Renormalisation group interfaces

Cornelius Schmidt-Colinet

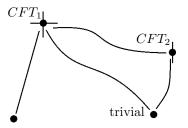
Work in collaboration with

Ilka Brunner, Anatoly Konechny, Charles Melby-Thompson

Conference on Geometry and Strings Ringberg Castle, 23 July 2018

Renormalisation ...

- ▶ CFTs fixed points of renormalisation process of a QFT
- ▶ Perturbation $\delta S = \lambda \int d^d x \, \Phi_{UV}^0$ in UV triggers RG flow to IR

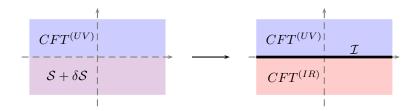


▶ If IR fixed point non-trivial: Relation degrees of freedom UV/IR

$$\Phi_{UV} \mapsto \Phi_{ren}(\lambda_{bare}) \longrightarrow \Phi_{ren}(\lambda_*) \mapsto \sum_{\Phi_{IR}} b_{\Phi_{UV},\Phi_{IR}} \Phi_{IR}$$

... as an interface

▶ Perturb only in a half-space: $\delta S = \lambda \int_{x_1 < 0} d^d x \, \Phi_{UV}^0$



▶ Conformal renormalization group interface \mathcal{I} separates $CFT^{(UV)}$ from $CFT^{(IR)}$

Brunner-Roggenkamp 07

Outline

Conformal interfaces

Why RG interfaces?

RG interfaces for integrable flows between coset CFTs

Coset RG interfaces and boundary conditions

The 't Hooft limit of $W_{k,N}$ RG interfaces

Connection to holography

- ▶ Codimension 1 junction between $CFT^{(1)}$ and $CFT^{(2)}$. Junction condition preserves an SO(d,1) subgroup of SO(d+1,1).
- ▶ Locally, for a planar junction: $T_{\perp \parallel}^{(1)} = T_{\perp \parallel}^{(2)}$.
- ▶ Transfer matrix \bot and $\|$ to interface should yield same partition function (d = 2: Cardy's condition).

- ▶ Codimension 1 junction between $CFT^{(1)}$ and $CFT^{(2)}$. Junction condition preserves an SO(d,1) subgroup of SO(d+1,1).
- ▶ Locally, for a planar junction: $T_{\perp \parallel}^{(1)} = T_{\perp \parallel}^{(2)}$.
- ▶ Transfer matrix \bot and $\|$ to interface should yield same partition function (d = 2: Cardy's condition).
- ▶ Rough classification: Reflection and transmission coefficients. In d = 2, reflection and transmission of energy and momentum:

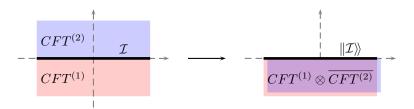
$$\begin{split} \mathcal{R} &= \frac{2}{c^{(1)} + c^{(2)}} \left(\langle T^{(2)} \tilde{T}^{(2)} | 0^{(1)} \rangle_{\mathcal{I}} + \langle 0^{(2)} | T^{(1)} \tilde{T}^{(1)} \rangle_{\mathcal{I}} \right) \,, \\ \mathcal{T} &= \frac{2}{c^{(1)} + c^{(2)}} \left(\langle T^{(2)} | T^{(1)} \rangle_{\mathcal{I}} + \langle \tilde{T}^{(2)} | \tilde{T}^{(1)} \rangle_{\mathcal{I}} \right) \,. \end{split}$$

Quella-Runkel-Watts 06

- $ightharpoonup \mathcal{R} + \mathcal{T} = 1$, and $0 \leq \mathcal{R}$, $\mathcal{T} \leq 1$ in unitary theories.
- $\mathcal{T} = 1$: topological interface (symmetries, dualities, projections) $\mathcal{R} = 1$: boundary condition

Conformal interfaces Affleck-Wong 94, Affleck-Oshikawa 96, Petkova-Zuber 01

▶ Special conf. trsfs. allow *folding trick* :



What is interesting about RG interfaces?

- ▶ Non-perturbative information about RG flows Brunner-Roggenkamp 07
- ▶ "Minimal" interfaces?

Douglas 10, Bachas etal 13, Brunner-SC 15

▶ "Counting" of RG flows

Gukov 15

- ▶ Tractable examples of conformal interfaces; many ways to check:
 - ▶ From renormalization
 - ▶ From fusion with boundary states, or with each other
 - From holography

Coset model CFTs in 2d

Goddard-Kent-Olive 85

- ▶ Representations: Branching spaces $M_{k,\ell} = \frac{\hat{a}_k \otimes \hat{a}_\ell}{\hat{a}_{k+\ell}}$ (a simple algebra, \hat{a}_k affine)
- ▶ Some quantities easily derived from individual WZW models:
 - $T^{\text{coset}} = T^{(k)} + T^{(l)} T^{(k+l)}$
 - ► Central charge $c = \frac{\dim(a) \ell}{\ell + \mathbf{g}^{\vee}} \left(1 \frac{\mathbf{g}^{\vee}(\ell + \mathbf{g}^{\vee})}{(k + \ell^{\vee})(k + \ell + \mathbf{g}^{\vee})} \right)$.
 - ▶ Primary states labelled $(r_k, r_\ell, r_{k+\ell})$
- ► Consider modular A invariant.

Examples: a = su(2), $\ell = 1$: Virasoro minimal models, $\ell = 2$: $\mathcal{N} = 1$ minimal models, a = su(N), $\ell = 1$: bosonic $W_{k,N}$ models.

Perturbed coset models

Ahn-Bernard-LeClair 90

- ▶ Relevant ("thermal") perturbation by $\Phi^{UV}_{(0,0,\mathrm{adj})}$ in $M_{k,\ell}$
- ightharpoonup Massive and massless perturbation: Latter takes

$$M_{k,\ell} \to M_{k-\ell,\ell}$$

- ▶ Can view $\mathcal{H}_{k,\ell}$ as representation of algebra defined by (non-local) symmetry currents $J_{(\text{adj},0,0)}$, or $J_{(0,\text{adj},0)}$.
- ▶ Lead to currents conserved along the entire flow ⇒ "fractional supersymmetries"
- ▶ Perturbation yields integrable QFT.
- ▶ $k \gg 1$: Massless flows under perturbative control.

Gaiotto's RG interface proposal

Gaiotto 12

- ► Massless flow $\frac{\hat{a}_k \otimes \hat{a}_\ell}{\hat{a}_{k+\ell}} \to \frac{\hat{a}_{k-\ell} \otimes \hat{a}_\ell}{\hat{a}_k}$
- ▶ RG interface corresponds to **boundary state** in $\frac{\hat{a}_k \otimes \hat{a}_\ell}{\hat{a}_{k+\ell}} \otimes \frac{\hat{a}_{k-\ell} \otimes \hat{a}_\ell}{\hat{a}_k}$
- ► Fractional supersymmetries preserved to all orders in perturbation
- ▶ Suggestive: Boundary condition links generators of \hat{a}_k , \hat{a}_l ⇒ lives in symmetry sector

$$\left(rac{\hat{a}_k}{\hat{a}_k}
ight)\otimes\left(\hat{a}_{m{\ell}}\otimes\hat{a}_{m{\ell}}
ight)\otimes\left(rac{\hat{a}_{k-m{\ell}}}{\hat{a}_{k+m{\ell}}}
ight)$$

Gaiotto's RG interface proposal

Gaiotto 12

- ► Massless flow $\frac{\hat{a}_k \otimes \hat{a}_\ell}{\hat{a}_{k+\ell}} \to \frac{\hat{a}_{k-\ell} \otimes \hat{a}_\ell}{\hat{a}_k}$
- ▶ RG interface corresponds to **boundary state** in $\frac{\hat{a}_k \otimes \hat{a}_\ell}{\hat{a}_{k+\ell}} \otimes \frac{\hat{a}_{k-\ell} \otimes \hat{a}_\ell}{\hat{a}_k}$
- Fractional supersymmetries preserved to all orders in perturbation
- ▶ Suggestive: Boundary condition links generators of \hat{a}_k , \hat{a}_l ⇒ lives in symmetry sector

$$\left(rac{\hat{a}_k}{\hat{a}_k}
ight)\otimes\left(\hat{a}_{\ell}\otimes\hat{a}_{\ell}
ight)\otimes\left(rac{\hat{a}_{k-\ell}}{\hat{a}_{k+\ell}}
ight)$$

- Behaviour of elementary topological defects under fusion
 - \Rightarrow Selection rules for overlap Φ^{UV}, Φ^{IR} : Gaiotto 12
 - ▶ Same \hat{a}_k representation labels
 - ▶ Same \hat{a}_{ℓ} representation labels
- ▶ Perturbing field: $(0,0;adj) \rightarrow (adj,0;0)$ Ahn-Bernhard-LeClair 90

- ► Ansatz for boundary state:
 - ▶ Projection in \hat{a}_k sector: Implemented by topological defect

Crnkovic etal 89, Gaiotto 12

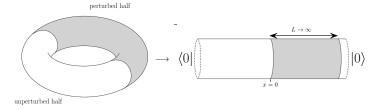
- ► Standard permutation brane in \hat{a}_{ℓ} sector Recknagel 03
- ► Standard Cardy state in sector $\hat{a}_{k-\ell}/\hat{a}_{k+\ell}$ Cardy 89
- ▶ Such boundary states labelled by 4 representations:

$$\mathcal{D}(R_k) \| \mathbf{R}_{\ell}, R_{k-\ell}, R_{k+\ell} \rangle \rangle$$

 R_i representation label of \hat{a}_i .

▶ Perturbation theory fixes these representation labels.

- ightharpoonup One way to go: Calculate boundary entropy g Affleck-Ludwig
- ▶ Start with UV theory, perturb only on half-space:



- \triangleright Read off boundary entropy g of the interface

 $ightharpoonup \mathcal{D}(R_k) \|R_{k-\ell}, R_{\ell}, R_{k+\ell}\rangle\rangle = g|0\rangle\rangle + \dots \Rightarrow \text{fixes } R^i = 0: \text{Brunner-SC 16}$

$$\mathcal{D}(0_k)\|0_\ell,0_{k-\ell},0_{k+\ell}\rangle\rangle = \sum_{\{r\}} \frac{\sqrt{S_{0,r}^{(k-\ell)}} \bar{S}_{0,r}^{(k+\ell)}}{S_{0,r}^{(k)}} P_{r_k}|r_{k-\ell},r_\ell,r_\ell,r_{k+\ell}\rangle\rangle_{\mathbb{Z}_2}$$

 $ightharpoonup \mathcal{D}(R_k) \| R_{k-\ell}, R_{\ell}, R_{k+\ell} \rangle = g |0\rangle + \dots \Rightarrow \text{ fixes } R^i = 0 : \text{ Brunner-SC 16}$

$$\mathcal{D}(0_k)\|0_\ell,0_{k-\ell},0_{k+\ell}\rangle\rangle = \sum_{\{r\}} \frac{\sqrt{S_{0,r}^{(k-\ell)} \bar{S}_{0,r}^{(k+\ell)}}}{S_{0,r}^{(k)}} P_{r_k}|r_{k-\ell},r_\ell,r_\ell,r_{k+\ell}\rangle\rangle_{\mathbb{Z}_2}$$

"Gaiotto's recipe": For operators $\Phi^{UV}_{(r_k,r_\ell,r_{k+\ell})}$, $\Phi^{IR}_{(r_{k-\ell},r'_\ell,r'_k)}$, can compute $b_{\Phi_{IR},\Phi_{UV}}$ explicitly as a disc one-point correlator.

Coset RG interfaces and boundary conditions

Important cross check for RG interface: Does it implement the correct flows of boundary conditions from CFT_{UV} to CFT_{IR} ?

Fusion of conformal RG interfaces to boundary conditions:

- ▶ Simple for topological interfaces: $\mathcal{D}_a ||b\rangle\rangle = N_{ab}{}^c ||c\rangle\rangle$.
- ▶ RG interfaces: Divergence for $\epsilon \to 0$ because \mathcal{I} is reflective (Casimir energy)

In general: Calculation of fusion very hard.

Konechny 15

However, Gaiotto interface suggests superficial checks: Selection rules.

First check: Use interplay with topological defects.

▶ Fractional supersymmetries \Rightarrow there are $(\mathcal{D}_D, \mathcal{D}_d)$:

$$\mathcal{D}_d \cdot \mathcal{I} = \mathcal{I} \cdot \mathcal{D}_D$$

(e.g. Virasoro Minimal Models: $D=(\delta,1),\,d=(1,\delta)$). Then

$$\mathcal{D}_{d} \cdot \mathcal{I} \cdot ||A\rangle\rangle = \mathcal{I} \cdot \mathcal{D}_{D} \cdot ||A\rangle\rangle$$
$$N_{da}{}^{b} ||b\rangle\rangle = \mathcal{N}_{b}(N_{DA}{}^{C}) ||b\rangle\rangle.$$

Coset RG interfaces and boundary conditions

In general: Calculation of fusion very hard.

Konechny 15

However, Gaiotto interface suggests superficial checks: Selection rules.

First check: Use interplay with topological defects.

▶ Fractional supersymmetries \Rightarrow there are $(\mathcal{D}_D, \mathcal{D}_d)$:

$$\mathcal{D}_d \cdot \mathcal{I} = \mathcal{I} \cdot \mathcal{D}_D$$

(e.g. Virasoro Minimal Models: $D = (\delta, 1), d = (1, \delta)$). Then

$$\mathcal{D}_{d} \cdot \mathcal{I} \cdot ||A\rangle\rangle = \mathcal{I} \cdot \mathcal{D}_{D} \cdot ||A\rangle\rangle$$
$$N_{da}{}^{b} ||b\rangle\rangle = \mathcal{N}_{b}(N_{DA}{}^{C}) ||b\rangle\rangle.$$

For fixed $||A\rangle\rangle \to ||a\rangle\rangle$ and pair $(\mathcal{D}_D, \mathcal{D}_d)$, suggests to check the identity of fusion rules

$$N_{da}{}^{b} = \sum_{B:B\to b} N_{DA}{}^{B} \qquad (?)$$

This works for Virasoro Minimal Models. (Does it work in all cases?)

Coset RG interfaces and boundary conditions

Second check: Use that

$$||A\rangle\rangle = \sum_{I} C_{AI} |I\rangle\rangle, \qquad ||a\rangle\rangle = \sum_{I} C_{ai} |i\rangle\rangle$$

Suggests

$$\mathcal{I} \cdot |I\rangle\rangle = \sum_{i} I_{Ii} |i\rangle\rangle,$$

where the I_{Ii} satisfy same selection rules as the b_{Φ_I,Φ_i} .

For Virasoro Minimal Models:

$$||A_1, A_2\rangle\rangle \to \begin{cases} ||a_1, a_2\rangle\rangle = ||1, A_1\rangle\rangle, & A_2 = 1 \\ ||a_1, a_2\rangle\rangle = ||A_2 - 1, A_1\rangle\rangle, & 1 < A_2 < k + 2 \end{cases}$$

From this, find indeed that

Roggenkamp 12

$$I_{Ii} = f(I,i)\delta(I,i), \quad \delta(I,i) = 1 \text{ iff } b_{\Phi_I,\Phi_i} \neq 0.$$

Puzzle: Sometimes $\delta(I,i)=1,$ but f(I,i)=0 — Ishibashi states that "flow to nowhere" ?

$$\frac{su(N)_k \otimes su(N)_1}{su(N)_{k+1}} \to \frac{su(N)_{k-1} \otimes su(N)_1}{su(N)_k}$$

- ▶ N fixed, $k \to \infty$: Limit is trivial interface. Limit theories form *continuous orbifolds*.

 Gaberdiel-Suchanek 12
 Perturbing operator a (marg. irrelevant) current-current deformation.
- ▶ $N, k \to \infty, \lambda = N/(k+N)$ fixed: 't Hooft limit Limit theories are generalised free CFTs. Greenberg 61 Perturbing operator is the double trace of fundamental scalar;

$$\Delta = 2 - 2\lambda.$$

The 't Hooft limit of $W_{k,N}$ RG interfaces

Example: g factor

$$g^{2} = \frac{S_{00}^{(k-1)} S_{00}^{(k+1)}}{(S_{00}^{(k)})^{2}} = \exp \left[\pi \int_{0}^{\lambda} \nu^{2} \cot(\pi \lambda) d\nu + \frac{\lambda^{2}}{N} + \mathcal{O}(N^{-2}) \right].$$

The 't Hooft limit of $W_{k,N}$ RG interfaces

Example: g factor

$$g^{2} = \frac{S_{00}^{(k-1)} S_{00}^{(k+1)}}{(S_{00}^{(k)})^{2}} = \exp\left[\pi \int_{0}^{\lambda} \nu^{2} \cot(\pi \lambda) d\nu + \frac{\lambda^{2}}{N} + \mathcal{O}(N^{-2})\right].$$

Another example: $\langle \Phi_{\rm adi,0}^{IR} | \Phi_{0,0}^{UV} \rangle_{\mathcal{I}}$.

Representative of $\phi_{\text{adi},0}^{IR}$ in numerator of IR coset:

$$|\phi_{(\mathrm{adj},0)}^{IR}\rangle \otimes |0^{(k)}\rangle \propto \left(J_{-1}^{(k-1)a} - (2N+k-1)J_{-1}^{(1')a}\right)|J_a^{(k-1)}\rangle \otimes |0^{(1')}\rangle,$$

 \mathbb{Z}_2 overlap replaces $J_{-1}^{(1')a} \mapsto J_{-1}^{(1)a}$:

$$\langle (\phi_{0,0}^{UV} \tilde{\phi}_{\mathrm{adj},0}^{IR}) \mathbb{Z}_2(\tilde{\phi}_{0,0}^{UV} \phi_{\mathrm{adj},0}^{IR}) \rangle = \frac{1-\lambda}{1+\lambda} \frac{1}{k}.$$

Prefactor

$$\frac{\sqrt{S_{\text{adj0}}^{(k-1)}S_{00}^{(k+1)}}}{S_{00}^{(k)}} = g \frac{k \sin(\pi \lambda)}{\pi (1 - \lambda)} + \mathcal{O}(1)$$

Together:
$$b_{\Phi_{00}^{UV},\Phi_{\text{adjo}}^{IR}} = \frac{\sin(\pi\lambda)}{\pi(1+\lambda)}$$

The 't Hooft limit of $W_{k,N}$ RG interfaces

Last example: Reflection and transmission

$$\begin{split} \langle T^{(UV)}\tilde{T}^{(UV)}|0^{(IR)}\rangle_{\mathcal{I}} &= \frac{1}{2}\lambda^2(1+\lambda),\\ \langle 0^{(UV)}|T^{(IR)}\tilde{T}^{(IR)}\rangle_{\mathcal{I}} &= \frac{1}{2}\lambda^2(1-\lambda),\\ \langle T^{(UV)}|T^{(IR)}\rangle_{\mathcal{I}} &= N\times\frac{1}{2}(1-\lambda^2). \end{split}$$

$$\mathcal{R} = \frac{2}{c^{(UV)} + c^{(IR)}} \left(\langle T^{(2)} \tilde{T}^{(2)} | 0^{(1)} \rangle_{\mathcal{I}} + \langle 0^{(2)} | T^{(1)} \tilde{T}^{(1)} \rangle_{\mathcal{I}} \right) = 0,$$

$$\mathcal{T} = \frac{2}{c^{(UV)} + c^{(IR)}} \left(\langle T^{(2)} | T^{(1)} \rangle_{\mathcal{I}} + \langle \tilde{T}^{(2)} | \tilde{T}^{(1)} \rangle_{\mathcal{I}} \right) = 1.$$

So interface seems topological — but only in a sense, since

$$c^{(IR)}, c^{(UV)} \sim N \to \infty$$
.

All higher spin symmetry currents are broken.

Connection to holography

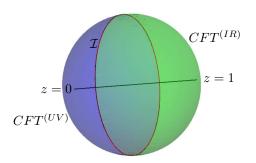
- ▶ 't Hooft limit of $W_{k,N}$ models dual to Higher Spin Theory on AdS_3 (H^3).
- Perturbing operator $\Phi_{0,\mathrm{adj}}^{(UV)}$ is the double trace of the scalar $\Phi_{0,f}^{(UV)}$.
- $lackbox{\Phi}_{0,f}^{(UV)}$ corresponds to massive scalar field φ in the bulk.
- ▶ In the IR, scalar is $\varphi \leftrightarrow \Phi_{f,0}^{(IR)}$: Classically field of same mass in bulk; dimension $\Delta = 2 \pm 2\lambda$ determined by boundary condition (2 consistent quantisations).
- ▶ Can compute two-point functions of φ in bulk by QFT methods.

Bulk Janus coordinates X = (z, x),

Bak etal 03

$$ds_{H^{d+1}}^2 = \frac{dz^2}{4z^2(1-z)^2} + \frac{ds_{H^d}^2(x)}{4z(1-z)}, \qquad z \in (0,1)$$

slice H^3 into copies of H^2 .



Then compute propagator G(X, X') for scalar φ of mass $m^2 = \Delta_{\pm}(2 - \Delta_{\pm})$, with corresponding boundary conditions.

Connection to holography

Standard AdS/CFT procedure gives the 2-point correlation functions (flat frame coordinates)

$$\left\langle \Phi_{f,0}^{IR}(x)\Phi_{f,0}^{IR}(x')\right\rangle = \frac{1}{|x-x'|^{2\Delta_{IR}}}\left(1+B\,\xi^{\Delta_{IR}}_{2}F_{1}\!\left(\begin{array}{c}1,\Delta_{IR}\\\Delta_{IR}+1\end{array}\right|-\xi\right)\right)$$

with
$$B = \frac{\sin(\pi \lambda)}{\pi(1+\lambda)} = b_{\Phi_{\text{adj},0}^{IR},\Phi_{0,0}^{UV}}$$
,

$$\left\langle \Phi_{0,f}^{UV}(x)\Phi_{f,0}^{IR}(x')\right\rangle = \sqrt{\frac{\sin(\pi\lambda)}{\pi\lambda}} \frac{1}{\sqrt{\Gamma(\Delta_{IR})\Gamma(\Delta_{UV})}} \frac{(-\xi)^{-1}}{(2y')^{\Delta_{IR}}(2y)^{\Delta_{UV}}}$$

y, y' distance from interface, $\xi = -(x - x')^2/(4yy')$ conf. cross ratio.

- ▶ Constants match with interface prediction.
- ightharpoonup Can also compute g factor (contribution of interface to free energy).
- ▶ Analysis of bulk easily generalisable to any dimension.

Summary & Outlook

- Conformal RG interfaces capture universal (non-perturbative) data of RG flows
- ▶ Examples of RG interfaces can be explicitly constructed
- ▶ RG interfaces allow various cross-checks: (perturbtive) RG calculations, fusion with boundary conditions, Ishibashi-states, checks from holography
- ► Fusion of (Gaiotto's) RG interfaces
- Does RG interface really always minimise g within symmetry class?
- ▶ Distance in phase space from properties of RG interface?
- ▶ Holography: Can we give a prescription for RG interface setup for every holographic RG flow?
- ▶ What can interface quantities tell us about the RG flow / relation of RG flows?
- ► Entanglement across interface

