) \to O(d,d) \times O(n,n)$$

$$\partial_I \widehat{V} \partial^I \widehat{W} = 0 \quad \rightarrow \quad \widetilde{\partial}^{\mu} \widehat{V} = 0 \qquad \qquad f_{IJK} = \begin{cases} f_{ABC} & (I, J, K) = (A, B, C) \\ 0 & \text{otherwise} \end{cases}$$

parametrization

$$\widehat{E}^{\bar{A}}{}_{I} = \begin{pmatrix} \widehat{e}_{\bar{a}}{}^{\mu} & -\widehat{e}_{\bar{a}}{}^{\rho}\widehat{c}_{\rho\mu} & -\widehat{e}_{\bar{a}}{}^{\rho}\widehat{A}_{A\rho} \\ 0 & \widehat{e}^{\bar{a}}{}_{\mu} & 0 \\ 0 & \widehat{\Phi}^{\bar{A}}{}_{B}\widehat{A}^{B}{}_{\mu} & \widehat{\Phi}^{\bar{A}}{}_{A} \end{pmatrix},$$

consider

$$D = 4 + 4 + 12$$

$$f_{ABC} \equiv \mathbf{220}$$

$$f_A \neq \mathbf{12}$$

$$O(6, 6)$$

space -time fields

$$\begin{split} \widehat{\mathcal{L}}_{\widehat{\xi}} \widehat{V}^{I} &= \mathcal{L}_{\widehat{\xi}} \widehat{V}^{I} - f^{I}{}_{JK} \widehat{\xi}^{J} \widehat{V}^{K} & \text{gauge transformations} \\ \delta_{\widehat{\xi}} \ \widehat{g}_{\mu\nu} &= L_{\widehat{\epsilon}} \ \widehat{g}_{\mu\nu} , \\ & & & \delta_{\widehat{\xi}} \ \widehat{b}_{\mu\nu} &= L_{\widehat{\epsilon}} \ \widehat{b}_{\mu\nu} + (\partial_{\mu} \widehat{\epsilon}_{\nu} - \partial_{\nu} \widehat{\epsilon}_{\mu}) , \\ \delta_{\widehat{\xi}} \ \widehat{h}^{A}{}_{\mu} &= L_{\widehat{\epsilon}} \ \widehat{h}^{A}{}_{\mu} - \partial_{\mu} \widehat{\Lambda}^{A} + f_{BC}{}^{A} \ \widehat{\Lambda}^{B} \widehat{A}^{C}{}_{\mu} , \\ \delta_{\widehat{\xi}} \ \widehat{\mathcal{M}}_{AB} &= L_{\widehat{\epsilon}} \ \widehat{\mathcal{M}}_{AB} + f_{AC}{}^{D} \ \widehat{\Lambda}^{C} \ \widehat{\mathcal{M}}_{DB} + f_{BC}{}^{D} \ \widehat{\Lambda}^{C} \ \widehat{\mathcal{M}}_{AD} . \end{split}$$

and S_{DFT} —

$$S = \int dx \sqrt{\hat{g}} e^{-2\hat{\phi}} \left(\mathbf{R} + 4 \partial^{\mu} \hat{\phi} \partial_{\mu} \hat{\phi} - \frac{1}{4} \widehat{\mathcal{M}}_{AB} \mathcal{F}^{A\mu\nu} \mathcal{F}^{B}{}_{\mu\nu} - \frac{1}{12} \mathcal{G}_{\mu\nu\rho} \mathcal{G}^{\mu\nu\rho} + \frac{1}{8} D_{\mu} \widehat{\mathcal{M}}_{AB} D^{\mu} \widehat{\mathcal{M}}^{AB} - V \right) \,.$$

with

$$V = \frac{1}{4} f_{DA}{}^C f_{CB}{}^D \widehat{\mathcal{M}}{}^{AB} + \frac{1}{12} f_{AC}{}^E f_{BD}{}^F \widehat{\mathcal{M}}{}^{AB} \widehat{\mathcal{M}}{}^{CD} \widehat{\mathcal{M}}_{EF} + \frac{1}{6} f_{ABC} f^{ABC}$$

Electric bosonic sector of N = 4 gauged supergravity

 $f_{\alpha ABC} \to f_{+ABC} \equiv f_{ABC}$

 $\mathcal{N} = 4$ sugra

Global symmetry

$$SL(2,Z)_S \times O(6,6)$$

$f_{lpha ABC}$	(2, 220)
f_{+ABC}	electric
f_{-ABC}	magnetic
ξ^M_lpha	(2, 12)

$$V_{\mathcal{N}=4} = \frac{1}{4} \left[f_{\alpha MNP} f_{\beta QRS} M^{\alpha \beta} \left(\frac{1}{3} M^{MQ} M^{NR} M^{PS} + \left(\frac{2}{3} \eta^{MQ} - M^{MQ} \right) \eta^{NR} \eta^{PS} \right) - \frac{4}{9} f_{\alpha MNP} f_{\beta QRS} \epsilon^{\alpha \beta} M^{MNPQRS} + 3\xi^{M}_{\alpha} \xi^{N}_{\beta} M^{\alpha \beta} M_{MN} \right]$$
$$\int_{\mathbf{V}} f_{\alpha ABC} \rightarrow f_{+ABC} \equiv f_{ABC}$$

 $V = \frac{1}{4} f_{DA}{}^C f_{CB}{}^D \widehat{\mathcal{M}}{}^{AB} + \frac{1}{12} f_{AC}{}^E f_{BD}{}^F \widehat{\mathcal{M}}{}^{AB} \widehat{\mathcal{M}}{}^{CD} \widehat{\mathcal{M}}_{EF} + \frac{1}{6} f_{ABC} f^{ABC}$

quadratic constraints

$$\partial_{[A} f_{BCD]} - \frac{3}{4} f_{[AB}{}^E f_{CD]E} = -\frac{3}{4} \tilde{\Omega}_{E[AB} \tilde{\Omega}^{E}{}_{CD]} = 0 \quad \text{closure}$$

constant fluxes

$$f_{[AB}{}^E f_{CD]E} = \tilde{\Omega}_{E[AB} \tilde{\Omega}^{E}{}_{CD]} = 0$$
 quadratic constraints

$$\Omega_{EAB} \Omega^{E}{}_{CD} = 0 \qquad \text{strong constraint}$$

- There is a subset of new solutions not annihilated by the strong constraint.
- Although many non-geometric backgrounds are related to geometric ones through T-duality, there are genuinely non-geometric orbits of fluxes

fluxes=sugra gaugings

$$f_{IJK} = 3\tilde{\Omega}_{[IJK]}, \qquad \tilde{\Omega}_{IJK} = U_I^M \partial_M U_J^N U_{KN},$$
$$f_I = \tilde{\Omega}^J_{JI} + 2U_I^M \partial_M \lambda$$

$$U^{A}{}_{M} = \begin{pmatrix} u_{a}{}^{m} & u_{a}{}^{n}v_{nm} \\ u^{a}{}_{n}\beta^{nm} & u^{a}{}_{m} + u^{a}{}_{n}\beta^{np}v_{pm} \end{pmatrix}$$

Only u, v appear in SS compactifications of Sugras

$$f_{abc} = H_{abc} , \quad f^a{}_{bc} = \omega_{bc}{}^a , \quad f^{ab}{}_c = Q_c{}^{ab} , \quad f^{abc} = R^{abc}$$

more explicitely

$$\begin{split} H_{abc} &= 3 \left[\nabla_{[a} v_{bc]} - v_{d[a} \tilde{\nabla}^{d} v_{bc]} \right], \\ \omega_{ab}{}^{c} &= 2 \Gamma_{[ab]}{}^{c} + \tilde{\nabla}^{c} v_{ab} + 2 \Gamma^{mc}{}_{[a} v_{b]m} + \beta^{cm} H_{mab}, \\ Q_{c}{}^{ab} &= 2 \Gamma^{[ab]}{}_{c} + \partial_{c} \beta^{ab} + v_{cm} \tilde{\partial}^{m} \beta^{ab} + 2 \omega_{mc}{}^{[a} \beta^{b]m} - H_{mnc} \beta^{ma} \beta^{nb}, \\ R^{abc} &= 3 \left[\beta^{[\underline{a}m} \nabla_{m} \beta^{\underline{b}c]} + \tilde{\nabla}^{[a} \beta^{bc]} + v_{mn} \tilde{\nabla}^{n} \beta^{[ab} \beta^{c]m} + \beta^{[\underline{a}m} \beta^{\underline{b}n} \tilde{\nabla}^{\underline{c}]} v_{mn} \right] + \beta^{am} \beta^{bn} \beta^{cl} H_{mnl}, \end{split}$$

$$\nabla_a, \qquad \tilde{\nabla}^n \qquad \longrightarrow \qquad \Gamma_{ab}{}^c = u_a{}^m \partial_m u_b{}^n u^c{}_n , \qquad \Gamma^{ab}{}_c = u^a{}_m \tilde{\partial}^m u^b{}_n u_c{}^n$$

Berman, Dall Agata, Cederwall, Coimbra, Hohm, Kleinschmidt, Musaev, Samtleben, Thompson, Waldram, West, Strickland-Constable, Waldram,

GA, Graña, Marques, Rosabal ´13, ´14

Coordinate space

 (x^{μ}, \mathbb{Y}^M)

 x^{μ} d=4 space-time \mathbb{Y}^{M} $M=1,\ldots,56$ internal

- to start with: restrict to internal sector
- x^{μ} expectator

• Fields

$$V^M = v^{\bar{A}}(x) E_{\bar{A}}{}^M(Y)$$

• Symmetries

$$\mathcal{L}_{\xi}V^{M} = (L_{\xi}V)^{M} + Y^{M}{}_{N}{}^{P}{}_{Q}\partial_{P}\xi^{Q}V^{N}$$

$$\mathcal{L}_{\xi} \quad \text{must preserve} \quad E_{7(7)} \quad \text{invariants} \quad \begin{array}{l} \omega_{NQ} = -\omega_{QN} \\ K_{MNPQ} \equiv P^{MP}{}_{NQ} \end{array} \quad \text{symplectic metric} \end{array}$$

$$Y^{M}{}_{N}{}^{P}{}_{Q} = -12P^{MP}{}_{NQ} + \frac{1}{2}\omega^{MP}\omega_{NQ}$$

Extended (dynamical) fluxes

$$(\mathcal{L}_{E_{\bar{A}}}E_{\bar{B}})^M = F_{\bar{A}\bar{B}}{}^{\bar{C}}E_{\bar{C}}{}^M$$

$$\mathbb{F}_{\bar{A}\bar{B}}{}^{\bar{C}} = 2\Omega_{[\bar{A}\bar{B}]}{}^{\bar{C}} + Y^{\bar{C}}{}_{\bar{B}}{}^{\bar{D}}{}_{\bar{E}} \ \Omega_{\bar{D}\bar{A}}{}^{\bar{E}} \qquad \Omega_{\bar{A}\bar{B}}{}^{\bar{C}} = \hat{E}_{\bar{A}}{}^{M}\partial_{M}\hat{E}_{\bar{B}}{}^{N}(\hat{E}^{-1})_{N}{}^{\bar{C}}$$

$$F_{AB}{}^{C} = D_{AB}{}^{C} + X_{AB}{}^{C}$$
 $F_{\bar{A}\bar{B}}{}^{\bar{C}} \in \mathbf{56} + \mathbf{912}$

Namely

$$P_{(adj)}{}^{C}{}_{B}{}^{D}{}_{E} X_{AD}{}^{E} = X_{AB}{}^{C}$$

$$\mathbf{912}$$

$$X_{A[BC]} = X_{AB}{}^{B} = X_{(ABC)} = X_{BA}{}^{B} = 0$$

$$D_{AB}{}^{C} = -\vartheta_{A}\delta_{B}^{C} + 8P_{(adj)}{}^{C}{}_{B}{}^{D}{}_{A}\vartheta_{D} \qquad \in \mathbf{56}$$

Consistency constraints

$$\Delta_{123}{}^M = \left(\left[\mathcal{L}_{\xi_1}, \ \mathcal{L}_{\xi_2} \right] - \mathcal{L}_{\xi_{12}} \right) \xi_3^M = 0$$

 $[\mathcal{L}_{\xi_1}, \ \mathcal{L}_{\xi_2}] = \mathcal{L}_{[[\xi_1, \ \xi_2]]}.$ closure of the algerba

$$\mathcal{L}_{((\xi_1, \xi_2))} = 0$$
, $((\xi_1, \xi_2)) = \xi_{(12)}$

"section condition" or "strong constraint" A solution:

 $P_{(adj)MN}^{QR}\partial_Q \otimes \partial_R = 0$ fields depend on a 6d slice of the 56d space

Are there other solutions to consistency constraints?

Consistency reads

$$([\mathcal{L}_{E_{\bar{A}}}, \mathcal{L}_{E_{\bar{B}}}]E_{\bar{C}} - \mathcal{L}_{\mathcal{L}_{E_{\bar{A}}}E_{\bar{B}}}E_{\bar{C}})^{M} = ([F_{\bar{A}}, F_{\bar{B}}] + F_{\bar{A}\bar{B}}{}^{\bar{E}}F_{\bar{E}})_{\bar{C}}{}^{\bar{D}} + (\partial F)$$

 $V^M = v^{\bar{A}}(x) E_{\bar{A}}{}^M(Y)$

• constant fluxes

 $F_{AB}{}^C(\mathbb{Y})$

• quadratic constraints

$$[F_A, F_B] = -F_{AB}{}^C F_C \qquad \qquad \blacktriangleright \qquad \mathbf{J.l.} + \qquad F_{(AB)}{}^E F_{ED}{}^F = 0$$

 $F_{(AB)}^{E}$ intertwining tensor.

An Extended Geometry?

Can we "generalize" Riemann geometry to a "Extended Geometry"?

generalized covariant derivative

$$\nabla_M V^N = \partial_M V^N + \Gamma_{MP}{}^N V^P \qquad \qquad \nabla_M E_{\bar{A}}{}^N = W_{M\bar{A}}{}^{\bar{B}} E_{\bar{B}}{}^N$$

torsion free

$$\mathcal{T}_{\bar{A}\bar{B}}{}^{M} = (\mathcal{L}_{E_{\bar{A}}}^{\nabla} - \mathcal{L}_{E_{\bar{A}}}) E_{\bar{B}}{}^{M} = 0 \quad \Rightarrow \quad 2\Gamma_{[AB]}{}^{C} = Y^{C}{}_{B}{}^{P}{}_{Q}\Gamma_{PA}{}^{Q}$$

metric compatibility $\nabla_A H^{BC} = 0$

only part of $\ {\Gamma_{MP}}^N$ (and $\ {W_{MN}}^P$) is determined

$$W_{MN}{}^{P} = -\frac{16}{19} P_{(adj)}{}^{P}{}_{N}{}^{I}{}_{M}\vartheta_{I} + \frac{1}{7} X_{MN}{}^{P} + \Sigma_{MN}{}^{P} \qquad \qquad W \in \mathbf{56} + \mathbf{912} + \mathbf{6480}$$

$$\mathcal{R}_{MN} \equiv \frac{1}{2} \left(R_{MN} + R_{NM} + \Gamma_{RM}^{P} Y^{R}{}_{P}{}^{S}{}_{Q} \Gamma_{SN}{}^{Q} \right) = \mathcal{R}_{NM}$$

$$[\nabla_M, \nabla_P]V^P + \frac{1}{2}\nabla_A(\boldsymbol{Y^A}_M \boldsymbol{B}_P \nabla_B V^P) = \mathcal{R}_{MP}V^P$$

Coimbra, Strickland-Constable, Waldram (2012)

Ricci scalar

$$\mathcal{R} = H^{AB} \mathcal{R}_{AB}$$

$$\frac{1}{4}\mathcal{R} = \frac{1}{672} \left(H^{AD} H^{BE} H_{CF} X_{AB}{}^{C} X_{DE}{}^{F} + 7 H^{AB} X_{AC}{}^{D} X_{BD}{}^{C} \right) - \frac{1}{672} \left(448 H^{AB} P_{(adj)AB}{}^{CD} + \frac{4}{3} H^{CD} \right) \vartheta_{C} \vartheta_{D}$$

$$[F_A, F_B] = -F_{AB}{}^C F_C \qquad \longrightarrow \qquad \qquad \delta_{\xi} \mathcal{R} = \mathcal{L}_{\xi} \mathcal{R} = \xi^P \partial_P \mathcal{R}$$

quadratic constraints

$$F_{AB}{}^{C} = D_{AB}{}^{C} + X_{AB}{}^{C} \qquad F_{\bar{A}\bar{B}}{}^{\bar{C}} \in \mathbf{56} + \mathbf{912}$$

Internal action

$$S = \frac{1}{4} \int dy \, e^{-2\Delta} \frac{1}{672} \left(H^{AD} H^{BE} H_{CF} X_{AB}{}^C X_{DE}{}^F + 7 H^{AB} X_{AC}{}^D X_{BD}{}^C \right)$$
$$(\sqrt{H})^{-1/28} = e^{-2\Delta} \qquad \qquad \mathcal{L}_{\xi} e^{-2\Delta} = \partial_P (e^{-2\Delta} \xi^P)$$

 $H^{AB} = \mathcal{M}^{AB}(x)$ and $e^{-2\Delta(y)} = \sqrt{g(y)}$

$$S = 4V = \frac{1}{672} \left(\mathcal{M}^{AD}(x) \mathcal{M}^{BE}(x) \mathcal{M}_{CF}(x) X_{AB}{}^C X_{DE}{}^F + 7 \mathcal{M}^{AB}(x) X_{AC}{}^D X_{BD}{}^C \right)$$

Scalar potential for $\mathcal{N} = 8$ gauged supergravity

de Wit, H.Samtleben, M.Trigiante (2007)

Extended Field Theory?

Is it possible to build up a D = 4 + 56 EFT ?

$$(x^{\mu}, \mathbb{Y}^{M})$$
 x^{μ} $\mu = 1, 2, 3, 4$ \mathbb{Y}^{M} $M = 1, \dots, 56$

Mixed terms terms require extra structure!

- start in D = 4 with gaugings $\longrightarrow D = 4$ Gauged Sugra
- then try to uplift to D = 4 + 56

D = 4 algebra

$$V^{\mathbb{M}} = (\xi^{\mu}, \xi^{M}, \dots)$$

$$\begin{aligned} (\hat{\mathcal{L}}_{\xi_1}\xi_2)^{\mu} &= (L_{\xi_1}\xi_2)^{\mu} & \text{as in DFT} \\ (\hat{\mathcal{L}}_{\xi_1}\xi_2)^A &= L_{\xi_1}\xi_2^A - \xi_2^{\rho}\partial_{\rho}\xi_1^A + F_{BC}{}^A\xi_1^B\xi_2^C \end{aligned}$$

$$\left(\hat{\Delta}_{\xi_1}\hat{\mathcal{L}}_{\xi_2}V\right)^{\mathbb{A}} = \left[\left(\left[\hat{\mathcal{L}}_{\xi_1},\hat{\mathcal{L}}_{\xi_2}\right] - \hat{\mathcal{L}}_{\hat{\mathcal{L}}_{\xi_1}\xi_2}\right)V\right]^{\mathbb{A}}$$

$$\begin{aligned} (\hat{\Delta}_{\xi_1}\hat{\mathcal{L}}_{\xi_2}V)^{\mu} &= 0 \\ (\hat{\Delta}_{\xi_1}\hat{\mathcal{L}}_{\xi_2}V)^{A} &= \left([F_B, F_C] + F_{BC}{}^{E}F_E\right){}_{D}{}^{A}\xi_1^{B}\xi_2^{C}V^{D} \longrightarrow \begin{array}{c} \text{quadratic} \\ \text{constraints} \\ -2V^{\rho}F_{(BC)}{}^{A}\partial_{\rho}\xi_1^{B}\xi_2^{C} \\ & \downarrow \\ & \xi_{\rho}{}^{A} \end{aligned}$$

Tensor hierarchy (133)

$$(\hat{\mathcal{L}}_{\xi_{1}}\xi_{2})^{\mu} = (L_{\xi_{1}}\xi_{2})^{\mu}$$

$$(\hat{\mathcal{L}}_{\xi_{1}}\xi_{2})^{A} = L_{\xi_{1}}\xi_{2}^{A} - \xi_{2}^{\rho}\partial_{\rho}\xi_{1}^{A} + F_{BC}^{A}\xi_{1}^{B}\xi_{2}^{C} + \xi_{2}^{\rho}\xi_{1\rho}^{A}$$

$$(\hat{\mathcal{L}}_{\xi_{1}}\xi_{2})_{\mu}^{A} = (L_{\xi_{1}}\xi_{2})_{\mu}^{A} + 2\xi_{2}^{\sigma}\partial_{[\sigma}\xi_{1\rho]}^{A} + 2F_{(BC)}^{A}(2\xi_{[1}^{B}\xi_{2]})_{\mu}^{C} + \xi_{2}^{B}\partial_{\mu}\xi_{1}^{C})$$

closes if $\xi_{1\rho}{}^B F_{BC}{}^A = 0$

solved, due to quadratic constraints ($F_{(AB)}{}^{E}F_{ED}{}^{F} = 0$), by

$$\xi_{\mu}{}^{A} = F_{(BC)}{}^{A}\xi_{\mu}{}^{BC} = F_{\alpha}{}^{A}\xi_{\mu}{}^{\alpha} \qquad \xi_{\mu}{}^{\alpha} \in \mathbf{133}$$
Intertwining tensor

$$m{V}^{\mathbb{M}} = (\xi^{\mu}, \xi^{M}, \xi_{\mu}{}^{lpha}, \dots) \ m{0} + m{56} + m{133} + \dots$$

Next step in the hierarchy (912)

$$F_{\alpha}{}^{A} \left[(\hat{\mathcal{L}}_{\xi_{1}}\xi_{2})_{\mu}{}^{\alpha} = (L_{\xi_{1}}\xi_{2})_{\mu}{}^{\alpha} + 2\xi_{2}^{\sigma}\partial_{[\sigma}\xi_{1\mu]}{}^{\alpha} - 2(t^{\alpha})_{BC} \left(2\xi_{[1}^{B}\xi_{2]\mu}{}^{\beta}F_{\beta}{}^{C} + \xi_{2}^{B}\partial_{\mu}\xi_{1}^{C} \right) + \Gamma_{\mu}{}^{\alpha} \right]$$

 $\Gamma_{\mu}{}^{\alpha}F_{\gamma}{}^{A}$ Ο

$$\Gamma_{\mu}{}^{\alpha}F_{\alpha}{}^{A} = 0$$

 $V^{\mathbb{M}}=(\xi^{\mu},\xi^{M},\xi_{\mu}{}^{lpha},\xi_{\mu}{}^{lpha},\ldots)$

 $0 + 56 + 133 + +912 \dots$

$$\begin{aligned} \left(\hat{\mathcal{L}}_{\xi_{1}}\xi_{2}\right)^{\mu} &= (L_{\xi_{1}}\xi_{2})^{\mu} \\ \left(\hat{\mathcal{L}}_{\xi_{1}}\xi_{2}\right)^{A} &= L_{\xi_{1}}\xi_{2}^{A} - \xi_{2}^{\rho}\partial_{\rho}\xi_{1}^{A} + F_{BC}{}^{A}\xi_{1}^{B}\xi_{2}^{C} + \xi_{2}^{\rho}\xi_{1\rho}{}^{\gamma}F_{\gamma}{}^{A} \\ \left(\hat{\mathcal{L}}_{\xi_{1}}\xi_{2}\right)_{\mu}{}^{\alpha} &= (L_{\xi_{1}}\xi_{2})_{\mu}{}^{\alpha} - 2\xi_{2}^{\rho}\partial_{[\rho}\xi_{1\mu]}{}^{\alpha} - 2(t^{\alpha})_{BC} \left(2\xi_{[1}^{B}\xi_{2]\mu}{}^{\gamma}F_{\gamma}{}^{C} + \xi_{2}^{B}\partial_{\mu}\xi_{1}^{C}\right) \\ &+ \xi_{2}^{\rho}\xi_{1\rho\mu}{}^{\alpha} - F_{A\beta}{}^{\alpha}\xi_{2\mu}{}^{\beta}\xi_{1}^{A} \\ \left(\hat{\mathcal{L}}_{\xi_{1}}\xi_{2}\right)_{\mu\nu}{}^{\alpha} &= (L_{\xi_{1}}\xi_{2})_{\mu\nu}{}^{\alpha} - 3\xi_{2}^{\rho}\partial_{[\rho}\xi_{1\mu\nu]}{}^{\alpha} \\ &+ 2F_{A\beta}{}^{\alpha} \left(\xi_{2[\mu}{}^{\beta}\partial_{\nu]}\xi_{1}^{A} - \xi_{2}^{A}\partial_{[\mu}\xi_{1\nu]}{}^{\beta} - \xi_{[1}^{A}\xi_{2]\mu\nu}{}^{\beta} + \xi_{1[\mu}{}^{\beta}\xi_{2\nu]}{}^{A}\right) \\ \vdots \end{aligned}$$

$$V^{M} = (\xi^{\mu}, \xi^{M}, \xi_{\mu}{}^{\alpha}, \xi_{\mu\nu}{}^{M}, \xi_{\mu\nu}\xi^{M}, \ldots)$$

Extended tangent space

 $0 + 56 + 133 + 912 + (133 + 8645) + \dots$

Cosistent with: F. Riccioni, D. Steele and P. West, The E(11) origin of all maximal supergravities: The Hierarchy of field-strengths, JHEP 0909, 095 (2009).

Generalized diffeomorphisms in gauged maximal supergravity

$$\xi^{\mathbb{A}} = (\xi^{\mu}, \xi^{A}, \xi_{\mu}^{\langle AB \rangle}, \xi_{\mu\nu}^{\langle ABC \rangle}, \xi_{\mu\nu\rho}^{\langle ABCD \rangle}, \dots) \qquad \text{vectors}$$

$$< \cdots > \text{ projector onto irreps.} \qquad \xrightarrow{E_{7(7)}} (\xi^{\mu}, \xi^{A}, \xi_{\mu}^{\alpha}, \xi_{\mu\nu}^{A}, \xi_{\mu\nu\rho}^{A}, \dots)$$

$$\left(\hat{\mathcal{L}}_{\xi_{1}}\xi_{2}\right)^{\mathbb{A}} = \xi_{1}^{\mathbb{B}}\partial_{\mathbb{B}}\xi_{2}^{\mathbb{A}} - \xi_{2}^{\mathbb{B}}\partial_{\mathbb{B}}\xi_{1}^{\mathbb{A}} + W^{\mathbb{A}}{}_{\mathbb{B}}{}^{\mathbb{C}}{}_{\mathbb{D}}\partial_{\mathbb{C}}\xi_{1}^{\mathbb{D}}\xi_{2}^{\mathbb{B}} + F_{\mathbb{B}\mathbb{C}}{}^{\mathbb{A}}\xi_{1}^{\mathbb{B}}\xi_{2}^{\mathbb{C}}$$
 Gen. diff

$$\partial_{\mathbb{A}} = (\partial_{\mu}, 0, \dots)$$

Intertwinig tensor.

$$F_{\alpha}{}^{A}$$
, $F_{\mathcal{A}}{}^{\alpha}$, $F_{\mathbf{A}}{}^{\mathcal{A}}$, ... $F_{\mathcal{A}}{}^{\alpha}F_{\alpha}{}^{A} = F_{\mathbf{A}}{}^{\mathcal{A}}F_{\mathcal{A}}{}^{\alpha} = \cdots = 0$

Extended tangent space

V

 $\delta \mathbb{E}_{\bar{\mathbb{A}}}^{\mathbb{M}} \supset (\delta e_{\bar{m}}{}^{\mu}, \delta \Phi_{\bar{A}}{}^{M}, \delta A_{\mu}{}^{M}, \delta B_{\mu\nu}{}^{\alpha}, \delta C_{\mu\nu\xi}{}^{\mathcal{M}}, \delta D_{\mu\nu\xi\rho}{}^{\mathbf{M}}, \dots)$

 $\mathbb{F}_{\bar{\mathbb{A}}\bar{\mathbb{B}}}^{\bar{\mathbb{C}}} = (\hat{\mathcal{L}}_{\mathbb{E}_{\bar{\mathbb{A}}}} \mathbb{E}_{\bar{\mathbb{B}}})^{\mathbb{C}} (\mathbb{E}^{-1})_{\mathbb{C}}^{\bar{\mathbb{C}}} \qquad \qquad \text{dynamical fluxes}$

$$\mathbb{F}_{\bar{a}\bar{b}}{}^{\bar{c}} \sim \omega_{[\bar{a}\bar{b}]}{}^{\bar{c}}$$

$$\mathbb{F}_{\bar{a}\bar{b}}{}^{\bar{c}} \sim F_{\mu\nu}{}^{C}$$

$$\mathbb{F}_{\bar{a}\bar{b}}{}^{\bar{c}} \sim D_{\mu}\Phi_{\bar{b}}{}^{C}$$

$$D_{\mu}\Phi_{\bar{B}}{}^{C} = \partial_{\mu}\Phi_{\bar{B}}{}^{C} - F_{AB}{}^{C}A_{\mu}{}^{A}\Phi_{\bar{B}}{}^{B}$$

$$\mathcal{H}_{\mu\nu}{}^{C} = 2\partial_{[\mu}A_{\nu]}{}^{C} - F_{[AB]}{}^{C}A_{\mu}{}^{B}A_{\nu}{}^{C} + B_{\mu\nu}{}^{\alpha}F_{\alpha}{}^{C}$$

$$\mathcal{H}_{\mu\nu\rho}{}^{\alpha} = 3\left[\partial_{[\mu}B_{\nu\rho]}{}^{\alpha} - C_{\mu\nu\rho}{}^{A}F_{A}{}^{\alpha} + 2(t^{\alpha})_{BC}\left(A_{[\mu}{}^{B}\partial_{\nu}A_{\rho]}{}^{C} + A_{[\mu}{}^{B}B_{\nu\rho]}{}^{\beta}F_{\beta}{}^{C} + \frac{1}{3}F_{DE}{}^{B}A_{[\mu}{}^{D}A_{\nu}{}^{E}A_{\rho]}{}^{C}\right)\right]$$

•

$$\hat{\Delta}_{\bar{A}\bar{B}\bar{C}}^{\mathbb{D}} = \left([\hat{\mathcal{L}}_{\mathbb{E}_{\bar{A}}}, \hat{\mathcal{L}}_{\mathbb{E}_{\bar{B}}}] \mathbb{E}_{\bar{C}} - \hat{\mathcal{L}}_{\hat{\mathcal{L}}_{\mathbb{E}_{\bar{A}}}} \mathbb{E}_{\bar{C}} \right)^{\mathbb{D}} \xrightarrow{\mathbf{BI}} \hat{\Delta}_{\bar{d}\bar{a}\bar{b}}^{\bar{c}} \sim R_{[\mu\nu\rho]}^{\sigma} = 0$$

$$\hat{\Delta}_{\bar{d}\bar{a}\bar{b}}^{\bar{c}} \sim (3D_{[\mu}F_{\nu\rho]}^{M} - \mathcal{H}_{\mu\nu\rho}^{M}) = 0$$

$$\vdots$$

Democratic formulation of maximal (bosonic) gauged Sugra in D = 4 53

An Extended space-time geometry?

$$D = 4 + 56$$
 $D = d + dim E_{n+1(n+1)}$

uplift?

$$\hat{\xi}^{\mathbb{M}}(x,Y) = (\hat{\xi}^{\mu}, \hat{\xi}^{M}, \hat{\xi}_{\mu}^{}, \hat{\xi}_{\mu\nu}^{}, \dots)$$

$$\left(\hat{\mathcal{L}}_{\xi_{1}}\xi_{2}\right)^{\mathbb{A}} = \xi_{1}^{\mathbb{B}}\partial_{\mathbb{B}}\xi_{2}^{\mathbb{A}} - \xi_{2}^{\mathbb{B}}\partial_{\mathbb{B}}\xi_{1}^{\mathbb{A}} + W^{\mathbb{A}}{}_{\mathbb{B}}{}^{\mathbb{C}}{}_{\mathbb{D}}\partial_{\mathbb{C}}\xi_{1}^{\mathbb{D}}\xi_{2}^{\mathbb{B}} + F_{\mathbb{B}\mathbb{C}}{}^{\mathbb{A}}\xi_{1}^{\mathbb{B}}\xi_{2}^{\mathbb{C}} \qquad \text{Extended gauged sugra} \\ \partial_{\mathbb{M}} = (\partial_{\mu}, \dots), \quad D = 4$$

$$\left(\hat{\mathcal{L}}_{\hat{\xi}_{1}}\hat{\xi}_{2}\right)^{\mathbb{M}} = \hat{\xi}_{1}^{\mathbb{P}}\partial_{\mathbb{P}}\hat{\xi}_{2}^{\mathbb{M}} - \hat{\xi}_{2}^{\mathbb{P}}\partial_{\mathbb{P}}\hat{\xi}_{1}^{\mathbb{M}} + Y^{\mathbb{M}}{}_{\mathbb{P}}{}^{\mathbb{N}}{}_{\mathbb{Q}}\partial_{\mathbb{N}}\hat{\xi}_{1}^{\mathbb{Q}}\hat{\xi}_{2}^{\mathbb{P}} \qquad \qquad \partial_{\mathbb{M}} = (\partial_{\mu}, \partial_{M}, 0, \dots).$$
$$D = 4 + 56$$

Obstructions to uplifting at different levels M, < MN >, < MNP >, ...) depending on n

See Berman et al., Hohm et al., 54

hierarchy \longrightarrow $M, < MN >, < MNP >, \dots$

Intertwinig tensor.

Intertwining operartor

i.e.
$$F_{(AB)}{}^C = Y^M{}_P{}^N{}_Q\partial_N U_{(A}{}^Q U_{B)}{}^P (U^{-1})_M{}^C$$

$$\left(\hat{\mathcal{L}}_{\xi_1}\xi_2\right)^M \longrightarrow \xi_{\mu}{}^{AB}F_{(AB)}{}^C U_C{}^M = \frac{1}{2}Y^M{}_P{}^N{}_Q\partial_N\hat{\xi}_{\mu}{}^PQ + Y^M{}_{[P}{}^N{}_Q]\partial_N U_A{}^Q U_B{}^P\xi_{\mu}{}^{AB}$$

$$E_{7(7)} \qquad Y^{M}{}_{P}{}^{N}{}_{Q} = -12P^{MN}{}_{(PQ)} + \frac{1}{2}\omega^{MN}\omega_{[PQ]}$$

$$E_{n(n)} \qquad Y^{M}{}_{P}{}^{N}{}_{Q} = C_{n}P^{MN}{}_{(PQ)}$$

< MN > obstruction in $E_{6(6)}$

Summary and Outlook

- Low energy effective field theories for strings miss "stringy dualities", D(E)FT could capture duality information
- Like Riemann Geometry describes Gravity, DFT(EFT) could provide a "Geometry" for strings

Non-Geometry geometrized

Twisted (SS) compactifications lead to full gauged supergravities

(electric bosonic sector of) half-maximal gauge supergravity

EFT (under construction?, O. Hohm talk)

DFT

Scalar potential of maximal gauged supergravity

Democratic maximal gauged supergravity

• All (electric) "gaugings" are obtained from DFT(EFT). New configurations, not derivable from effective 10 dimensional sugra theories can be reached from D(E)FT

- Can the strong constraint be generically relaxed? i.e.: SS (see Betz,B.L,R)
- Can we really include windings?

Strong constraint: no windings

SS: only zero mode

• Is there a double(extended) geometry?:

patchings involving all coordinates?

(see Hohm,L.Z,.; Berman et al., Hull,..)

truly double manifold with a globally defined basis?

- A consistent truncation of string (field?) theory?
- Truly stringy states? .
- Massive states? Quantum corrections?