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What is String Theory?
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Perturbatively, our best understanding is in terms of Superstring
Perturbation Theory (SPT) (type IIA & IIB, Heterotic SO(32) &
E8 × E8, type I). More generally, most general 2D CFT with zero central
charge and possibly a negative norm field (time) (but unitary otherwise).
These ingredients have led to the notion of a “String Landscape”, (where
we imagine the 2D CFT’s embedded in space of most general 2D QFT).

There is also Superstring Field Theory (SFT) (SPT reorganised to look
like a QFT), but still perturbative. It does not fully utilise worldsheet
duality and so requires “artificial” partitioning of moduli space making
(even simple) calculations very difficult. For certain questions SFT is
nevertheless powerful (gauge invariance, mass renormalisation, vacuum
shifts).

Non-perturbatively (in some special cases) we have holographic
descriptions (AdS/CFT), but these seemingly require special (unrealistic)
boundary conditions and local bulk physics hard to probe. There are also
toy models (A & B model topological strings) and also matrix models
(BFSS).

⇒ A satisfactory bulk definition of String Theory is lacking
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What is String Theory?
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What is String Theory?

Since this is a (somewhat) ill-defined question, we will make it sharper by
considering an analogy to QFT. In QFT we often define a theory by a
path integral (+Wilson), so would like something analogous to this:

A Non-Perturbative Path Integral Definition of String Theory
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HERE: we present a proposal for a non-perturbative (path integral)
definition of String Theory. E.g., I will discuss a sense in which an answer
to the above question might best be thought of as emerging from the

partition function of the most general 2D QFT on S2

I will discuss the derivation, and our approach will also involve a
conjecture (introducing RG flow into String Theory).

It is not clear whether the construction will be useful in any meaningful
way, but I think it is correct to regard it as a step in the right direction.
E.g., should be able to derive old and new dualities (and I will discuss
how these might arise), leading to a deeper understanding of string
landscape.

As a by-product, we will also understand how to interpret NLSM’s and
geometry (within non-perturbative string theory), discuss some of their
(deep) limitations, derive the Fischler-Susskind mechanism, and discuss
bootstrap methods in this context. We focus on the bosonic string for
simplicity (but in general backgrounds).
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The Textbook Approach to SPT

In SPT we usually:
(1) choose a 2D CFT (with c = 0);
(2) construct vertex operators, V̂j , (V̂j ∈ kerQB/ImageQB);
(3) compute correlation functions of n vertex operators on a genus-g
Riemann surface, Σg;
(4) integrate over moduli space,Mg,n, leading to amplitudes, Ag,n;
(5) sum over topologies,

∑
gAg,n.

Schematically:
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The Textbook Approach to SPT

In SPT we usually:
(1) choose a 2D CFT (with c = 0);
(2) construct vertex operators, V̂j , (V̂j ∈ kerQB/ImageQB);
(3) compute correlation functions of n vertex operators on a genus-g
Riemann surface, Σg;
(4) integrate over moduli space,Mg,n, leading to amplitudes, Ag,n;
(5) sum over topologies,

∑
gAg,n.

More precisely (denoting by gs = eΦ the string coupling):

S =
∞∑
g=0

g2g−2
s

∫
Mg,n

d2mτ

nR

〈 m∏
k=1

Bk B̃k

n∏
i=1

V̂i

〉
Σg

note: Bk B̃k factors encode path integral measure and specify gauge slice
in moduli space,Mg,n, with coordinates {τ k , τ̄ k}, k = 1, . . . ,m, and

m ≡ dimCMg,n = 3g− 3 + n
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Since the early days (Shenker 1990) it has been known that this approach
leads to an asymptotic (non-Borel summable) series, so it is hard to make
sense of non-perturbatively (Zograf, Mirzhakani),

Ag,n ∼ (2g− 3 + n)!

So we need new ideas, we adopt a different approach. Recall that sums
and integrals generally do not commute (when conditionally convergent),∫

dt
∑
g

Ag(t) 6=
∑
g

∫
dt Ag(t),

and an asymptotic series often arises from (incorrectly) interchanging one
or more sums and integrals.

There is a large and vibrant community trying to understand how to sum
asymptotic series (aka resurgence, with dedicated workshops), but the
above suggests an alternative possibility: the order of doing things in
textbook SPT might be wrong.
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Question: can we interchange the (aforementioned) order of calculations
in textbook SPT?

The relevant sum in SPT is the sum over topologies (
∑∞

g=0) and the
relevant integral is the integral over moduli,

∫
Mg,n

. This suggests we try
to first sum over topologies and then integrate over moduli.

To make sense of this (seemingly naive) statement a good first step is to
understand how to cut and glue worldsheet path integrals. An additional
clue is that the framework for a non-perturbative definition of String
Theory should be independent of the underlying 2D CFT: we should
search the CFT toolbox for statements that are independent of the
specific CFT.
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Outline:
- Riemann Surfaces and CFT
- Cutting and Gluing (Worldsheet) Path Integrals
- Moduli Deformations
- Summing Loops
- Proposal for Non-Perturbative String Theory
- Duality
- Fischler-Susskind Mechanism
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Riemann Surfaces and CFT
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A Riemann surface, Σg, is a complex manifold ⇒ completely specified by
a choice of charts, {(Uj , zj)}, (s.t. ∪jUj = Σg and zj : Uj → C) with
holomorphic transition functions, fij , on chart overlaps:

On Ui ∩ Uj : zi = fij ◦ zj

On any one such chart, (Uj , zj), we can go to conformal gauge, where
ds2 ∝ dzjdz̄j . Choose a 2D CFT (with c = 0). Then the various
primaries of our CFT can be mode-expanded (in coordinates zj around
zj = 0),

φj(zj) =
∑

n

φ
(zj )
n

zn+h
j

↔ φ
(zj )
n =

∮
C

dzj
2πizj

zn+h
j φj(zj).

For example, the modes φ(zj )
n can be identified with: ghost modes, b(zj )

n ,
c(zj )

n , matter modes, α(zj )
n , Virasoro generators, L(zj )

n , BRST charge, Q(z1)
B ,

etc., with appropriate commutation relations, etc.
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Cutting and Gluing (Worldsheet) Path Integrals
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Consider a Riemann surface, Σg, with fixed complex structure.

Pick a canonical intersection
homology basis, {AI ,BI},

I = 1, . . . ,g, and consider an
AI -cycle handle.

Cut open the path integral across
this AI -cycle. Summing over all
states on the resulting boundary
circles reproduces the original

Riemann surface.

Use operator/state correspondence
to map these states to bilocal

operators, A
(z1)

a (0), A a
(z2)(0), using

charts (U1, z1), (U2, z2), with
identifications z1 ∼ z2 when

z1z2 = q.
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More precisely, we map states to local operators, A
(z1)

a (0), A a
(z2)(0), and

when, e.g., z1 < |q|
1
2 use z2 coordinate by identifying z1 ∼ z2 with

transition function z1z2 = q (and similarly for z2 < |q|
1
2 use z1

coordinate).

We proceed similarly for all g AI -cycles. Then map these 2g charts onto
the (almost) global (U, z) chart of (the stereographically projected) S2
using SL(2,C) transformations,

We rescale z1, z2 such that |q| ≤ 1.
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Schematically, we effectively end up with a correspondence (for each of
the AI cycles):

and this is exact (other channels come from infinite sums and OPE
associativity). In terms of correlation functions,

e−χ(Σg)Φ〈 . . . 〉Σg
= e−χ(Σg−1)Φ

〈∑∫
a
A (z1)

a A a
(z2) . . .

〉
Σg−1

enabling us to represent correlation functions on Σg in terms of
correlation functions on Σ0 ≡ S2, for all g,
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We determine the operators, A
(z1)

a ,A a
(z2), and corresponding

interpretation for Σ
∫

a, by the following consistency conditions:

1) We should be able to deform all mode contours, C , across a handle
without obstruction:

In terms of the bilocal operator insertions this is equivalent to demanding
that, for any mode operators, φ(zj )

n , (such that the BRST charge,
Virasoro generators, etc.):(

φ(z1)
n − (−)hqnφ

(z2)
−n

)∑∫
a

qha q̄h̃aA (z1)
a A a

(z2) = 0

which is an operator statement and so holds inside the path integral, and
recall that:

φ(z1)
n =

∮
C

dz1
2πiz1

zn+h
1 φ1(z1).
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2) The phase of chart coordinate, zj , is not globally defined (the
obstruction being the Euler number), so will always take this phase to be
integrated. E.g., demand that (L(z1)

0 − L̃(z1)
0 ) ·A (z1)

a = 0.

3) Since the A
(z1)

a represent string states in loops they are offshell, hence
not primaries (nor SL(2,C) primaries) or BRST invariant. We must
demand that BRST-exact contributions decouple from cuts.

4) Consistent factorisation requires the normalisation be chosen such that
(with transition functions z1z2 = z2z3 = 1):

A (z1)
c =

∑∫
a

A (z1)
a e−2Φ

〈
A a

(z2)A
(z3)

c

〉
S2

These conditions can easily be solved in a coherent state basis, where the
{a} are comprised of continuous quantum numbers (in addition to
momenta and possibly discrete quantum numbers).

(The operator A a
(z2) is the dual of A

(z1)
a .)
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For illustration, the chiral half of A
(z1)

a in a coherent state basis in the
standard bosonic string reads:

:exp
[∑

n≥2
e inφ

( bn
(n − 2)!∂

n−2b
)
e−inq·xL

+
∑
n≥0

e inφ
( cn

(n + 1)!∂
n+1c

)
e−inq·xL

+
∑
n≥1

1
ne

inφ ian
(n − 1)! ·

√
2
α′
∂nxL e−inq·xL

]
×
(
ce ip·xL + e iφb1 e i(p−q)·xL

)
(0) :z1

After inclusion of the anti-chiral half, an integral over the phase φ, and
an overall coupling gD , we obtain A

(z1)
a . Given pµ, the quantity qµ is

such that p · q = 1 and q2 = 0. In this basis,

∑∫
a

= α′

8πi

∫ dDp
(2π)D

∫
dµabc

(
≡ α′

8πi
∑∫
a

′
)

Also, ghost number is indefinite and all A
(z1)

a have: ha = α′

4 p2 − 1 .
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Consistency check: we show that BRST-exact states decouple from cuts,
that the basis is correctly normalised, and that it provides a resolution of
unity, by computing the Virasoro-Shapiro amplitude by gluing two 3-pt
amplitudes, SS2 = S∞s

S2
+ S∞u

S2
, with:

S∞s
S2

= g4
D
∑∫
a

e−2Φ
〈 ∏

j=1,2
: c̃ce ikj ·x (zj , z̄j) : A (z)

a

〉
S2

×
∫

d2q qha−1q̄h̃a−1e−2Φ
〈[

b0b̃0 ·A a
(u)
] ∏

j=3,4
: c̃ce ikj ·x (uj , ūj) :

〉
S′2

By worldsheet duality, the s + u channels reproduce the full amplitude.
Computing the imaginary part (away from t-channel poles and writing
S = i(2π)DδD(k)A) leads to:

ImAS2 (s, t, u) =

=
(8πgD

α′

)2 ∞∑
n=0

( Γ(2 + n + α′

4 t)
Γ(n + 1)Γ(2 + α′

4 t)

)2
πδ
(
s − 4

α′ (n − 1)
)

+ s ↔ u,

in precise agreement with the known result.



22/34

Moduli Deformations
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Everything so far has been for fixed complex structure moduli.

To incorporate moduli deformations we need to pick a gauge slice in
moduli space,Mg,n. We do so by associating 3 of the 3g− 3 + n
moduli to every handle:

This may accomplished by attaching 3 terms of the form Bk B̃k to every
bilocal operator, where:

Bk = 1
2πi

∑
(ij)

∫
Cij

(
dzi

∂zi
∂τ k

∣∣∣
zj
bzi zi − dz̄i

∂z̄i
∂τ k

∣∣∣
z̄j
b̃z̄i z̄i

)
The sum is over overlapping patches Ui ∩ Uj and the contour Cij is along
the Ui ∩ Uj (in a counter-clockwise sense from viewpoint of Ui). For
position moduli the relevant transition functions map the centred discs to
the global (U, z) chart of S2, and for pinch moduli the transition
functions can be identified with z1z2 = q.
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More explicitly, for every position modulus, u, the infinitesimal SL(2,C)
transition functions (mapping charts (Uj , zj) to global S2 z coordinate)
read (Nelson 1989):

z = zj + u + 1
8R(2)ūz2

j +O(u2)

leading to an insertion into the path integral (Polchinski 1988):

Bu → b̂−1 = b−1 + 1
8R(2)b̃1 + . . .

(The shape of the pinch changes as it is translated across the worldsheet
due to curvature.) More generally, we integrate this SL(2,C) to obtain
finite transition functions. This leads to the integrated vertex operator
picture. Similarly, for every pinch modulus q we obtain an insertion into
the path integral:

BqB̃q →
b0b̃0
qq̄

The remaining n − 3 moduli are precisely the number of moduli of a
sphere with n vertex operators.
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Summarising, to include moduli deformations we include measure
contributions, {Bk , B̃k}, by replacing every bilocal operator,∑∫

a

A (z1)
a A a

(z2),

by: ∑∫
a

′ ∫
|q|<1

d2q
(∫

d2u√g b̂−1
ˆ̃b−1 ·A (z1)

a

)
︸ ︷︷ ︸

≡
∫

u
A ′a

( α′
8πi q

ha−1q̄h̃a−1
)

︸ ︷︷ ︸
≡GA

×
(∫

d2v√g b̂−1
ˆ̃b−1b0b̃0 ·A a

(z2)

)
︸ ︷︷ ︸

≡
∫

u
A ′a

To cover moduli space once note that we already fixed invariance under
global diffeomorphisms (by picking a homology basis). The uk , vk moduli
integrals are then such that for fixed qk , we integrate over all handle
locations on S2 such that no two handles overlap, and then integrate over
|qk | < 1.
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Summing Loops
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According to the above, genus-g amplitudes take the form:

e−2Φ

〈 ∞∑
g=0

g∏
k=1

[∑∫
a

′ ∫
|qk |<1

d2qk
(∫

uk
A ′a

)
GA

(∫
vk

A
′a
)]

. . .

〉
S2

The OPE between any two operators has a finite radius of convergence
(corresponding to closest other operator). In order to sum over topologies
we wish to decouple the integration domains and do so by allowing the
range of operator insertions to range of the full S2, and hence explicitly
introduce (field theory) infinities by replacing the above by:

e−2Φ

〈 ∞∑
g=0

1
g!

[∑∫
a

′(∫
u
A ′a

)(∫
|q|<1

d2q GA︸ ︷︷ ︸
GA

)(∫
v
A
′a
)]g

. . .

〉
S2

To reproduce the original amplitude we must subtract these infinities and
compute observables that are independent of the subtraction scheme.

Then, summing over g, the bilocal operators exponentiate and we reach
a non-perturbative representation for the full string amplitude.
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This exponentiation leads to:

S = e−2Φ
〈
exp

[∑∫
a

′(∫
u
A ′a

)
GA

(∫
v
A
′a
)] n−3∏

k=1
Bk B̃k

n∏
j=1

V̂j

〉
S2

Next introduce a path integral representation for the exponential of the
bilocal operator, leading to non-perturbative string amplitudes:

with Ψ the integrated-picture string field (generalising the NLSM):

Ψ ≡
∑∫
a

′ ∫
d2u√g

(
φaA ′a

(z) + φ̄aA
′

(z)
a
)
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Duality
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It was important in the above that we do not truncate the sum over the
spectrum {a} in

Ψ =
∑∫
a

′ ∫
d2u√g

(
φaA ′a

(z) + φ̄aA
′

(z)
a
)

because otherwise we violate worldsheet duality (akin to
Virasoro-Shapiro, where s + u channels also contain t channels provided
we sum over all states). Note also that Ψ contains (in an appropriate
basis) the NLSM action:

Ψ ∼
∫

d2u
(√gT (x) + ∂xµ∂̄xν

(
Gµν(x) + Bµν(x)

)
+ Rzz̄ Φ(x) + . . .

)
,

so truncating the massive contributions discards dual massless
contributions contained in the infinite sum over a, and truncating to
usual NLSM violates duality and cannot be expected to be correct
non-perturbatively.
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We can expose dual contributions by cutting open the original path
integral across different cycles (as opposed to AI cycles as we did above),

The result again exponentiates and the “tadpole” contributions
effectively shift the target space (background) fields, φa → φa + 〈Aa〉T 2 .
We can also cut across only tadpole cycles, and then there are no φa
target space fields emerging. All such choices are equivalent due to
duality (associativity of the OPE and modular invariance).
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Discussion 1

1) We have shown that changing the order of calculation of textbook
SPT one can reach a non-perturbative definition of String Theory
(in fact various equivalent representations related by duality). The
result is independent of the underlying CFT.

2) In order to do so we have introduced field theory infinities, that are
to be subtracted in the standard manner. Renormalisation-scheme
independent quantities should be independent of the subtraction
prescription, so should reproduce the original String Amplitudes.

3) One should not expect to be able to make exact statements about
string theory using NLSM. (Truncating to NLSM violates duality,
even if only interested in massless sector.)

4) Cutting open the path integral along different cycles and proceeding
as discussed (leading to equivalent, dual, path integrals) might allow
for a bootstrap approach.
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Discussion 2
5) Worldsheet and spacetime instantons, solitons, etc., should all be

there (the latter coming from saddle points of the target space path
integral and the former included explicitly in the sum over a)

6) Non-Perturbative String Theory is an entirely new beast: we can
either think of the eΨ insertion as the most general 2D QFT (Ψ is
not Weyl-invariant as it originates from offshell loops) on S2, or as a
coherent state insertion

7) So a good first step towards unravelling non-perturbative string
theory is to familiarise oneself with computing string amplitudes with
coherent states

8) Making use of ‘complete normal ordering’ (Ellis,Mavromatos,DS
2016), one can also derive the Fischler-Susskind mechanism
(ensuring one is integrating around the true quantum vacuum)

Open questions: What can be said about renormalisability of the resulting
prescription? What about gauge invariance? (L∞ algebra useful?)
Generalisation to open strings? Generalisation to the superstring?
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thank you!


