AdS $_{2}$ Holography for nonBPS Black Holes

Finn Larsen

Leinweber Center for Theoretical Physics

Geometry and Strings, Ringberg, July 23, 2018 .

Extreme nonBPS Black Holes

- A controlled environment to study black holes: supergravity.
- The simplest black hole solutions are extremal black holes. They are ground states: lowest energy (with given charges).
- BPS black holes are solutions to SUGRA that preserve (some) SUSY.
- Many features simplify for BPS black holes: geometry and microscopic description; indices are useful.
- This talk: extremal nonBPS black holes in 4D. Solutions to SUGRA that do not preserve SUSY.

Work with Yangwenxiao Zeng, supported by the DoE.

Black Hole Spectroscopy

- Detailed study of black holes: the spectrum.
- The SUGRA spectrum: quadratic fluctuations around classical solution.
- Simplifying feature in extremal case: $\boldsymbol{A d S}_{2} \times S^{2}$ near horizon geometry dominates.
- So we can study SUGRA on $\mathrm{AdS}_{2} \times S^{2}$.
- Technical complication: for nonBPS black holes the spectrum has no SUSY.

AdS 2 Holography

- Another complication: $\mathrm{AdS}_{2} / \mathrm{CFT}_{1}$ holography is confusing.
- So interpretation of black hole spectrum is subtle.
- Recent progress: the $n A d S_{2} /$ nCFT $_{1}$ correspondence.
- Much research: nCFT_{1} s such as the SYK model and its relatives.
- Here: focus on AdS_{2} gravity.
- We first just compute the spectrum, leaving interpretation for later in the talk.

The 4D Massless Scalar Field

- Example: massless scalar field on $\mathrm{AdS}_{2} \times S^{2}$

$$
\nabla_{4}^{2} \phi=\left(\nabla_{A}^{2}+\nabla_{S}^{2}\right) \phi=0
$$

- Partial wave expansion: $\nabla_{S}^{2} \rightarrow-l(l+1)$ with $l=0,1, \ldots$
- So the effective 2D masses are $m_{2}^{2}=l(l+1)$.
- This gives conformal weights:

$$
h=\frac{1}{2}+\sqrt{\frac{1}{4}+m_{2}^{2} \ell_{2}^{2}}=l+1
$$

- Result for the spectrum: $(h, j)=(k+1, k)$ with $k=0,1, \ldots$..

Einstein-Maxwell Theory

- Bosonic fields of $\mathcal{N}=2$ gravity multiplet:

$$
16 \pi G_{N} \mathcal{L}=\mathcal{R}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

- Linearize around $\mathrm{AdS}_{2} \times S^{2}$, fix gauge, then introduce partial waves: $l=1,2, \ldots$ for vector, $l=2,3, \ldots$ for tensor.
- Dualize all fields to scalars, diagonalize 4×4 scalar mass matrix, compute conformal weights.
- The spectrum has all integral weights:
$(h, j)=2(k+2, k+2), 2(k+3, k+1)$ with $k=0,1, \ldots$.

The BPS Spectrum

- Decompose a general theory with $\mathcal{N} \geq 2$ SUSY in terms of $\mathcal{N}=2$ fields: one SUGRA multiplet, $\mathcal{N}-2$ (massive) gravitini, n_{V} vector multiplets, n_{H} hyper multiplets.
- The spectrum for this field content has $(h, j)=$

Supergravity: $2\left[(k+2, k+2), 2\left(k+\frac{5}{2}, k+\frac{3}{2}\right),(k+3, k+1)\right]$

$$
\begin{array}{rc}
\text { Gravitino : } & 2\left[\left(k+\frac{3}{2}, k+\frac{3}{2}\right), 2(k+2, k+1),\left(k+\frac{5}{2}, k+\frac{1}{2}\right)\right] \\
\text { Vector : } & 2\left[(k+1, k+1), 2\left(k+\frac{3}{2}, k+\frac{1}{2}\right),(k+2, k)\right] \\
\text { Hyper : } & 2\left[\left(k+\frac{1}{2}, k+\frac{1}{2}\right), 2(k+1, k),\left(k+\frac{3}{2}, k-\frac{1}{2}\right)\right]
\end{array}
$$

Each tower has $k=0,1, \ldots$.

- Short representations of $S U(2 \mid 1,1)$: a chiral primary with $h=j$ assures the integral (or 1/2-integral) weights.
- Each chiral primary has 3 descendants due to two supercharges.

BPS vs nonBPS

- Extremal black holes in $\mathcal{N}=4$ SUGRA satisfy BPS condition iff

$$
I_{4}=(\vec{P} L \vec{P})(\vec{Q} L \vec{Q})-(\vec{P} L \vec{Q})^{2}>0
$$

- L is a T-duality pairing: e.g. string winding w and momentum n on the same S^{1}.
- The "dangerous" term is an S-duality pairing: a charge and its magnetic dual, like a $D 0$ and a $D 6$.
- Canonical nonBPS BH: KK-theory with both electric and magnetic charge (equivalent to pure D0/D6)
- The two branes preserve opposite SUSYs, the pair preserves none.

Kaluza-Klein Black Holes

- KK gravity multiplet (pure gravity in 5D, reduced to 4D)

$$
16 \pi G_{N} \mathcal{L}=\mathcal{R}+\frac{1}{2}(\partial \Phi)^{2}-\frac{1}{4} e^{-\sqrt{3} \Phi} F_{\mu \nu} F^{\mu \nu}
$$

- Constant Φ requires equally large electric and magnetic fields.
- Linearize around background,..., diagonalize scalar mass matrix.
- The spectrum: $(h, j)=$ $(k+3, k),(k+3, k+1),(k+2, k+1),(k+2, k+2),(k+1, k+2)$ with $k=0,1, \ldots$.
- m_{2}^{2} so that weight h integral also for nonBPS black holes!
- The $(3,0)$ operator was also identified as the squashing parameter of Kerr-black holes.

Fermions and KK Black Holes

- Fermions in $\mathcal{N}=2$ hypermultiplets have Pauli couplings:

$$
\mathcal{L}_{\text {hyper }}=-2 \bar{\zeta}_{A} \gamma^{\mu} D_{\mu} \zeta^{A}-\frac{1}{2}\left(\bar{\zeta}^{A} \hat{F} \zeta^{B} \epsilon_{A B}+\text { h.c. }\right)
$$

- The field strength \hat{F} is different for BPS and nonBPS.
- Linearize around background,...,diagonalize fermion mass matrix.
- The nonBPS spectrum for hyperfermions: $(h, j)=2\left[\left(k+2, k+\frac{1}{2}\right),\left(k+1, k+\frac{1}{2}\right)\right] \quad$ with $k=0,1, \ldots$.
- Conformal weights h for fermions are integral on the nonBPS branch.
- They are not $1 / 2$-integral!

AdS_{2} from AdS_{3}

- Illuminating to embed $\mathrm{AdS}_{2} \times S^{2}$ in $\mathrm{AdS}_{3} \times S^{2}$.
- Example: the MSW $(0,4)$ theory $=$ M-theory on CY with M5 branes wrapped on 4 -cycles.
- The unwrapped $M 5$ direction gives an "effective string" CFT_{2}.
- The MSW string has AdS_{3} near horizon geometry.
- The SUGRA spectrum on AdS_{3} : towers of (h, \bar{h}, \bar{j}).
- ACFT_{2} with short multiplets in R sector.

$\mathrm{CFT}_{1} \mathbf{s}$ from $\mathrm{CFT}_{2} \mathbf{s}$

- Null reduction to AdS_{2} (BPS sector): ignore h, keep (\bar{h}, \bar{j}).
- Looks like a CFT_{1} with operators in short multiplets.
- Null reduction to AdS_{2} reduction (nonBPS sector): ignore \bar{h}, keep (h, \bar{j}).
- Looks like a CFT_{1} with operators unrelated by SUSY.
- Details check out: null reduction of AdS_{3} SUGRA spectrum (known since 90's) yields the BPS/nonBPS SUGRA spectra on $\mathrm{AdS}_{2} \times S^{2}$.
- nonBPS sector inherits integral conformal weight from BPS protection of CFT_{2}.

Fermions in nonBPS CFT ${ }_{1}$

- In the MSW construction the CFT_{1} has a 5D origin.
- Fermions in 5D have 1/2-integral angular momentum \bar{j} so R-weight \bar{h} also $1 / 2$-integral.
- Fermions also have $1 / 2$-integral 5D helicity $h-\bar{h}$.
- Therefore the L-weight h is integral.

nAdS ${ }_{2} /$ nCFT $_{1}$ Correspondence

- Excitations (with finite energy) always violate AdS_{2} boundary conditions.
- So the spectrum does not refer to states.
- The spectrum refers to irrelevant operators that deform away from the $\mathrm{IR} \mathrm{CFT}_{1}$ fixed point.

$$
\delta \mathcal{L}=\frac{1}{\Lambda^{h+\bar{h}-2}} \mathcal{O}^{(h, \bar{h})}(z, \bar{z})
$$

- The nCFT_{1} describes a kinematic regime where one chirality dominates.

Application: Quantum BH Entropy

- The leading corrections to the black hole entropy are logarithmic:

$$
S=\frac{A}{4 G}+\frac{1}{2} D_{0} \log A+\ldots
$$

- The coefficient D_{0} can be computed from the low energy theory: only massless fields contribute.
- All contributions from quadratic fluctuations around the classical geometry take the schematic form

$$
e^{-W}=\int \mathcal{D} \phi e^{-\phi \Lambda \phi}=\frac{1}{\sqrt{\operatorname{det} \Lambda}}
$$

- The quantum corrections are encoded in the heat kernel

$$
D(s)=\operatorname{Tr} e^{-s \Lambda}=\sum_{i} e^{-s \lambda_{i}}=\text { poles }+D_{0}+\text { regular }
$$

Simple Heat Kernels in 2D

- A massless scalar field on AdS_{2} involves a continuous spectrum:
$K_{A}^{0}(s)=\frac{1}{2 \pi} \int_{0}^{\infty} e^{-\left(p^{2}+\frac{1}{4}\right) s} p \tanh \pi p d p=\frac{1}{4 \pi s}\left(1-\frac{1}{3} s+\frac{1}{15} s^{2}+..\right)$
- A field with conformal weight h (mass $m^{2}=h(h-1)$) and $S U(2)$ quantum number j (degeneracy $2 j+1$):

$$
K_{A}(h, j ; s)=K_{A}^{0} e^{-h(h-1) s}(2 j+1)
$$

- The sum over the tower of AdS_{2} fields essentially gives the heat kernel on S^{2}.

Quantum BH Entropy (BPS branch)

- The $\mathrm{AdS}_{2} \times S^{2}$ theory (BPS branch) gives

$$
\delta S=\frac{1}{12}\left(23-11(\mathcal{N}-2)-n_{V}+n_{H}\right) \log A_{H}
$$

- Special case $\mathcal{N}=4$ SUSY: no logarithmic correction.
- Special case $\mathcal{N}=8$ SUSY: $\delta S=-4 \log A$.
- These results agree with microscopic theory.

Quantum Entropy (nonBPS branch)

- The logarithmic correction to the entropy on the nonBPS branch:

$$
\delta S=\frac{1}{48}\left(65-87(\mathcal{N}-2)+17 n_{V}+n_{H}\right) \log A_{H}
$$

- Special case $\mathcal{N}=8$ SUSY: $\delta S=-\frac{13}{2} \log A$.
- The detailed results pose a challenge to microscopic theory.

Summary

We computed the spectrum of extended SUGRA on the nonBPS branch of $\mathrm{AdS}_{2} \times S^{2}$.

Some highlights:

- Conformal weights are integral (protected?).
- Conformal weights of fermions are also integral (a magnetic effect?).
- Interpretation: unprotected chiral sector of $(0,4) \mathrm{CFT}_{2}$.
- Interpretation: $\mathrm{nAdS}_{2} / \mathrm{nCFT}_{1}$ correspondence.
- Application: quantum corrections to black hole entropy.

