## On the prevalence of elliptic and genus one fibers among Calabi-Yau threefolds

## Conference on Geometry and Strings Ringberg Castle, Tegernsee

$$
\text { July 23, } 2018
$$

Washington (Wati) Taylor, MIT

Based on:
arXiv: 1805.05907., arXiv: 1808.nnnnn Y-C. Huang, WT

1. Calabi-Yau manifolds and fibrations

Calabi-Yau threefolds:
physically:

- Ricci flat: $R_{\mu \nu}=0$ (solve vacuum Einstein equations)
- Kähler manifolds (complex structure compatible with SUSY) mathematically: trivial canonical class $K=0$ (up to torsion)

Long studied by mathematicians and physicists
— Used in compactification of heterotic, II $\rightarrow 4 \mathrm{D}$, F-theory $\rightarrow 6 D(+\mathrm{M} \rightarrow 5 \mathrm{D})$
Largest class of known Calabi-Yau threefolds:
Kreuzer/Skarke:
Classified 473.8M reflexive 4D polytopes $\rightarrow$ toric hypersurface CY3's
Also: CICY's (80's), gCICY's [Anderson/Apruzzi/Gao/Gray/Lee '15]
Open Question:
Are there a finite number of topological types of Calabi-Yau threefolds?

## Elliptic and genus one-fibered CY threefolds

An elliptic or genus one fibered CY3 X:

$$
\begin{aligned}
& \pi: X \rightarrow B_{2}, \\
& \pi^{-1}(p) \cong T^{2} \text { at a generic point } p
\end{aligned}
$$

Elliptic: $\exists$ section $\sigma: B_{2} \rightarrow X, \pi \sigma=\mathrm{Id}$


Elliptic Calabi-Yau threefold has Weierstrass model

$$
y^{2}=x^{3}+f x+g, \quad f \in \Gamma\left(\mathcal{O}\left(-4 K_{B}\right)\right), g \in \Gamma\left(\mathcal{O}\left(-6 K_{B}\right)\right)
$$

Finite number of topological types of elliptic Calabi-Yau threefolds [Grassi, Gross]

Constructive proof [Kumar/Morrison/WT]: (using principles of F-theory) Bases blow-ups of $\mathbb{F}_{m}$ (Grassi);
Finite number of distinct strata in space of $B_{2} \mathrm{~W}$. models (Hilbert basis thm)

## Upshot of recent work:

Can construct elliptic Calabi-Yau threefolds by:

1. Classify allowed bases $B$ (Morrison/WT: 65k toric bases; Wang/WT: non-toric bases)
2. "Tune" Weierstrass model [Johnson/WT, ...]

Tuning gives increased singularities (Kodaira, etc.) and Mordell-Weil group
Physics interpretation via F-theory: gauge groups and matter
In principle gives all elliptic Calabi-Yau manifolds
Various technical challenges, particularly for CY4's

Growing evidence: most known Calabi-Yau threefolds are elliptic or g1 fibered! [Candelas/Constantin/Skarke, Gray/Haupt/Lukas, AGGL, ...]

This talk: explicitly explore KS database
i) directly analyze fiber structure
ii) construct simple fibrations, seive $\rightarrow$ more exotic fibrations

Toric hypersurface construction [Batyrev, Kreuzer/Skarke]
Toric geometry: simple combinatoric version of algebraic geometry

$\mathbb{P} 2$
$\Rightarrow$
(blow up point)


$$
\mathbb{F}_{1}=d P_{1}
$$

Toric variety: characterized by toric divisors $D_{i} \leftrightarrow$ rays $v_{i} \in \mathbb{Z}^{d}$
Anti-canonical class $-K=\sum_{i} D_{i}$ (never compact CY)
Anti-canonical hypersurface $\Rightarrow \mathrm{CY}$ by adjunction
$\Delta$ polytope: convex hull of $v_{i}$
$\{$ monomials $\} \leftrightarrow$ lattice points in dual polytope $\Delta^{*}=\{w: w \cdot v \geq-1\}$
Batyrev: $\Delta=\Delta^{* *}$ reflexive $\leftrightarrow 1$ interior point
$\leftrightarrow$ hypersurface CY generically smooth (avoids singularities)

## Simple toric fibrations:

$\Delta_{2} \subset \Delta, \Delta_{2}$ reflexive
Only 16 reflexive $\Delta_{2}$ 's (e.g. F-theory fibers:
[Braun, Braun/Grimm/Keitel, Klevers/Mayorga Pena/Oehlmann/Piragua/Reuter])

-1 curve $C=D_{i}^{(2)}$ : satisfies $-K \cdot C=C \cdot C+2=1$
All but $F_{1}=\mathbb{P}^{2}, F_{2}=\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}, F_{4}=\mathbb{F}_{2}$ have -1 curves $\Rightarrow$ toric sections
2. Results

First approach: look at KS database, directly identify polytope fibers (paper w/Huang to appear)

Basic algorithm:

- Identify $v, w \in \Delta$ : span $(v, w) \cap \Delta=\Delta_{2}=F_{i}, i=1, \ldots, 16$
- Some algorithmic efficiency implemented (e.g. $v, w \subset S$ w/limited $v \cdot u, u \in \Delta^{*}$ )
- Currently in mathematica (faster implementation possible)

Finding $F_{i}, i \in\{1, \ldots, 16\} \Rightarrow \exists \mathrm{g} 1 /$ elliptic toric fibration
If only $F_{1,2,4}$ : genus one, not necessarily section.
Any other $F_{i} \Rightarrow$ elliptic

Results I: all KS polytopes giving CY w/ $h^{1,1} \geq 140$ or $h^{2,1} \geq 140$


Only 4 (of 495515) lack genus one fibers:

$$
\left(h^{1,1}, h^{2,1}\right)=(1,149), \quad(1,145), \quad(7,143), \quad(140,62)
$$

When $h^{1,1}=1$, clearly no fiber (Shioda-Tate-Wazir)

- Only 384 (of 495515) have only genus one fibers

Do the others really have non-toric elliptic/g1 fibers? $h^{1,1}=140(194)$ largest known value w/o explicit g 1 (elliptic) fiber

## Results II: Small $h^{1,1}$

Probability that a CY3 is not g1/elliptic fibered decreases
as $2^{-h^{1,1}}$ for $h^{1,1}>1$

| $h^{1,1}$ | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# without fiber $\Delta_{2}$ | 23 | 91 | 256 | 562 | 872 | 1202 |
| Total \# | 36 | 244 | 1197 | 4990 | 17101 | 50376 |
| $\%$ | 0.639 | 0.373 | 0.214 | 0.113 | 0.051 | 0.024 |



## Why exponentially unlikely to not have fiber?

Theorem (Oguiso/Wilson):
A Calabi-Yau 3-fold $X, X$ is genus one (or elliptically) fibered iff there exists a divisor $D \in H^{2}(X, \mathbb{Q})$ that satisfies $D^{3}=0, D^{2} \neq 0$, and $D \cdot C \geq 0$ for all algebraic curves $C \subset X$.

Assuming "random" data for triple intersection form $C_{i j k}$, how likely is this to occur?

Possible obstructions:
A) Number theoretic (no solution to $C_{i j k} d_{i} d_{j} d_{k}=0$ over integers)
B) Cone obstruction, no solution over reals when $D \subset$ positive cone

Consider each in turn

## Number theoretic obstructions

For example:

$$
x^{3}+x^{2} y+y^{3}+2 z^{3}+4 w^{3}=0
$$

has no solutions over the integers $\mathbb{Z}$ (or over $\mathbb{Q}) ;\left(\mathbb{Z}_{2}\right.$ obstruction)
Mordell (1937) identified homogeneous degree $d$ polynomial in $d^{2}$ variables with obstruction

Subsequent conjectures: $d^{2}$ is maximum number of variables with obstruction
Proven for $d=1,2$
Counterexample: quartic with 17 variables has obstruction!
Heath-Brown (1983): every non-singular cubic in $\geq 10$ variables with rational coefficients has nontrivial rational zero.

Also proven for general cubic in $\geq 16$ variables
Upshot: no number-theoretic obstruction when $h^{1,1}(X)>15$ (likely 9)

Cone obstructions: apparently exponentially suppressed

Simple heuristic argument:
Assume cone has $D=\sum_{i} d_{i} D_{i}, d_{i} \geq 0$
Look for positive solution of cubic $\sum_{i, j, k} C_{i j k} d_{i} d_{j} d_{k}=0$
Proceed by induction:
First, check $M=2, \sum_{i, j, k}^{M} C_{i j k} d_{i} d_{j} d_{k}=0$
$\sim$ cubic in two variables, has $\geq 1$ real solution; $50 \%$ chance in cone
Add one variable: pick random other numbers in cone; probability solution in last variable is positive: $1 / 2, \ldots$
$\Rightarrow$ suggests probability $\leq \sim 2^{-h^{1,1}}$ that no fiber exists
Very heuristic argument, but matches data!

## Strong evidence: almost all known CY3's have elliptic/g1 fibers

Supported by other recent work, particularly Anderson + Gray + collaborators
E.g. all CICY threefolds with $h^{1,1}>4$ have g1/elliptic fibers
[Anderson, strings 2018 talk]

If most Calabi-Yau threefold are elliptic/g1 fibered

+ finite number of elliptic/g1 fibered CY threefolds
$\Rightarrow$ would prove finite number of CY threefolds!

Classification of elliptic/g1 CY threefolds $\Rightarrow$ CY3's, non-fibered threefolds $\sim$ special cases

Note: all elliptic CY's connected by extremal transitions $\rightarrow \sim$ Reid's fantasy?

Structure of fibrations: investigate in more detail
Much recent work (see Huang/WT paper), only touch on some points here
Close connection between "Tate form" general Weierstrass model

$$
y^{2}+a_{1} y x+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

and simple "standard stacking" $\mathbb{P}^{2,3,1}\left(F_{10}\right)$ fibered polytopes


$$
\begin{aligned}
& v_{x}=(0,0,1,0), v_{y}=(0,0,0,1), v_{z}=(0,0,-2,-3) \\
& v_{i}^{(a)}=\left(v_{i, 1}^{(B)}, v_{i, 2}^{(B)},-2,-3\right)
\end{aligned}
$$

geometry $\Rightarrow \nabla=\Delta^{*}=\{$ monomials in Tate $\}$ ( $\sim$ "top" construction)
(some subtleties with non-Higgsable and tuned gauge groups, $\Delta=\Delta^{* *}$ )
These constructions dominate at large Hodge numbers
(other fibers problematic when base contains -12 curve)

Systematically implement Tate forms on toric bases [Huang/WT]
$\Rightarrow$ All but 18 (of 1827) Hodge pairs with $h^{1,1}$ or $h^{2,1} \geq 240$ realized directly.
Looked at other examples: all elliptic fibrations with more subtle structure

- Exotic matter: usual $\mathrm{SU}(6)$ Tate tuning: ord $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right)=(0,1,3,3,6)$. Gives generic $(\mathbf{6}, \mathbf{1 5}) \mathrm{SU}(6)$ matter.
Exotic tuning: $(0,2,2,4,6)$ gives 3 -index antisymmetric (20) rep
- Large tunings:
e.g. $\left(h^{1,1}, h^{2,1}\right)=(135,15) \rightarrow(261,9)$, w/ $\mathrm{SO}(20)$ on -4 curve
- Automatic U(1)'s on some examples
- Gauge groups on non-toric curves (examples at lower Hodge numbers w/genus $\geq 1$ )


## Cases with many fibers

Some polytopes give many distinct fibrations (see also AGGL, ...)
In some cases from symmetries of polytope
Polytopes with most fibrations: e.g.
$\left(h^{1,1}, h^{2,1}\right)=(149,1)[58],(145,1)[37],(144,2)[37]$
occur at small $h^{2,1}$, large $h^{1,1}$

Possibly related observation [WT/Wang]: dominant CY4's after multiple blow-ups are mirrors of known CY's with small $h^{1,1}$ (?)

## Further directions

- Genus one/multisection structure at small $h^{1,1}$ for $F_{1,2,4}$ fibers
- Similar fibration analysis for CY4's
- Understand of structure of effective cone, triple intersection Proof finite number CY3's?
- Reid fantasy extended to non-elliptic CY3's?
- Physics: use understanding of elliptic/g1 fibration structure to better understand heterotic, II, F-theory compactifications

