Interactions for multiple spin-2 fields

Angnis Schmidt-May

Max-Planck-Institut für Physik

Workshop "Geometry and Strings"
Schloss Ringberg, 26/07/18

Motivation
Massless \& massive spin-2 fields

Navigation

The ghost-free theory
Recovering general relativity
Multi spin-2 interactions
Summary \& outlook

Motivation

Consistent Field Theories

Standard Model of Particle Physics
 \& General Relativity

Spin 0: \quad Higgs boson ϕ
Spin 1/2: leptons, quarks ψ^{a}
Spin 1: gluons, photon, W- \& Z-boson A_{μ}
Spin 2: \quad graviton $g_{\mu \nu}$

Consistent Field Theories

Standard Model of Particle Physics
 \& General Relativity

Spin 0: \quad Higgs boson ϕ
Spin 1/2: leptons, quarks ψ^{a}
Spin 1: gluons, photon, W- \& Z-boson A_{μ}
Spin 2:
graviton $g_{\mu \nu}$

Consistent Field Theories

Standard Model of Particle Physics
 \& General Relativity

Spin 0: \quad Higgs boson ϕ
Spin 1/2: leptons, quarks ψ^{a}
Spin 1: gluons, photon, W- \& Z-boson A_{μ}
Spin 2:
graviton $g_{\mu \nu}$

Boulanger, Damour, Gualteri, Henneaux (2000):
Multiple massless spin-2 fields cannot interact with each other.

Can multiple spin-2 fields interact if we include mass terms?

How do we make a spin-2 field massive ?

Massless and massive spin-2 fields

General Relativity

\Rightarrow Einstein-Hilbert action: $\quad S_{\mathrm{EH}}[g]=M_{\mathrm{P}}^{2} \int \mathrm{~d}^{4} x \sqrt{g}(R(g)-2 \Lambda)$

Einstein's equations: $\quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$
\Rightarrow Maximally symmetric solutions: $\quad \bar{R}_{\mu \nu}=\Lambda \bar{g}_{\mu \nu}$

General Relativity

Einstein-Hilbert action: $\quad S_{\text {EH }}[g]=M_{\mathrm{P}}^{2} \int \mathrm{~d}^{4} x \sqrt{g}(R(g)-2 \Lambda)$
Einstein's equations: $\quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$
Maximally symmetric solutions: $\quad \bar{R}_{\mu \nu}=\Lambda \bar{g}_{\mu \nu}$

General Relativity

Einstein-Hilbert action: $\quad S_{\mathrm{EH}}[g]=M_{\mathrm{P}}^{2} \int \mathrm{~d}^{4} x \sqrt{g}(R(g)-2 \Lambda)$
Einstein's equations: $\quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$
Maximally symmetric solutions: $\quad \bar{R}_{\mu \nu}=\Lambda \bar{g}_{\mu \nu}$

Linear perturbations of Einstein's equations, $g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}$:

$$
\overline{\mathcal{E}}_{\mu \nu}{ }^{\rho \sigma} \delta g_{\rho \sigma}=0 \quad \overline{\mathcal{E}} \sim \nabla \nabla+\Lambda
$$

\Rightarrow equation for a massless spin-2 field with $\underline{2}$ degrees of freedom, tensor analogue of $\square \phi=0$

Hamiltonian analysis 2 d.o.f. also at the nonlinear level

General Relativity $=$
unique description of self-interacting massless spin-2 field

Linear Massive Gravity

Equation for a massive spin-2 field:

$$
\overline{\mathcal{E}}_{\mu \nu}{ }^{\rho \sigma} \delta g_{\rho \sigma}+\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta g_{\mu \nu}-\mathbf{a} \bar{g}_{\mu \nu} \delta g\right)=0
$$

tensor analogue of $\square \phi-m^{2} \phi=0$
\Rightarrow propagates 5 degrees of freedom for $\mathrm{a}=1$

Linear Massive Gravity

Equation for a massive spin-2 field:

$$
\overline{\mathcal{E}}_{\mu \nu}{ }^{\rho \sigma} \delta g_{\rho \sigma}+\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta g_{\mu \nu}-\mathbf{a} \bar{g}_{\mu \nu} \delta g\right)=0
$$

tensor analogue of $\square \phi-m^{2} \phi=0$
\Rightarrow propagates 5 degrees of freedom for $\mathrm{a}=1$
λ for $a \neq 1$ there is an additional scalar mode which gives rise to a ghost instability (negative kinetic energy)
need extra constraint to remove the ghost

... should not contain derivatives nor loose indices.

$$
\begin{array}{lcc}
\text { Examples: } & \text { scalar (spin 0) } & \text { vector (spin 1) } \\
& -g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-m^{2} \phi^{2} & -g^{\mu \rho} g^{\nu \sigma} F_{\rho \sigma} F_{\mu \nu}-m^{2} g^{\mu \nu} A_{\mu} A_{\nu}
\end{array}
$$

For the spin-2 tensor contracting indices of the metric gives: $g^{\mu \nu} g_{\mu \nu}=4$ This is not a mass term.

$$
\begin{array}{lcc}
\text { Examples: } & \text { scalar (spin 0) } & \text { vector (spin 1) } \\
& -g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-m^{2} \phi^{2} & -g^{\mu \rho} g^{\nu \sigma} F_{\rho \sigma} F_{\mu \nu}-m^{2} g^{\mu \nu} A_{\mu} A_{\nu}
\end{array}
$$

For the spin-2 tensor contracting indices of the metric gives: $g^{\mu \nu} g_{\mu \nu}=4$ This is not a mass term.

Simplest way out: Introduce second "metric" to contract indices:

$$
g^{\mu \nu} f_{\mu \nu}=\operatorname{Tr}\left(g^{-1} f\right) \quad f^{\mu \nu} g_{\mu \nu}=\operatorname{Tr}\left(f^{-1} g\right)
$$

Massive gravity action: $\quad S_{\mathrm{MG}}[g]=S_{\mathrm{EH}}[g]-\int \mathrm{d}^{4} x V(g, f)$ kinetic term mass term

For the spin-2
This is not a mo Simplest way ou

What determines $f_{\mu \nu}$? Shouldn't it be dynamical ?

Bimetric Theory

Nonlinear action for two interacting tensors:

$$
\begin{aligned}
S_{\mathrm{b}}[g, f] & =m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g}(R(g)-2 \Lambda) \\
& +m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f}(R(f)-2 \tilde{\Lambda})-\int \mathrm{d}^{4} x V(g, f)
\end{aligned}
$$

s both metrics are dynamical and treated on equal footing
Δ should describe massive \& massless spin-2 field ($5+2$ d.o.f.)

Bimetric Theory

Nonlinear action for two interacting tensors:

$$
\begin{aligned}
S_{\mathrm{b}}[g, f] & =m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g}(R(g)-2 \Lambda) \\
& +m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f}(R(f)-2 \tilde{\Lambda})-\int \mathrm{d}^{4} x V(g, f)
\end{aligned}
$$

s both metrics are dynamical and treated on equal footing
Δ should describe massive \& massless spin-2 field ($5+2$ d.o.f.)

The Nonlinear Ghost

Can we extend the Fierz-Pauli mass term
by nonlinear interactions?

$$
\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta g_{\mu \nu}-\bar{g}_{\mu \nu} \delta g\right)+\mathbf{c}_{1} \delta g_{\mu}^{\rho} \delta g_{\rho \nu}+\mathbf{c}_{2} \delta g \delta g_{\mu \nu}+\ldots
$$

The Nonlinear Ghost

Can we extend the Fierz-Pauli mass term

> by nonlinear interactions?

$$
\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta g_{\mu \nu}-\bar{g}_{\mu \nu} \delta g\right)+\mathbf{c}_{1} \delta g_{\mu}^{\rho} \delta g_{\rho \nu}+\mathbf{c}_{2} \delta g \delta g_{\mu \nu}+\ldots
$$

San we choose coefficients c_{i} such that the remains absent?

Boulware \& Deser (1972): Beyond linear order this is impossible!

No consistent nonlinear massive gravity / bimetric theory?

The ghost-free theory

$$
\begin{aligned}
S_{\mathrm{b}}[g, f] & =m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g} R(g) \\
& +m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f} R(f)-\int \mathrm{d}^{4} x V(g, f)
\end{aligned}
$$

$$
V(g, f)=m^{4} \sqrt{g} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)
$$

Δ arbitrary spin- 2 mass scale m
$\Rightarrow 3$ interaction parameters β_{n}
s) square-root matrix S defined through $S^{2}=g^{-1} f$

$$
\begin{aligned}
S_{\mathrm{b}}[g, f] & =m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g} R(g) \\
& +m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f} R(f)-\int \mathrm{d}^{4} x V(g, f)
\end{aligned}
$$

elementary symmetric polynomials:

$$
\begin{aligned}
& e_{1}(S)=\operatorname{Tr}[S] \quad e_{2}(S)=\frac{1}{2}\left((\operatorname{Tr}[S])^{2}-\operatorname{Tr}\left[S^{2}\right]\right) \\
& e_{3}(S)=\frac{1}{6}\left((\operatorname{Tr}[S])^{3}-3 \operatorname{Tr}\left[S^{2}\right] \operatorname{Tr}[S]+2 \operatorname{Tr}\left[S^{3}\right]\right)
\end{aligned}
$$

Ghost-free bimetric theory
unique description of massless + massive spin-2

Proportional solutions

Ansatz: $\quad \bar{f}_{\mu \nu}=c^{2} \bar{g}_{\mu \nu} \quad$ with $\quad c=$ const.
\Rightarrow gives two copies of Einstein's equations $\left(\alpha \equiv m_{f} / m_{g}\right)$:

$$
\begin{aligned}
& R_{\mu \nu}(\bar{g})-\frac{1}{2} \bar{g}_{\mu \nu} R(\bar{g})+\Lambda_{g}\left(\alpha, \beta_{n}, c\right) \bar{g}_{\mu \nu}=0 \\
& R_{\mu \nu}(\bar{g})-\frac{1}{2} \bar{g}_{\mu \nu} R(\bar{g})+\Lambda_{f}\left(\alpha, \beta_{n}, c\right) \bar{g}_{\mu \nu}=0
\end{aligned}
$$

\Rightarrow consistency condition: $\Lambda_{g}\left(\alpha, \beta_{n}, c\right)=\Lambda_{f}\left(\alpha, \beta_{n}, c\right)$ determines c

Maximally symmetric backgrounds with $R_{\mu \nu}(\bar{g})=\Lambda_{g} \bar{g}_{\mu \nu}$

Mass spectrum

Perturbations around proportional backgrounds:

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu} \quad f_{\mu \nu}=c^{2} \bar{g}_{\mu \nu}+\delta f_{\mu \nu}
$$

Can be diagonalised into mass eigenstates:

$$
\begin{aligned}
& \delta G_{\mu \nu} \propto \delta g_{\mu \nu}+\alpha^{2} \delta f_{\mu \nu} \\
& \delta M_{\mu \nu} \propto \delta f_{\mu \nu}-c^{2} \delta g_{\mu \nu} \\
& \text { massive } \text { (2 d.o.f.) } \\
& \text { (5 d.o.f.) }
\end{aligned}
$$

Linearised equations:

$$
\begin{aligned}
& \overline{\mathcal{E}}_{\mu \nu}^{\rho \sigma} \delta G_{\rho \sigma}=0 \\
& \overline{\mathcal{E}}_{\mu \nu}^{\rho \sigma} \delta M_{\rho \sigma}+\frac{m_{\mathrm{PP}}^{2}}{2}\left(\delta M_{\mu \nu}-\bar{g}_{\mu \nu} \delta M\right)=0
\end{aligned}
$$

with Fierz-Pauli mass $m_{\mathrm{FP}}=m_{\mathrm{FP}}\left(\alpha, \beta_{n}, c\right)$

What is the physical metric?

How much does the theory differ from GR ?

Recovering general relativity

Matter Coupling

$$
\begin{aligned}
S_{\mathrm{b}}[g, f]= & m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g} R(g) \\
+ & m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f} R(f)-\int \mathrm{d}^{4} x V(g, f) \\
& +\int \mathrm{d}^{4} x \sqrt{g} \mathcal{L}_{\text {matter }}(g, \phi)
\end{aligned}
$$

Absence of ghosts: only one metric can couple to matter!
$g_{\mu \nu}$ is gravitational metric

Mass Eigenstates

$$
\begin{aligned}
S_{\mathrm{b}}[g, f] & =m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g} R(g) \\
& +m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f} R(f)-\int \mathrm{d}^{4} x V(g, f)+\int \mathrm{d}^{4} x \sqrt{g} \mathcal{L}_{\text {matter }}(g, \phi)
\end{aligned}
$$

(linearised) gravitational metric:

$$
\delta g_{\mu \nu} \propto \delta G_{\mu \nu}-\alpha^{2} \delta M_{\mu \nu} \quad\left(\alpha \equiv m_{f} / m_{g}\right)
$$

The gravitational metric is not massless but a superposition of mass eigenstates.

Mass Eigenstates

$$
\begin{aligned}
S_{\mathrm{b}}[g, f] & =m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g} R(g) \\
& +m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f} R(f)-\int \mathrm{d}^{4} x V(g, f)+\int \mathrm{d}^{4} x \sqrt{g} \mathcal{L}_{\text {matter }}(g, \phi)
\end{aligned}
$$

(linearised) gravitational metric:

$$
\delta g_{\mu \nu} \propto \delta G_{\mu \nu}-\alpha^{2} \delta M_{\mu \nu} \quad\left(\alpha \equiv m_{f} / m_{g}\right)
$$

for small $\alpha=m_{f} / m_{g}$ gravity is dominated by the massless mode the massive spin-2 field interacts only weakly with matter

Mass Eigenstates

Baccetti, Martin-Moruno, Visser (2012); Hassan, ASM, von Strauss (2012/14); Akrami, Hassan, Koennig, ASM, Solomon (2015)

$$
\begin{aligned}
S_{\mathrm{b}}[g, f] & =m_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{g} R(g) \\
& +m_{f}^{2} \int \mathrm{~d}^{4} x \sqrt{f} R(f)-\int \mathrm{d}^{4} x V(g, f)+\int \mathrm{d}^{4} x \sqrt{g} \mathcal{L}_{\text {matter }}(g, \phi)
\end{aligned}
$$

$$
\alpha=m_{f} / m_{g} \rightarrow 0
$$

is the General Relativity limit of bimetric theory

Structure of Vertices

(bimetric action expanded in mass eigenstates)

Quadratic (Fierz-Pauli)

δG^{2}	$\delta G \delta M$	δM^{2}
$1, \Lambda$	0	$1, \Lambda, m_{\mathrm{FP}}^{2}$

$$
\begin{aligned}
S_{(2)}=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\delta G_{\mu \nu} \mathcal{E}^{\mu \nu \rho \sigma} \delta G_{\rho \sigma}+\right. & \delta M_{\mu \nu} \mathcal{E}^{\mu \nu \rho \sigma} \delta M_{\rho \sigma} \\
& \left.\quad-\frac{m_{\mathrm{FP}}^{2}}{2}\left(\delta M^{\mu \nu} \delta M_{\mu \nu}-\delta M^{2}\right)-\frac{1}{m_{\mathrm{Pl}}}\left(\delta G^{\mu \nu}-\alpha \delta M^{\mu \nu}\right) T_{\mu \nu}\right]
\end{aligned}
$$

Structure of Vertices

(bimetric action expanded in mass eigenstates)

Quadratic (Fierz-Pauli)

δG^{2}	$\delta G \delta M$	δM^{2}
$1, \Lambda$	0	$1, \Lambda, m_{\mathrm{FP}}^{2}$

what about higher orders?

$$
\begin{aligned}
S_{(2)}=\frac{1}{2} \int \mathrm{~d}^{4} x[& \delta G_{\mu \nu} \mathcal{E}^{\mu \nu \rho \sigma} \delta G_{\rho \sigma}+ \\
& \delta M_{\mu \nu} \mathcal{E}^{\mu \nu \rho \sigma} \delta M_{\rho \sigma} \\
& \left.-\frac{m_{\mathrm{PP}}^{2}}{2}\left(\delta M^{\mu \nu} \delta M_{\mu \nu}-\delta M^{2}\right)-\frac{1}{m_{\mathrm{Pl}}}\left(\delta G^{\mu \nu}-\alpha \delta M^{\mu \nu}\right) T_{\mu \nu}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{GM}}^{(3)}=- \frac{m_{\mathrm{FP}}^{2}\left(1+\alpha^{2}\right)\left(\beta_{1}+\beta_{2}\right)}{4 \alpha \mu^{2}} e_{3}(\delta M) \\
&-\frac{m_{\mathrm{FP}}^{2}}{24 \alpha}\left[-2[\delta M]^{3}+9[\delta M]\left[\delta M^{2}\right]-7\left[\delta M^{3}\right]\right. \\
&+\alpha\left(-3[\delta G][\delta M]^{2}+12[\delta M][\delta G \delta M]+3[\delta G]\left[\delta M^{2}\right]-12\left[\delta G \delta M^{2}\right]\right) \\
&\left.\quad+\alpha^{2}\left([\delta M]^{3}-6[\delta M]\left[\delta M^{2}\right]+5\left[\delta M^{3}\right]\right)\right] \\
&-\frac{\Lambda}{4}[{\left.[\delta G][\delta M]^{2}-4[\delta M][\delta G \delta M]-2[\delta G]\left[\delta M^{2}\right]+8\left[\delta G \delta M^{2}\right]\right] } \\
&+\frac{1}{4}[\delta G^{\mu \nu}\left(\nabla_{\mu} \delta M_{\rho \sigma} \nabla_{\nu} \delta M^{\rho \sigma}-\nabla_{\mu} \delta M \nabla_{\nu} \delta M+2 \nabla_{\nu} \delta M \nabla_{\rho} \delta M_{\mu}^{\rho}+2 \nabla_{\nu} \delta M_{\mu}^{\rho} \nabla_{\rho} \delta M\right. \\
&-2 \nabla_{\rho} \delta M \nabla^{\rho} \delta M_{\mu \nu}+2 \nabla_{\rho} \delta M_{\mu \nu} \nabla_{\sigma} \delta M^{\rho \sigma}-4 \nabla_{\nu} \delta M_{\rho \sigma} \nabla^{\sigma} \delta M_{\mu}{ }^{\rho}-2 \nabla_{\rho} \delta M_{\nu \sigma} \nabla^{\sigma} \delta M_{\mu}{ }^{\rho} \\
&\left.+2 \nabla_{\sigma} \delta M_{\nu \rho} \nabla^{\sigma} \delta M_{\mu}{ }^{\rho}\right) \\
&\left.+\frac{1}{2} \delta G\left(\nabla_{\rho} \delta M \nabla^{\rho} \delta M-\nabla_{\rho} \delta M_{\mu \nu} \nabla^{\rho} \delta M^{\mu \nu}-2 \nabla_{\rho} \delta M \nabla_{\mu} \delta M^{\mu \rho}+2 \nabla_{\rho} \delta M_{\mu \nu} \nabla^{\nu} \delta M^{\mu \rho}\right)\right] \\
&+\frac{1}{2}[\delta M^{\mu \nu}\left(\nabla_{\mu} \delta G_{\rho \sigma} \nabla_{\nu} \delta M^{\rho \sigma}-\nabla_{\mu} \delta G \nabla_{\nu} \delta M+\nabla^{\rho} \delta G_{\rho \mu} \nabla_{\nu} \delta M_{+}+\nabla_{\nu} \delta G_{\mu \rho} \nabla^{\rho} \delta M^{\prime}\right. \\
&-\nabla_{\rho} \delta G_{\mu \nu} \nabla^{\rho} \delta M+\nabla_{\rho} \delta G^{\rho \sigma} \nabla_{\sigma} \delta M_{\mu \nu}-2 \nabla_{\mu} \delta G^{\rho \sigma} \nabla_{\sigma} \delta M_{\nu \rho}+\nabla_{\mu} \delta G \nabla^{\rho} \delta M_{\rho \nu} \\
&+\nabla^{\rho} \delta G_{\mu \nu} \nabla^{\sigma} \delta M_{\rho \sigma}-2 \nabla_{\rho} \delta G_{\mu \sigma} \nabla_{\nu} \delta M^{\rho \sigma}-2 \nabla^{\rho} \delta G_{\mu \sigma} \nabla^{\sigma} \delta M_{\nu \rho}+2 \nabla^{\rho} \delta G_{\mu \sigma} \nabla_{\rho} \delta M_{\nu}{ }^{\sigma} \\
&\left.+\nabla^{\rho} \delta G \nabla_{\nu} \delta M_{\mu \rho}-\nabla^{\rho} \delta G \nabla_{\rho} \delta M_{\mu \nu}\right) \\
&+\frac{1}{2} \delta M\left(\nabla_{\rho} \delta G \nabla^{\rho} \delta M-\nabla_{\rho} \delta G_{\mu \nu} \nabla^{\rho} \delta M^{\mu \nu}-\nabla_{\rho} \delta G \nabla_{\sigma} \delta M^{\rho \sigma}\right. \\
&\left.\left.-\nabla_{\rho} \delta G^{\rho \sigma} \nabla_{\sigma} \delta M+2 \nabla_{\rho} \delta G_{\mu \nu} \nabla^{\nu} \delta M^{\mu \rho}\right)\right]
\end{aligned}
$$

Quadratic (Fierz-Pauli)

δG^{2}	$\delta G \delta M$	δM^{2}
$1, \Lambda$	0	$1, \Lambda, m_{\mathrm{FP}}^{2}$

Cubic (suppressed by m_{Pl}^{-1})

δG^{3}	$\delta G^{2} \delta M$	$\delta G \delta M^{2}$	δM^{3}
$1, \Lambda$	0	$1, \Lambda, m_{\mathrm{FP}}^{2}$	$\alpha, \alpha \Lambda, \alpha m_{\mathrm{FP}}^{2}$ $\frac{1}{\alpha}, \frac{1}{\alpha} \Lambda, \frac{1}{\alpha} m_{\mathrm{FP}}^{2}$

$$
m_{\mathrm{Pl}}=m_{g} \sqrt{1+\alpha^{2}}
$$

Quadratic (Fierz-Pauli)

δG^{2}	$\delta G \delta M$	δM^{2}
$1, \Lambda$	0	$1, \Lambda, m_{\mathrm{FP}}^{2}$

self-interactions of massless spin-2 sum up to Einstein-Hilbert action $\left.S(g, f)\right|_{\delta M=0}=m_{\mathrm{Pl}}^{2} \int \mathrm{~d}^{4} x \sqrt{|G|}(R(G)-2 \Lambda) \quad G_{\mu \nu}=\bar{g}_{\mu \nu}+\frac{1}{m_{\mathrm{Pl}}} \delta G_{\mu \nu}$
massive mode becomes heavy and strongly coupled for small $\alpha=m_{f} / m_{g}$

Quadratic (Fierz-Pauli)

δG^{2}	$\delta G \delta M$	δM^{2}
$1, \Lambda$	0	$1, \Lambda, m_{\mathrm{FP}}^{2}$

self-interactions of massless spin-2 sum up to Einstein-Hilbert action $\left.S(g, f)\right|_{\delta M=0}=m_{\mathrm{Pl}}^{2} \int \mathrm{~d}^{4} x \sqrt{|G|}(R(G)-2 \Lambda) \quad G_{\mu \nu}=\bar{g}_{\mu \nu}+\frac{1}{m_{\mathrm{Pl}}} \delta G_{\mu \nu}$
massive mode becomes heavy and strongly coupled for small $\alpha=m_{f} / m_{g}$

Ghost-free bimetric theory $=$
Massive spin-2 in background set by massless spin-2

Curvature corrections

Equations for $f_{\mu \nu}$ can be solved perturbatively in $\alpha=m_{f} / m_{g}$
Δ Higher-derivative action for $g_{\mu \nu}$:

$$
S_{\mathrm{eff}}[g]=\int \mathrm{d}^{4} x \sqrt{g}\left[m_{\mathrm{Pl}}^{2}(-2 \Lambda+R)+\alpha^{4} c_{R R}\left(\frac{1}{3} R^{2}-R^{\mu \nu} R_{\mu \nu}\right)\right]+\mathcal{O}\left(\alpha^{6}\right)
$$

general relativity
(Weyl tensor) $^{2}+$ total derivative

Multi spin-2 interactions

Absence of ghosts: only pairwise bimetric interactions

$$
V(g, f)=m^{4} \sqrt{g} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)
$$

Absence of ghosts: only pairwise bimetric interactions

No loops !!!

8

Absence of ghosts: only pairwise bimetric interactions

$$
V(g, f)=m^{4} \sqrt{g} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)
$$

\Rightarrow theory with N metrics describes 1 massless and $(N-1)$ massive spin-2

Multi Spin-2 Vertices

Can we have interactions beyond the pairwise bimetric couplings?

Vertices including more than two tensor fields:

Multi Spin-2 Vertices

Can we have interactions beyond the pairwise bimetric couplings?

Vierbeín
Vertices including more than two tenoor fields:

Introduce two sets of vierbein fields:

$$
g_{\mu \nu}=e^{a}{ }_{\mu} \eta_{a b} e^{b}{ }_{\nu} \quad f_{\mu \nu}=\tilde{e}^{a}{ }_{\mu} \eta_{a b} \tilde{e}^{b}{ }_{\nu}
$$

Einstein-Hilbert terms:

$$
S_{\mathrm{EH}}=m_{g}^{2} \epsilon_{a b c d} \int\left(R^{a b}-\Lambda e^{a} \wedge e^{b}\right) \wedge e^{c} \wedge e^{d}
$$

\& a general vierbein has 16 components; including 6 degrees of freedom that can be removed by a Lorentz transformation
constraints in bimetric equations will remove the extra components

Vierbein Interactions

$$
g_{\mu \nu}=e^{a}{ }_{\mu} \eta_{a b} e^{b}{ }_{\nu} \quad f_{\mu \nu}=\tilde{e}^{a}{ }_{\mu} \eta_{a b} \tilde{e}^{b}{ }_{\nu}
$$

interaction terms:

$$
S_{\mathrm{int}}=-m^{4} \epsilon_{a b c d} \int\left[\bar{\beta}_{1} e^{a} \wedge e^{b} \wedge e^{c} \wedge \tilde{e}^{d}+\bar{\beta}_{2} e^{a} \wedge e^{b} \wedge \tilde{e}^{c} \wedge \tilde{e}^{d}+\bar{\beta}_{3} e^{a} \wedge \tilde{e}^{b} \wedge \tilde{e}^{c} \wedge \tilde{e}^{d}\right]
$$

Vierbein Interactions

$$
g_{\mu \nu}=e^{a}{ }_{\mu} \eta_{a b} e^{b}{ }_{\nu} \quad f_{\mu \nu}=\tilde{e}^{a}{ }_{\mu} \eta_{a b} \tilde{e}_{\nu}^{b}
$$

interaction terms:

$$
S_{\mathrm{int}}=-m^{4} \epsilon_{a b c d} \int\left[\bar{\beta}_{1} e^{a} \wedge e^{b} \wedge e^{c} \wedge \tilde{e}^{d}+\bar{\beta}_{2} e^{a} \wedge e^{b} \wedge \tilde{e}^{c} \wedge \tilde{e}^{d}+\bar{\beta}_{3} e^{a} \wedge \tilde{e}^{b} \wedge \tilde{e}^{c} \wedge \tilde{e}^{d}\right]
$$

$\Rightarrow s$ equivalent to bimetric theory and ghost-free only if $e^{a}{ }_{\mu} \eta_{a b} \tilde{e}^{b}{ }_{\nu}=e^{a}{ }_{\nu} \eta_{a b} \tilde{e}^{b}{ }_{\mu}$
\Rightarrow solves the dynamical constraints, removes additional components
existence of square-root and intersection of light cones (Hassan \& Kocic, 2017)

New interactions
\Rightarrow start from ghost free multivierbein action with only pair wise interactions
\Rightarrow integrate out a non-dynamical field to obtain new vertices:

$$
S_{\mathrm{multi}}=-M^{4} \int \mathrm{~d}^{4} x \operatorname{det}\left(\sum_{I=1}^{\mathcal{N}} \beta^{I} e_{I}\right)
$$

up to 4 different vierbeine in one vertex !
interactions not always expressible in terms of metrics.

$$
\text { Interaction potential: } \quad \sum_{I, J, K, L=1}^{\mathcal{N}} \beta^{I J K L} \epsilon_{A B C D} e_{I}^{A} \wedge e_{J}^{B} \wedge e_{K}^{C} \wedge e_{L}^{D}
$$

\Rightarrow bimetric interactions: $\beta^{I J K L} \sim \beta_{3} \delta^{1 I} \delta^{2 J} \delta^{2 K} \delta^{2 L}$

$$
\sqrt{g} \sum_{n=0}^{4} \beta_{n} e_{n}\left(\sqrt{g^{-1} f}\right)
$$

\Rightarrow determinant vertex: $\quad \beta^{I J K L}=\beta^{I} \beta^{J} \beta^{K} \beta^{L}$

$$
\Leftrightarrow \operatorname{det}\left(\sum_{I=1}^{\mathcal{N}} \beta^{I} e_{I}\right)
$$

General interaction graph

$$
\operatorname{det}\left(\sum_{I=1}^{\mathcal{N}} \beta^{I} e_{I}\right)
$$

[^0]Multi-spin-2 vertices require the use of vierbein fields.

Summary \&
Outlook

Ghost- free bimetric theory...
\Rightarrow is one of the few known consistent modifications of General Relativity st can be interpreted as gravity in the presence of an extra spin-2 field \Rightarrow can be extended to multiple spin- 2 interactions using vierbeine

Ghost- free bimetric theory...
\Rightarrow is one of the few known consistent modifications of General Relativity
$\Rightarrow>$ can be interpreted as gravity in the presence of an extra spin-2 field
\Rightarrow
can be extended to multiple spin-2 interactions using vierbeine

Most general interactions?
Ens Additional symmetries?
Charged spin-2 fields?
Thank you for your attention!
review: ASM, Mikael von Strauss; 1512.00021

[^0]: Used to be a (nondynamical) - which has been integrated out

