From non-geometric heterotic backgrounds to little string theories via F-theory

Anamaría Font V.
Universidad Central de Venezuela

in collaboration with: C. Mayrhofer. JHEP 11 (2017) 064
I. García-Etxebarria, D. Lüst, S. Massai, C. Mayrhofer. JHEP 08 (2016) 175

Overview
\triangleright Study string backgrounds outside supergravity approximation.
\triangleright Study string backgrounds outside supergravity approximation.
\triangleright Build vacua as fibrations by letting moduli of strings compactified on T^{2} vary over a base \mathbb{C}. [Hellerman, McGreevy, Williams]

T^{2} fibration over \mathbb{C}
cplx str. and Kähler moduli $\tau(t), \rho(t)$
$\rho \sim B+i$ vol
\triangleright Study string backgrounds outside supergravity approximation.
\triangleright Build vacua as fibrations by letting moduli of strings compactified on T^{2} vary over a base \mathbb{C}. [Hellerman, McGreevy, Williams]

\triangleright Allow for patching in T-duality group $O(2,2, \mathbb{Z})$.
\Rightarrow Non-geometry, identifications under e.g. $\rho \rightarrow-1 / \rho$ [Hull]
\triangleright Study string backgrounds outside supergravity approximation.
\triangleright Build vacua as fibrations by letting moduli of strings compactified on T^{2} vary over a base \mathbb{C}. [Hellerman, McGreevy, Williams]

T^{2} fibration over \mathbb{C} cplx str. and Kähler moduli $\tau(t), \rho(t)$ $\rho \sim B+i$ vol
\triangleright Allow for patching in T-duality group $O(2,2, \mathbb{Z})$.
\Rightarrow Non-geometry, identifications under e.g. $\rho \rightarrow-1 / \rho$ [Hull]
\triangleright Non-trivial fibrations must degenerate at points on the base, signaling defects, called T-fects. [Lüst, Massai, Vall-Camel]

T-fects induce monodromies in duality group, e.g. $\rho \rightarrow \frac{a \rho+b}{c \rho+d}$
\triangleright Extend to heterotic strings. [McOrist, Morrison, Sethi; Malmendier, Morrison; Gu, Jockers]
\exists Wilson line moduli, will consider only one complex β in $\operatorname{SU}(2)$. T-duality group $O(3,2, \mathbb{Z})$.
\triangleright Extend to heterotic strings. [McOrist, Morrison, Sethi; Malmendier, Morrison; Gu, Jockers]
\exists Wilson line moduli, will consider only one complex β in $S U(2)$. T-duality group $O(3,2, \mathbb{Z})$.
\triangleright Heterotic moduli space of (τ, ρ, β) can be mapped to moduli space of genus 2 curve Σ, with duality group $\operatorname{Sp}(4, \mathbb{Z})$.

Genus 2 fibration over \mathbb{C}

$$
\left(\begin{array}{ll}
\tau & \beta \\
\beta & \rho
\end{array}\right)(t)
$$

\triangleright Extend to heterotic strings. [McOrist, Morrison, Sethi; Malmendier, Morrison; Gu, Jockers]
\exists Wilson line moduli, will consider only one complex β in $S U(2)$. T-duality group $O(3,2, \mathbb{Z})$.
\triangleright Heterotic moduli space of (τ, ρ, β) can be mapped to moduli space of genus 2 curve Σ, with duality group $\operatorname{Sp}(4, \mathbb{Z})$.

Genus 2 fibration over \mathbb{C}

$$
\left(\begin{array}{ll}
\tau & \beta \\
\beta & \rho
\end{array}\right)(t)
$$

\triangleright Allow for patching in $\operatorname{Sp}(4, \mathbb{Z})$.

points where Σ degenerates are location of T-fects, e.g. NS5-branes
\triangleright Possible degenerations of genus 2 curves are classified. [Namikawa-Ueno] Namikawa-Ueno list provides a large number of T-fects. Set out to explore 6d theories living on them.
Can be done exploiting Heterotic/F-theory duality. [Vafa; Vafa,Morrison]
\triangleright Possible degenerations of genus 2 curves are classified. [Namikawa-Ueno] Namikawa-Ueno list provides a large number of T-fects. Set out to explore 6d theories living on them.
Can be done exploiting Heterotic/F-theory duality. [Vafa; Vafa,Morrison]
\triangleright Heterotic on $T^{2} \leftrightarrow$ F-theory on elliptically fibered K3 with none and one Wilson line, duality is explicit in terms of moduli. [Cardoso, Curio, Lüst, Mohaupt; Clingher, Doran; Malmendier, Morrison]
\triangleright Possible degenerations of genus 2 curves are classified. [Namikawa-Ueno] Namikawa-Ueno list provides a large number of T-fects. Set out to explore 6d theories living on them.
Can be done exploiting Heterotic/F-theory duality. [Vafa; Vafa,Morrison]
\triangleright Heterotic on $T^{2} \leftrightarrow$ F-theory on elliptically fibered K3 with none and one Wilson line, duality is explicit in terms of moduli. [Cardoso, Curio, Lüst, Mohaupt; Clingher, Doran; Malmendier, Morrison]
\triangleright Non-geometric heterotic vacua described as genus 2 fibrations over base \mathbb{C} realized in F-theory as specific K 3 fibrations over same base.
\triangleright Possible degenerations of genus 2 curves are classified. [Namikawa-Ueno] Namikawa-Ueno list provides a large number of T-fects. Set out to explore 6d theories living on them.
Can be done exploiting Heterotic/F-theory duality. [Vafa; Vafa,Morrison]
\triangleright Heterotic on $T^{2} \leftrightarrow$ F-theory on elliptically fibered K3 with none and one Wilson line, duality is explicit in terms of moduli. [Cardoso, Curio, Lüst, Mohaupt; Clingher, Doran; Malmendier, Morrison]
\triangleright Non-geometric heterotic vacua described as genus 2 fibrations over base \mathbb{C} realized in F-theory as specific K 3 fibrations over same base.

\triangleright Recall that in F-theory total space of K3 fibration must be Calabi-Yau (CY) to preserve supersymmetry.
\triangleright Recall that in F-theory total space of K3 fibration must be Calabi-Yau (CY) to preserve supersymmetry.
\triangleright For genus 2 fibration find elliptically fibered CY 3-fold in F-theory. Elliptic fiber has non-minimal singularity when genus 2 degenerates. Resolve in F-theory doing blow-ups in the base, keeping CY condition.
\triangleright Recall that in F-theory total space of K3 fibration must be Calabi-Yau (CY) to preserve supersymmetry.
\triangleright For genus 2 fibration find elliptically fibered CY 3-fold in F-theory. Elliptic fiber has non-minimal singularity when genus 2 degenerates. Resolve in F-theory doing blow-ups in the base, keeping CY condition.
\triangleright Introducing blow-ups is equivalent to giving generic vevs to scalars in tensor multiplets of $6 \mathrm{~d} \mathcal{N}=(1,0)$ theory on defect.
\triangleright Recall that in F-theory total space of K3 fibration must be Calabi-Yau (CY) to preserve supersymmetry.
\triangleright For genus 2 fibration find elliptically fibered CY 3-fold in F-theory. Elliptic fiber has non-minimal singularity when genus 2 degenerates. Resolve in F-theory doing blow-ups in the base, keeping CY condition.
\triangleright Introducing blow-ups is equivalent to giving generic vevs to scalars in tensor multiplets of $6 \mathrm{~d} \mathcal{N}=(1,0)$ theory on defect.
\triangleright From resolved geometry deduce gauge groups and matter in IR limit, valid on tensor branch, of theory on defect.
Anomaly polynomial indicates that candidate UV completion of resulting theories are Little String Theories (LSTs).[Seiberg]
\triangleright Recall that in F-theory total space of K3 fibration must be Calabi-Yau (CY) to preserve supersymmetry.
\triangleright For genus 2 fibration find elliptically fibered CY 3-fold in F-theory. Elliptic fiber has non-minimal singularity when genus 2 degenerates. Resolve in F-theory doing blow-ups in the base, keeping CY condition.
\triangleright Introducing blow-ups is equivalent to giving generic vevs to scalars in tensor multiplets of $6 \mathrm{~d} \mathcal{N}=(1,0)$ theory on defect.
\triangleright From resolved geometry deduce gauge groups and matter in IR limit, valid on tensor branch, of theory on defect.
Anomaly polynomial indicates that candidate UV completion of resulting theories are Little String Theories (LSTs).[Seiberg]
$\triangleright E_{8} \times E_{8}$ heterotic (HE) analyzed by AF, García-Extebarria, Lüst, Massai, Mayrhofer. Now focus on $\operatorname{Spin}(32) / \mathbb{Z}_{2}$ heterotic (HO). AF, Mayrhofer.

Outline

- Overview
- Heterotic string in $8 d$ and $6 d$
- Moduli space of heterotic on T^{2}
- From 8 d to 6 d : Fibration of genus 2 curve
- F-theory and vacua with varying moduli
- Heterotic/F-theory duality in 8d
- From genus 2 fibrations to dual K3 fibrations
- Resolution of singularities
- Results
- Geometric models: small instantons on ADE singularities
- Non-geometric models and dualities
- General properties
- Final comments

Heterotic in 8d and 6d

Moduli space of heterotic on T^{2}

Complex structure $\tau=\frac{\int_{b} \omega}{\int_{a} \omega}$

Kähler $\rho=\int_{T^{2}} B+i \omega \wedge \bar{\omega}$,
Wilson lines (WL) $\quad \beta^{\prime}=\int_{a} A^{\prime}+i \int_{b} A^{\prime}, I=1, \ldots, 16$
consider only one WL in $S U(2)$
HE: $E_{8} \times E_{8} \xrightarrow{\beta} E_{7} \times E_{8}$
$\mathrm{HO}: \operatorname{Spin}(32) / \mathbb{Z}_{2} \xrightarrow{\beta} \operatorname{Spin}(28) \times S U(2) / \mathbb{Z}_{2}$

Moduli of heterotic on T^{2} with one WL in $S U(2):(\tau, \rho, \beta)$

Narain moduli space $\mathcal{M}_{\text {het }}=O(3) \times O(2) \backslash O(3,2) / O(3,2, \mathbb{Z})$ duality group $O(3,2, \mathbb{Z}) \quad$ e.g. $\tau \rightarrow \frac{\rho}{\beta^{2}-\tau \rho}, \quad \rho \rightarrow \frac{\tau}{\beta^{2}-\tau \rho}, \quad \beta \rightarrow \frac{-\beta}{\beta^{2}-\tau \rho}$

Moduli of heterotic on T^{2} with one WL in $S U(2):(\tau, \rho, \beta)$

Narain moduli space $\mathcal{M}_{\text {het }}=O(3) \times O(2) \backslash O(3,2) / O(3,2, \mathbb{Z})$ duality group $O(3,2, \mathbb{Z})$ e.g. $\tau \rightarrow \frac{\rho}{\beta^{2}-\tau \rho}, \quad \rho \rightarrow \frac{\tau}{\beta^{2}-\tau \rho}, \quad \beta \rightarrow \frac{-\beta}{\beta^{2}-\tau \rho}$
restricting to $S O^{+}(3,2, \mathbb{Z})$, map $\mathcal{M}_{\text {het }}$ to $\mathbb{H}_{2} / \operatorname{Sp}(4, \mathbb{Z})$: moduli space of genus 2
$\mathbb{H}_{2}=\left\{\left.\Omega=\left(\begin{array}{cc}\tau & \beta \\ \beta & \rho\end{array}\right) \right\rvert\, \operatorname{det} \operatorname{Im}(\Omega)>0, \operatorname{Im}(\rho)>0\right\} \quad$ Siegel upper half-plane of genus 2
Ω : period matrix
$\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p(4, \mathbb{Z}), \quad \Omega \rightarrow(A \Omega+B)(C \Omega+D)^{-1}, \quad$ e.g. $\Omega \rightarrow-\Omega^{-1}$

From 8d to 6d: Fibration of genus 2 curve Σ

Construct 6 d vacua by letting moduli (τ, ρ, β) vary along $\mathbb{C} \ni t$ Use geometrical object encoding moduli to handle identifications under duality group around closed paths, i.e. use Σ

Eq. of motion $\Rightarrow \Sigma(t)$ holomorphic in t
$\Sigma(t)$ must degenerate at points in \mathbb{C}

From 8d to 6 d : Fibration of genus 2 curve Σ

Construct 6 d vacua by letting moduli (τ, ρ, β) vary along $\mathbb{C} \ni t$ Use geometrical object encoding moduli to handle identifications under duality group around closed paths, i.e. use Σ

Eq. of motion $\Rightarrow \Sigma(t)$ holomorphic in t
$\Sigma(t)$ must degenerate at points in \mathbb{C}

Degenerations of genus 2 fibrations with monodromy in $\operatorname{Sp}(4, \mathbb{Z})$ classified by Namikawa-Ueno (NU)

NU give local equation (sextic), with singularity at $t=0$ and provide the monodromy

Ex. III - III - $0 \quad Y^{2}=X(X-1)\left(X^{2}+t\right)\left((X-1)^{2}+t\right)$

$$
\text { monodromy }\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \Omega \rightarrow-\Omega^{-1}
$$

F-theory and vacua with varying moduli

F-theory/Heterotic duality in 8d

F-theory on elliptically fibered K3 dual to Heterotic on T^{2} [Vafa; Vafa,Morison]

F-theory/Heterotic duality in 8d

F-theory on elliptically fibered K 3 dual to Heterotic on T^{2} [Vafa; Vafa,Morison]

HE: $\quad y^{2}=x^{3}+\left(a u^{4} v^{4}+c u^{3} v^{7}\right) x z^{4}+\left(b u^{6} v^{6}+d u^{5} v^{7}+u^{7} v^{5}\right) z^{6}$
x, y, z, and u, v : homogeneous coordinates of the fiber ambient variety $\mathbb{P}_{2,3,1}$, and the base \mathbb{P}^{1}
singularities: $\mathrm{II}^{*}\left(E_{8}\right)$ at $v=0, \mathrm{III}^{*}\left(E_{7}\right)$ at $u=0, \rightarrow \mathrm{II}^{*}$ for $c=0 \Rightarrow$ no WL

F-theory/Heterotic duality in 8d

F-theory on elliptically fibered K 3 dual to Heterotic on T^{2} [Vafa; Vafa,Morison]

HE: $\quad y^{2}=x^{3}+\left(a u^{4} v^{4}+c u^{3} v^{7}\right) x z^{4}+\left(b u^{6} v^{6}+d u^{5} v^{7}+u^{7} v^{5}\right) z^{6}$
x, y, z, and $u, v:$ homogeneous coordinates of the fiber ambient variety $\mathbb{P}_{2,3,1}$, and the base \mathbb{P}^{1}
singularities: $\mathrm{II}^{*}\left(E_{8}\right)$ at $v=0, \mathrm{III}^{*}\left(E_{7}\right)$ at $u=0, \rightarrow \mathrm{II}^{*}$ for $c=0 \Rightarrow$ no WL

HO: $\quad y^{2}=x^{3}+v\left(u^{3}+a u v^{2}+b v^{3}\right) x^{2} z^{2}+v^{7}(c u+d v) x z^{4}$
singularities: $\mathrm{I}_{2}(S U(2))$ at $c u+d v=0, \mathrm{I}_{10}^{*}(S O(28))$ at $v=0, \rightarrow \mathrm{I}_{12}^{*}$ for $c=0$

HE and $\mathrm{HO} \mathrm{K3's} \mathrm{are} \mathrm{birationally} \mathrm{equivalent}$
HE/HO T-duality

From genus 2 fibrations to dual K3 fibrations

Map relating heterotic moduli (τ, ρ, β) to K 3 coefficients a, b, c, d
no WL, $c=0$, thru $S L(2, \mathbb{Z})$ modular invariant j [Cardoso, Curio, Lüst, Mohaupt]

$$
j(\tau) j(\rho)=-1728^{2} \frac{a^{3}}{27 d}, \quad(j(\tau)-1728)(j(\rho)-1728)=1728^{2} \frac{b^{2}}{4 d}
$$

From genus 2 fibrations to dual K3 fibrations

Map relating heterotic moduli (τ, ρ, β) to K 3 coefficients a, b, c, d
no WL, $c=0$, thru $S L(2, \mathbb{Z})$ modular invariant j [Cardoso, Curio, Lüst, Mohaupt]
$j(\tau) j(\rho)=-1728^{2} \frac{a^{3}}{27 d}, \quad(j(\tau)-1728)(j(\rho)-1728)=1728^{2} \frac{b^{2}}{4 d}$
one WL, $c \neq 0$, thru $S p(4, \mathbb{Z})$ Siegel modular forms [Clingher, Doran; Malmendier, Morrison]
$a=-\frac{1}{48} \psi_{4}(\Omega), b=-\frac{1}{864} \psi_{6}(\Omega), c=-4 \chi_{10}(\Omega), d=\chi_{12}(\Omega), \Omega=\left(\begin{array}{cc}\tau & \beta \\ \beta & \rho\end{array}\right)$

K3 fibrations from genus 2 degenerations

Namikawa-Ueno give genus 2 degenerations as sextics singular at $t=0$
degenerate genus 2 curve $\Sigma(t): Y^{2}=\sum_{i=0}^{6} c_{i}(t) X^{i}$
polynomials of $c_{i}(t) \rightarrow$ Igusa-Clebsch invariants $I_{\text {weight }} \rightarrow$ modular forms of $\Sigma(t)$
complex structure of K3 written in terms of Igusa-Clebsch invariants
$a=-3 I_{4}, \quad b=2\left(I_{2} I_{4}-3 I_{6}\right), \quad c=-2^{3} 3^{5} I_{10}, \quad d=-23^{5} I_{2} I_{10}$
functions of t, vanishing degree at $t=0: \mu(a), \mu(b), \mu(c), \mu(d)$

Heterotic

F-theory

Resolution of singularities I

F-theory K3 fibration over \mathbb{C} equivalent to elliptic fibration over 2 d complex base B, represented by Weierstra $ß$ model

$$
\begin{array}{ll}
y^{2}=x^{3}+f x z^{4}+g z^{6}, \quad & f, g \text { sections of some line bundles over } B \\
& \text { Calabi-Yau condition: } f, g \text { are } K_{B}^{-4}, K_{B}^{-6} \\
& K_{B}: \text { canonical bundle of } B
\end{array}
$$

to begin f, g polynomials of $(u, v, t) \in \mathbb{P}^{1} \times \mathbb{C}$
e.g. in HE: $f=a(t) u^{4} v^{4}+c(t) u^{3} v^{7}, \quad g=b(t) u^{6} v^{6}+d(t) u^{5} v^{7}+u^{7} v^{5}$

Elliptic fiber becomes singular when discriminant $\Delta=4 f^{3}+27 g^{2}=0$

Blow-up base if singularity is non-minimal, i.e. $\operatorname{order}(f) \geq 4$ and $\operatorname{order}(g) \geq 6$

Resolution of singularities II

In HE and $\mathrm{HO} \nexists$ non-minimal points at $v=0$, work at patch (u, t) to begin

HE: non-minimal point at $u=t=0 \rightarrow$ introduce blow-ups

HO: singularity at $t=0$ of type $\mathrm{I}_{2 k}, k=\mu(c)$, supports algebra $\mathfrak{s p}(k)$ non-minimal point at $u=t=0$ (or $\left.u=u_{0}, t=0\right) \rightarrow$ introduce blow-ups

Resolution can be accomplished, i.e. finite number n_{T} of blow-ups, iff

$$
\mu(a)<4 \text { or } \mu(b)<6 \text { or } \mu(c)<10 \text { or } \mu(d)<12
$$

Resolution example: NU degeneration $\left[\mathrm{I}_{9}-\mathrm{I}_{6}^{*}-0\right] \equiv\left[\mathrm{I}_{9}-\mathrm{I}_{6}^{*}\right]$
$Y^{2}=\left((X-1)^{2}+t^{9}\right)\left(X^{2}+t^{8}\right)\left(X^{2}+t\right) \rightarrow a(t), b(t), c(t), d(t)$ of dual K3
$\beta \rightarrow-\beta, \rho \rightarrow \rho+9, \tau \rightarrow \tau+6, \quad M_{\tau}=\left(\begin{array}{rr}-1 & -6 \\ 0 & -1\end{array}\right) \mathrm{D}_{10}$ singularity
From monodromy and BI $d H \sim\left(\operatorname{tr} R^{2}-\operatorname{tr} F^{2}\right)$, expect resolution to give theory of 21 small instantons on D_{10} singularity [Aspinwall, Morison; Blum, Intriligator]

Resolution example: NU degeneration $\left[\mathrm{I}_{9}-\mathrm{I}_{6}^{*}-0\right] \equiv\left[\mathrm{I}_{9}-\mathrm{I}_{6}^{*}\right]$
$Y^{2}=\left((X-1)^{2}+t^{9}\right)\left(X^{2}+t^{8}\right)\left(X^{2}+t\right) \rightarrow a(t), b(t), c(t), d(t)$ of dual K3
$\beta \rightarrow-\beta, \rho \rightarrow \rho+9, \tau \rightarrow \tau+6, \quad M_{\tau}=\left(\begin{array}{rr}-1 & -6 \\ 0 & -1\end{array}\right) \mathrm{D}_{10}$ singularity
From monodromy and $\mathrm{BI} d H \sim\left(\operatorname{tr} R^{2}-\operatorname{tr} F^{2}\right)$, expect resolution to give theory of 21 small instantons on D_{10} singularity [Aspinwall, Morison; Blum, Intriligator]

Schematic resolution in HO

ten blow-ups, number of tensor multiplets $n_{T}=10$

Resolution procedure allows to obtain self-intersection numbers of blow-up divisors, and read off algebras plus matter content.

Whenever a resolution is attained the end result is a represented by a tree-like diagram.

Resolution procedure allows to obtain self-intersection numbers of blow-up divisors, and read off algebras plus matter content.

Notation: each blow-up divisor is identified by algebra it supports, written above integer equal to minus self-intersection number. 1^{*} means $t=0$ isn't blow-up. Diagram reflects pattern of intersections. Hypers $\frac{1}{2}$ (fund, fund) for adjacent $\mathfrak{s p - s o}$.

Results

Geometric models

Moduli monodromy and Bianchi identity indicate genus 2 degenerations expected to describe small instantons on ADE singularities:

sing.	NU type	local model	$\mu(a)$	$\mu(b)$	$\mu(c)$	$\mu(d)$
A_{p-1}	$\left[\mathrm{I}_{n-p-0]}\right.$	$Y^{2}=\left(t^{n}+X^{2}\right)\left(t^{p}+(X-\alpha)^{2}\right)(X-1)$	0	0	$p+n$	$p+n$
D_{p+4}	$\left[\mathrm{I}_{n}-\mathrm{I}_{p}^{*}\right]$	$Y^{2}=\left(t^{n}+(X-1)^{2}\right)\left(t^{p+2}+X^{2}\right)(X+t)$	2	3	$6+p+n$	$6+p+n$
E_{6}	$\left[\mathrm{IV}^{*}-\mathrm{I}_{n}\right]$	$Y^{2}=\left(t^{4}+X^{3}\right)\left(t^{n}+(X-1)^{2}\right)$	$4+n$	4	$8+n$	$8+n$
E_{7}	$\left[\mathrm{III}^{*}-\mathrm{I}_{n}\right]$	$Y^{2}=X\left(t^{3}+X^{2}\right)\left(t^{n}+(X-1)^{2}\right)$	3	$6+n$	$9+n$	$9+n$
E_{8}	$\left[\mathrm{II}^{*}-\mathrm{I}_{n}\right]$	$Y^{2}=\left(t^{5}+X^{3}\right)\left(t^{n}+(X-1)^{2}\right)$	$5+n$	5	$10+n$	$10+n$

\# of instantons
In all cases resolution agrees with known results. [Aspinwall, Morrison; Blum, Intriligator]

Ex. NU degeneration $\left[\mathrm{IV}^{*}-\mathrm{I}_{n}\right]: k=(8+n)$ instantons on E_{6} singularity

$$
\beta \rightarrow \frac{\beta}{\tau}, \quad \rho \rightarrow \rho+n-\frac{\beta^{2}}{\tau}, \quad \tau \rightarrow-\frac{1+\tau}{\tau}
$$

Resolution in HO

$$
\begin{array}{|ccccc|}
\hline \mathfrak{s p}(k) & \mathfrak{s o}(4 k-16) & \mathfrak{s p}(3 k-24) & \mathfrak{s u}(4 k-32) & \mathfrak{s u}(2 k-16) \\
1 * & 4 & 1 & 2 & 2 \\
\hline
\end{array}
$$

Resolution in HE

Non-geometric models

Degenerations with non-geometric monodromies in all T-duality frames. In several cases dual F-theory CY admits a resolution.
In many, emerging theory equal to small instantons on ADE singularities.
Ex. NU [III - III] $\quad Y^{2}=X(X-1)\left(X^{2}+t\right)\left((X-1)^{2}+t\right)$
$\tau \rightarrow \frac{\rho}{\beta^{2}-\tau \rho}, \quad \rho \rightarrow \frac{\tau}{\beta^{2}-\tau \rho}, \quad \beta \rightarrow \frac{-\beta}{\beta^{2}-\tau \rho} \quad\left(\tau \rightarrow-\frac{1}{\tau}, \quad \rho \rightarrow-\frac{1}{\rho}\right.$, when $\left.\beta=0\right)$
Resolution gives same theory obtained in $\left[\mathrm{I}_{0}-\mathrm{I}_{0}^{*}\right]$, i.e. theory of 6 small instantons on D_{4} singularity.

| $\operatorname{In} \mathrm{HE}$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | $\mathfrak{s p}(1)$ | \mathfrak{g}_{2} | $\mathfrak{s p}(1)$ | |
| 2 | 2 | 2 | 2 | 1^{*} | |

Non-geometric models

Degenerations with non-geometric monodromies in all T-duality frames. In several cases dual F-theory CY admits a resolution. In many, emerging theory equal to small instantons on ADE singularities.

Ex. NU [III - III] $\quad Y^{2}=X(X-1)\left(X^{2}+t\right)\left((X-1)^{2}+t\right)$
$\tau \rightarrow \frac{\rho}{\beta^{2}-\tau \rho}, \quad \rho \rightarrow \frac{\tau}{\beta^{2}-\tau \rho}, \quad \beta \rightarrow \frac{-\beta}{\beta^{2}-\tau \rho} \quad\left(\tau \rightarrow-\frac{1}{\tau}, \quad \rho \rightarrow-\frac{1}{\rho}\right.$, when $\left.\beta=0\right)$
Resolution gives same theory obtained in $\left[\mathrm{I}_{0}-\mathrm{I}_{0}^{*}\right]$, i.e. theory of 6 small instantons on D_{4} singularity.

Duality between [III - III] and $\left[\mathrm{I}_{0}-\mathrm{I}_{0}^{*}\right]$ explained relating their monodromies expressed in terms of Dehn twists. AF, García-Extebarria, Lüst, Massai, Mayrhofer

General properties I

In resolvable model, $6 \mathrm{~d} \mathcal{N}=(1,0)$ theory in IR, valid on tensor branch, captured by a diagram with $n_{T}+1$ nodes, encoding full gauge algebra \mathcal{G} and matter content.

Numbers of hyper and vector multiplets, n_{H}, n_{V}, read off from diagram

Each theory characterized by two intrinsic quantities equal in HE and HO :

$$
\begin{aligned}
& h_{\mathrm{R}}=\operatorname{rank} \mathcal{G}+n_{T} \quad \# \text { vectors in } 5 \mathrm{~d} \\
& r_{\mathrm{R}}=n_{H}-n_{V}+29 n_{T}-30 k, \quad k=\mu(c) \quad \text { gravitational anomaly } \\
& \text { in geometric models } r_{\mathrm{R}}=\operatorname{rank} G_{\mathrm{ADE}} \quad \text { [Intriligator] }
\end{aligned}
$$

Ex. NU [IX - 1] $\quad Y^{2}=X^{5}+t^{2}$, dual K3 with $a=b=d=0, \mu(c)=8$
$\tau \rightarrow 1+\rho-\frac{(1+\beta)^{2}}{\tau}, \quad \rho \rightarrow-\frac{1}{\tau}, \quad \beta \rightarrow-\frac{\beta+1}{\tau} \quad$ order 5

In HE, $n_{T}=16, \operatorname{rank} \mathcal{G}=22, h_{R}=38, r_{\mathrm{R}}=10$

	$\mathfrak{s u}(2)$	$\mathfrak{s o}(7)$	$\mathfrak{s u}(2)$		\mathfrak{e}_{7}			$\mathfrak{s p}(1)$	\mathfrak{g}_{2}		\mathfrak{f}_{4}		\mathfrak{g}_{2}	$\mathfrak{s p}(1)$		
1	2	3	2	1	8	1	2	2	3	1	5	1	3	2	2	1^{*}

In HO, $n_{T}=6$, rank $\mathcal{G}=32, h_{\mathrm{R}}=38, r_{\mathrm{R}}=10$

$\mathfrak{s p}(8)$	$\mathfrak{s o}(20)$	$\mathfrak{s p}(4)$	$\mathfrak{s o}(12)$		$\mathfrak{s u}(2)$	$\mathfrak{s o}(7)$
1^{*}	4	1	4	1	2	3

$h_{\mathrm{R}}=\operatorname{rank} \mathcal{G}+n_{T}, \quad r_{\mathrm{R}}=n_{H}-n_{V}+29 n_{T}-30 k, \quad k=\mu(c)$

General properties II

Anomaly cancellation gives significant info on resulting $6 \mathrm{~d} \mathcal{N}=(1,0)$ theories.

In all models, matter content is such that irreducible $\operatorname{tr} F^{4}$ terms cancel.

Pure gauge contribution to anomaly polynomial:
$l_{\text {gauge }}=-\frac{1}{8} \eta^{\alpha \beta} \operatorname{tr} F_{\alpha}^{2} \operatorname{tr} F_{\beta}^{2}$
F_{α} : field strength of gauge factor at α node, $\alpha=0,1, \ldots, n_{T}$

$$
\alpha=0 \text { corresponds to } t=0 \text { divisor }
$$

$\eta^{\alpha \beta}$: intersection matrix, read off from diagram.
Diagonal elements equal to minus self-intersection number.
Non-diagonal elements equal to -1 if nodes linked, to 0 if not.

General properties III

$I_{\text {gauge }}=-\frac{1}{8} \eta^{\alpha \beta} \operatorname{tr} F_{\alpha}^{2} \operatorname{tr} F_{\beta}^{2}, \quad \alpha=0,1, \ldots, n_{T}$
In all models, $\eta^{\alpha \beta}$ positive semi-definite, with only one zero eigenvalue.
$I_{\text {gauge }}$ cancelled by Green-Schwarz-Sagnotti mechanism with n_{T} tensor multiplets.
Null eigenvalue \Rightarrow linear combination of gauge couplings independent of scalars in tensor multiplets so it defines a mass parameter.

Theories have T-duality.

Mass scale and T-duality suggest that UV completions are LSTs.
Our theories fall into recent classification of LSTs.
[Bhardwaj; Bhardwaj, Del Zotto, Heckman, Morrison, Rudelius, Vafa]
Dropping node corresponding to $t=0$ gives tensor branch of 6d SCFTs embedded in LSTs. In $\mathrm{HO} \mathfrak{s p}(k)$ remains as flavor symmetry.

Final comments
\triangleright studied $6 \mathrm{~d} \mathcal{N}=(1,0)$ non-geometric heterotic vacua described locally as genus 2 fibrations over \mathbb{C}.
\triangleright heterotic moduli transform under T-duality around points in the base where fiber degenerates, signaling T-fects.
\triangleright analyzed T-fects using heterotic/F-theory duality. genus 2 degeneration in Namikawa-Ueno list \rightarrow K3 fibration degeneration.
\triangleright applied a toric procedure to resolve singularities of F-theory 3-fold. only 49 out of 120 NU types lead to F-theory duals admitting a resolution by a finite number of base blow-ups.
\triangleright observed a kind of duality in which theories living on distinct defects are equal.
\triangleright emerging theories living on defects turn out to be little string theories at a generic point on tensor branch.
\triangleright open problems: understand nature of degenerations without resolution, extend to $4 \mathrm{~d} .$.
\triangleright spin-off: more on F-theory and heterotic in 8d in progress with C. Mayrhofer, H. Parra study K3's with 2,3 moduli (Picard number 18,17)
map K3 moduli to heterotic moduli
das war's

