Defect TQFT and orbifolds

Nils Carqueville

Universität Wien \& Erwin Schrödinger Institute

spacetime $\supset \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}} \subset$ algebra

$$
\text { spacetime } \supset \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \xrightarrow{\text { defect TQFT }} \operatorname{Vect}_{\mathbb{C}} \subset \text { algebra }
$$

Goal. Unify and generalise orbifold and state sum constructions

Method. defects and higher algebra

Slogans.

- "State sum models = orbifolds of the trivial theory"
- "General orbifolds $=$ state sum constructions internal to some QFT"

Result. Worked out for any n-dimensional defect TQFT

Applications.

- "generalised symmetry"
- new dualities
- surface defects in Chern-Simons theory
- improved topological quantum computation via orbifolds

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes, \mathbb{C}\right)
$$

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

Theorem. $\{2 \mathrm{~d}$ closed TQFTs $\} \cong$ \{commutative Frobenius algebras $\}$

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

Theorem. $\{2 \mathrm{~d}$ closed TQFTs $\} \cong$ \{commutative Frobenius algebras $\}$ Proof sketch: Set $\mathcal{H}:=\mathcal{Z}\left(S^{1}\right) \in$ Vect $_{\mathrm{C}}$.

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

Theorem. $\{2 \mathrm{~d}$ closed TQFTs $\} \cong$ \{commutative Frobenius algebras $\}$ Proof sketch: Set $\mathcal{H}:=\mathcal{Z}\left(S^{1}\right) \in \operatorname{Vect}_{\mathrm{C}}$. multiplication $\mathcal{Z}($ § $): \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}$

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

Theorem. $\{2 \mathrm{~d}$ closed TQFTs $\} \cong$ \{commutative Frobenius algebras $\}$ Proof sketch: Set $\mathcal{H}:=\mathcal{Z}\left(S^{1}\right) \in$ Vect $_{\mathrm{C}}$. multiplication $\mathcal{Z}($ § $): \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}$, pairing $\mathcal{Z}\left(\Omega_{\Omega}\right): \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathbb{C}$

2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\mathcal{Z}:\left(\operatorname{Bord}_{2}, \sqcup, \emptyset\right) \longrightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes, \mathbb{C}\right)
$$

Every 2-dimensional manifold can be decomposed into

$\theta 8$

Theorem. $\{2 \mathrm{~d}$ closed TQFTs $\} \cong$ \{commutative Frobenius algebras $\}$ Proof sketch: Set $\mathcal{H}:=\mathcal{Z}\left(S^{1}\right) \in$ Vect $_{\mathrm{C}}$. multiplication $\mathcal{Z}(\Omega): \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}$, pairing $\mathcal{Z}\left(\Omega_{\Omega}\right): \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathbb{C}$

Examples of 2d closed TQFT

Dijkgraaf-Witten models:
$\mathcal{H}=Z(\mathbb{C}[G])$ for finite group G

Examples of 2d closed TQFT

Dijkgraaf-Witten models:
$\mathcal{H}=Z(\mathbb{C}[G])$ for finite group G
Sigma models:
$\mathcal{H}=H_{d}(M)$ for compact oriented manifold M

Examples of 2d closed TQFT

Dijkgraaf-Witten models:
$\mathcal{H}=Z(\mathbb{C}[G])$ for finite group G
Sigma models:
$\mathcal{H}=H_{d}(M)$ for compact oriented manifold M
Landau-Ginzburg models:
$\mathcal{H}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x} W\right)$ for isolated singularity $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$

Examples of 2d closed TQFT

Dijkgraaf-Witten models:
$\mathcal{H}=Z(\mathbb{C}[G])$ for finite group G
Sigma models:
$\mathcal{H}=H_{d}(M)$ for compact oriented manifold M
Landau-Ginzburg models:
$\mathcal{H}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x} W\right)$ for isolated singularity $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
State sum models: (o Dijkgraaf-Witten models)

- input: separable symmetric Frobenius \mathbb{C}-algebra $(A, \mu, \Delta)=$ matrix algebra
- choose oriented triangulation for every bordism(=worldsheet) Σ
- on Poincaré dual graph, associate A to edges, (co)multiplication μ, Δ to vertices:

State sum models in 2d

- input: separable symmetric Frobenius \mathbb{C}-algebra $(A, \mu, \Delta)=$ matrix algebra
- choose oriented triangulation for every bordism(=worldsheet) Σ
- decorate Poincaré dual graph with (A, μ, Δ) :

State sum models in 2d

- input: separable symmetric Frobenius \mathbb{C}-algebra $(A, \mu, \Delta)=$ matrix algebra
- choose oriented triangulation for every bordism(=worldsheet) Σ
- decorate Poincaré dual graph with (A, μ, Δ) :

- associate $A^{\otimes k}$ to dual triangulation of circle with k points

State sum models in 2d

- input: separable symmetric Frobenius \mathbb{C}-algebra $(A, \mu, \Delta)=$ matrix algebra
- choose oriented triangulation for every bordism(=worldsheet) Σ
- decorate Poincaré dual graph with (A, μ, Δ) :

- associate $A^{\otimes k}$ to dual triangulation of circle with k points
- obtain projectors $\pi_{k}: A^{\otimes k} \longrightarrow A^{\otimes k}$ from cylinder $S^{1} \times[0,1]$

State sum models in 2d

- input: separable symmetric Frobenius \mathbb{C}-algebra $(A, \mu, \Delta)=$ matrix algebra
- choose oriented triangulation for every bordism(=worldsheet) Σ
- decorate Poincaré dual graph with (A, μ, Δ) :

- associate $A^{\otimes k}$ to dual triangulation of circle with k points
- obtain projectors $\pi_{k}: A^{\otimes k} \longrightarrow A^{\otimes k}$ from cylinder $S^{1} \times[0,1]$
- define state sum model

$$
\mathcal{Z}_{A}^{\mathrm{ss}}: \text { Bord }_{2} \longrightarrow \text { Vect }_{\mathbb{C}}
$$

$$
S^{1} \longmapsto \operatorname{Im}\left(\pi_{k}: A^{\otimes k} \longrightarrow A^{\otimes k}\right) \cong Z(A) \quad \text { for all } k
$$

$\left(\Sigma:\left(S^{1}\right)^{\sqcup m} \longrightarrow\left(S^{1}\right)^{\sqcup n}\right) \longmapsto\left(\right.$ induced linear map $\left.Z(A)^{\otimes m} \longrightarrow Z(A)^{\otimes n}\right)$

State sum models in 2d

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}_{A}^{\mathrm{SS}}\left(S^{1}\right) \cong Z(A)$.

State sum models in 2d

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}_{A}^{\text {ss }}\left(S^{1}\right) \cong Z(A)$.

Proof sketch: Need to show invariance under Pachner moves

State sum models in 2d

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}_{A}^{\mathrm{ss}}\left(S^{1}\right) \cong Z(A)$.

Proof sketch: Need to show invariance under Pachner moves

or dually:

State sum models in 2d

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}_{A}^{\text {ss }}\left(S^{1}\right) \cong Z(A)$.

Proof sketch: Need to show invariance under Pachner moves

or dually:

Satisfied for separable symmetric Frobenius \mathbb{C}-algebras A !

2-dimensional defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}
$$

2-dimensional defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data \mathbb{D} consist of

- a set D_{2} to label 2-strata of surfaces
- a set D_{1} to label 1-strata of surfaces
- a set D_{0} to label 0-strata of surfaces

2-dimensional defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data \mathbb{D} consist of

- a set D_{2} to label 2-strata of surfaces
- a set D_{1} to label 1-strata of surfaces
- a set D_{0} to label 0 -strata of surfaces
- allowed ways for strata to meet locally:
$\alpha \in D_{2}$

2-dimensional defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data \mathbb{D} consist of

- a set D_{2} to label 2-strata of surfaces
- a set D_{1} to label 1-strata of surfaces
- a set D_{0} to label 0 -strata of surfaces
- allowed ways for strata to meet locally:

objects:

2-dimensional defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data D consist of

- a set D_{2} to label 2-strata of surfaces
- a set D_{1} to label 1 -strata of surfaces
- a set D_{0} to label 0 -strata of surfaces
- allowed ways for strata to meet locally:

objects:

morphisms:

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels
- LG models: isolated singularities \& matrix factorisations

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels
- LG models: isolated singularities \& matrix factorisations
- trivial defect TQFT $\mathcal{Z}^{\text {triv }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{C}$

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels
- LG models: isolated singularities \& matrix factorisations
- trivial defect TQFT $\mathcal{Z}^{\text {triv }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{C}$
- $D_{2}^{\text {triv }}=\{\mathbb{C}\}$
- $D_{1}^{\text {triv }}=\{\mathbb{C}$-bimodules $\}=\{\mathbb{C}$-vector spaces $\}$
- $D_{0}^{\text {triv }}=\{$ bimodule maps $\}=\{$ linear maps $\}$

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels
- LG models: isolated singularities \& matrix factorisations
- trivial defect TQFT $\mathcal{Z}^{\text {triv }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{C}$
- $D_{2}^{\text {triv }}=\{\mathbb{C}\}$
- $D_{1}^{\text {triv }}=\{\mathbb{C}$-bimodules $\}=\{\mathbb{C}$-vector spaces $\}$
- $D_{0}^{\text {triv }}=\{$ bimodule maps $\}=\{$ linear maps $\}$
- $\mathcal{Z}^{\text {triv }}\left(\int_{\mathbb{C}^{k_{m}}}^{\mathbb{C}^{k_{1}}}\right) \stackrel{\text { def }}{=} \mathbb{C}^{k_{1}} \otimes \cdots \otimes \mathbb{C}^{k_{m}}$

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels
- LG models: isolated singularities \& matrix factorisations
- trivial defect TQFT $\mathcal{Z}^{\text {triv }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{\mathbb{C}}$
- $D_{2}^{\text {triv }}=\{\mathbb{C}\}$
- $D_{1}^{\text {triv }}=\{\mathbb{C}$-bimodules $\}=\{\mathbb{C}$-vector spaces $\}$
- $D_{0}^{\text {triv }}=\{$ bimodule maps $\}=\{$ linear maps $\}$
- $\mathcal{Z}^{\text {triv }}\left(\int_{\mathbb{C}^{k_{m}}}^{\mathbb{C}^{k_{1}}}\right) \stackrel{\text { def }}{=} \mathbb{C}^{k_{1}} \otimes \cdots \otimes \mathbb{C}^{k_{m}}$
- $\left.\mathcal{Z}^{\text {triv }}()_{0} \sqrt{5}\right) \stackrel{\text { def }}{=}$ (evaluate line and point defects in Vect $_{C}$)

Examples of 2d defect TQFTs

- A-models: symplectic manifolds \& Fukaya categories
- B-models: Calabi-Yau manifolds \& Fourier-Mukai kernels
- LG models: isolated singularities \& matrix factorisations
- trivial defect TQFT $\mathcal{Z}^{\text {triv }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{\mathbb{C}}$
- $D_{2}^{\text {triv }}=\{\mathbb{C}\}$
- $D_{1}^{\text {triv }}=\{\mathbb{C}$-bimodules $\}=\{\mathbb{C}$-vector spaces $\}$
- $D_{0}^{\text {triv }}=\{$ bimodule maps $\}=\{$ linear maps $\}$
- $\mathcal{Z}^{\text {triv }}\left(\int_{\mathbb{C}^{k_{m}}}^{\mathbb{C}^{k_{1}}}\right) \stackrel{\text { def }}{=} \mathbb{C}^{k_{1}} \otimes \cdots \otimes \mathbb{C}^{k_{m}}$
- $\mathcal{Z}^{\text {triv }}\left(\sum_{0}\right.$, 1$) \stackrel{\text { def }}{=}$ (evaluate line and point defects in Vect $_{C}$)
- state sum models $2.0 \quad \mathcal{Z}^{\text {ss }}: \operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {ss }}\right) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$
- $D_{2}^{\mathrm{ss}}=\{$ separable symmetric Frobenius \mathbb{C}-algebras $A, B, \ldots\}$
- $D_{1}^{\text {ss }}=\{B$ - A-bimodules $\}$
- $D_{0}^{\text {ss }}=\{$ bimodule maps $\}$

Orbifolds from groups actions

orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$

Orbifolds from groups actions

orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$
$\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"

Orbifolds from groups actions

orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$ $\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"

Equivalently:

- group action gives $\rho(g) \in D_{1}$ for all $g \in G$

Orbifolds from groups actions

orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$
$\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"
Equivalently:

- group action gives $\rho(g) \in D_{1}$ for all $g \in G$
- $A_{G}:=\bigoplus_{g \in G} \rho(g), \quad$ algebra structure from $\rho(g \circ h) \cong \rho(g) \circ \rho(h)$

Orbifolds from groups actions

 orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$ $\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"Equivalently:

- group action gives $\rho(g) \in D_{1}$ for all $g \in G$
- $A_{G}:=\bigoplus_{g \in G} \rho(g)$, algebra structure from $\rho(g \circ h) \cong \rho(g) \circ \rho(h)$
- define \mathcal{Z}^{G} as A_{G}-state sum construction internal to \mathcal{Z} :

Orbifolds from groups actions

 orbifoldable action of finite group G on $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$-orbifold theory \mathcal{Z}^{G} : "averaging \& twisted sectors"Equivalently:

- group action gives $\rho(g) \in D_{1}$ for all $g \in G$
- $A_{G}:=\bigoplus_{g \in G} \rho(g)$, algebra structure from $\rho(g \circ h) \cong \rho(g) \circ \rho(h)$
- define \mathcal{Z}^{G} as A_{G}-state sum construction internal to \mathcal{Z} :

consistent if A_{G} is separable symmetric Frobenius algebra internal to 2-category associated to \mathcal{Z}
\Longrightarrow group orbifolds from special types of algebras

Orbifolds

Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{\mathbb{C}}$ be any defect TQFT.

Orbifolds

Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$ be any defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv(T, A, \mu, \Delta)$:

Orbifolds

Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ be any defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv(T, A, \mu, \Delta)$:

such that Pachner moves are identities under \mathcal{Z} :

Orbifolds

Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ be any defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv(T, A, \mu, \Delta)$:

such that Pachner moves are identities under \mathcal{Z} :

Definition \& Theorem.
Applying \mathcal{Z} to \mathcal{A}-decorated dual triangulations gives \mathcal{A}-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \text { Bord }_{2} \longrightarrow \text { Vect }_{\mathbb{C}}
$$

Examples of 2d orbifolds

- group orbifolds: $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$

Examples of 2d orbifolds

- group orbifolds: $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum models: $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$

Examples of 2d orbifolds

- group orbifolds: $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum models: $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$
- (Landau-Ginzburg model with potential $\left.W_{\mathrm{E}_{6}}=x^{3}+y^{4}\right)$

Examples of 2d orbifolds

- group orbifolds: $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum models: $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$
- (Landau-Ginzburg model with potential $\left.W_{\mathrm{E}_{6}}=x^{3}+y^{4}\right)$
$=\left(\right.$ non-group orbifold of LG model with $\left.W_{\mathrm{A}_{11}}=u^{12}+v^{2}\right)$

Examples of 2d orbifolds

- group orbifolds: $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum models: $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$
- (Landau-Ginzburg model with potential $\left.W_{\mathrm{E}_{6}}=x^{3}+y^{4}\right)$
$=\left(\right.$ non-group orbifold of LG model with $\left.W_{\mathrm{A}_{11}}=u^{12}+v^{2}\right)$

$$
\text { (also } \mathrm{E}_{7} / \mathrm{A}_{17} \text { and } \mathrm{E}_{8} / \mathrm{A}_{29} \text {) }
$$

Examples of 2d orbifolds

- group orbifolds: $\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}$
- state sum models: $\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$
- (Landau-Ginzburg model with potential $\left.W_{\mathrm{E}_{6}}=x^{3}+y^{4}\right)$
$=\left(\right.$ non-group orbifold of LG model with $\left.W_{\mathrm{A}_{11}}=u^{12}+v^{2}\right)$

$$
\text { (also } \mathrm{E}_{7} / \mathrm{A}_{17} \text { and } \mathrm{E}_{8} / \mathrm{A}_{29} \text {) }
$$

- (LG model with potential $\left.W_{\mathrm{S}_{11}}=x^{2} z+y z^{3}+y^{4}\right)$
$=\left(\right.$ orbifold of LG model with $\left.W_{\mathrm{W}_{13}}=u^{2}+v^{4}+v w^{4}\right)$
(also $\mathrm{Z}_{13} / \mathrm{Q}_{11}$ and $\mathrm{E}_{13} / \mathrm{Z}_{11}$)

In any dimension $n \geqslant 1$, the generalised orbifold construction works for any n-dimensional defect TQFT

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}} .
$$

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data D consist of

- a set D_{j} to label j-strata of bordisms for all $j \leqslant n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data D consist of

- a set D_{j} to label j-strata of bordisms for all $j \leqslant n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For example for $n=3$:

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data D consist of

- a set D_{j} to label j-strata of bordisms for all $j \leqslant n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For example for $n=3$:

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data D consist of

- a set D_{j} to label j-strata of bordisms for all $j \leqslant n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For example for $n=3$:

n-dimensional defect TQFT

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

where the defect data \mathbb{D} consist of

- a set D_{j} to label j-strata of bordisms for all $j \leqslant n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For example for $n=3$:

Examples of 3d defect TQFTs

- quantum Chern-Simons theory (= Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$)
- $D_{3}=\{$ gauge group $\}$ (more generally: modular tensor category \mathcal{M})
- $D_{1}^{\prime}=\{$ Wilson line labels $\}=\mathrm{Ob}(\mathcal{M})$

Examples of 3d defect TQFTs

- quantum Chern-Simons theory (= Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$)
- $D_{3}=$ \{gauge group $\}$ (more generally: modulur tensor category \mathcal{M})
- $D_{1}^{\prime}=\{$ Wilson line labels $\}=\operatorname{Ob}(\mathcal{M})$
- can add surface defects and more line defects:

$$
\begin{aligned}
& D_{2}=\{\text { separable symmetric Frobenius algebras in } \mathcal{M}\} \\
& D_{1}=\{\text { cyclic modules }\}
\end{aligned}
$$

Examples of 3d defect TQFTs

- quantum Chern-Simons theory (= Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$)
- $D_{3}=\{$ gauge group $\}$ (more generally: modular tensor category \mathcal{M})
- $D_{1}^{\prime}=\{$ Wilson line labels $\}=\operatorname{Ob}(\mathcal{M})$
- can add surface defects and more line defects:

$$
\begin{aligned}
& D_{2}=\{\text { separable symmetric Frobenius algebras in } \mathcal{M}\} \\
& D_{1}=\{\text { cyclic modules }\}
\end{aligned}
$$

- Rozansky-Witten theory (conjecturally)
- $D_{3}=$ \{holomorphic symplectic manifolds\}
- $D_{2}=\{$ "generalised Landau-Ginzburg models" $\}$ (curved differential graded algebras)
- $D_{1}=\{$ "fibred matrix factorisations" $\}$ (fibred CDGA bimodules)

Triangulations

standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

Triangulations

standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \quad \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

A triangulation of a manifold M is a decomposition of M into simplices.

Pachner moves

Let $F \subset \partial \Delta^{n+1}$ be collection of n-simplices.

Pachner moves

Let $F \subset \partial \Delta^{n+1}$ be collection of n-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

Pachner moves

Let $F \subset \partial \Delta^{n+1}$ be collection of n-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

A Pachner move "glues the other side of $\partial \Delta^{n+1}$ into M^{\prime} :

$$
M \longmapsto(M \backslash K) \cup_{\left.\varphi\right|_{\partial K}}\left(\partial \Delta^{n+1} \backslash \stackrel{\circ}{F}\right)
$$

Pachner moves

Let $F \subset \partial \Delta^{n+1}$ be collection of n-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \xlongequal{\varrho} F$.

A Pachner move "glues the other side of $\partial \Delta^{n+1}$ into M^{\prime} :

$$
M \longmapsto(M \backslash K) \cup_{\left.\varphi\right|_{\partial K}}\left(\partial \Delta^{n+1} \backslash \stackrel{\circ}{F}\right)
$$

Pachner moves

Let $F \subset \partial \Delta^{n+1}$ be collection of n-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \xlongequal{\varrho} F$.

A Pachner move "glues the other side of $\partial \Delta^{n+1}$ into M ":

$$
M \longmapsto(M \backslash K) \cup_{\left.\varphi\right|_{\partial K}}\left(\partial \Delta^{n+1} \backslash \stackrel{\circ}{F}\right)
$$

Theorem.

If triangulated PL manifolds are PL isomorphic, then there exists a finite sequence of Pachner moves between them.

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{\mathbb{C}}$ is

- an element $\mathcal{A}_{j} \in D_{j}$ for each $j \in\{1, \ldots, n\}$,
- two elements $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{\mathbb{C}}$ is

- an element $\mathcal{A}_{j} \in D_{j}$ for each $j \in\{1, \ldots, n\}$,
- two elements $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$, such that
- compatibility:
\mathcal{A}_{j} can consistently label j-strata dual to $(n-j)$-simplices in Δ^{n}

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{\mathbb{C}}$ is

- an element $\mathcal{A}_{j} \in D_{j}$ for each $j \in\{1, \ldots, n\}$,
- two elements $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$, such that
- compatibility:
\mathcal{A}_{j} can consistently label j-strata dual to $(n-j)$-simplices in Δ^{n}; $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-}$can label duals of the two oppositely oriented n-simplices Δ^{n}

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect $_{\mathbb{C}}$ is

- an element $\mathcal{A}_{j} \in D_{j}$ for each $j \in\{1, \ldots, n\}$,
- two elements $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$, such that
- compatibility:
\mathcal{A}_{j} can consistently label j-strata dual to $(n-j)$-simplices in Δ^{n};
$\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-}$can label duals of the two oppositely oriented n-simplices Δ^{n}.
- triangulation invariance:

Let B, B^{\prime} be \mathcal{A}-decorated n-balls which are dual to the two sides of a Pachner move. Then $\mathcal{Z}(B)=\mathcal{Z}\left(B^{\prime}\right)$.

Orbifolds

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_{j} \in D_{j}$ for each $j \in\{1, \ldots, n\}$,
- two elements $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$, such that
- compatibility:
\mathcal{A}_{j} can consistently label j-strata dual to $(n-j)$-simplices in Δ^{n};
$\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-}$can label duals of the two oppositely oriented n-simplices Δ^{n}.
- triangulation invariance:

Let B, B^{\prime} be \mathcal{A}-decorated n-balls which are dual to the two sides of a Pachner move. Then $\mathcal{Z}(B)=\mathcal{Z}\left(B^{\prime}\right)$.

Recovers case $n=2$:

Orbifolds

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathrm{C}}$.

Orbifolds

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition \& Theorem.

Applying \mathcal{Z} to \mathcal{A}-decorated dual triangulations gives \mathcal{A}-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \operatorname{Bord}_{n} \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

Orbifolds

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition \& Theorem.

Applying \mathcal{Z} to \mathcal{A}-decorated dual triangulations gives \mathcal{A}-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \operatorname{Bord}_{n} \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

Orbifold datum \mathcal{A} for $\boldsymbol{n}=\mathbf{3}$:

Orbifolds

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition \& Theorem.

Applying \mathcal{Z} to \mathcal{A}-decorated dual triangulations gives \mathcal{A}-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \operatorname{Bord}_{n} \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

Orbifold datum \mathcal{A} for $\boldsymbol{n}=\mathbf{3}$:

Orbifolds

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition \& Theorem.

Applying \mathcal{Z} to \mathcal{A}-decorated dual triangulations gives \mathcal{A}-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \operatorname{Bord}_{n} \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

Orbifold datum \mathcal{A} for $\boldsymbol{n}=\mathbf{3}$:

Orbifolds

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition \& Theorem.

Applying \mathcal{Z} to \mathcal{A}-decorated dual triangulations gives \mathcal{A}-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \operatorname{Bord}_{n} \longrightarrow \operatorname{Vect}_{\mathbb{C}}
$$

Orbifold datum \mathcal{A} for $\boldsymbol{n}=\mathbf{3}$:

Results: 3 classes of examples of 3d orbifolds

- 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$
\mathcal{Z}^{\mathrm{TV}, \mathcal{A}} \cong\left(\mathcal{Z}^{\mathrm{Vect}}\right)_{\mathcal{A}}
$$

Results: 3 classes of examples of 3d orbifolds

- 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$
\mathcal{Z}^{\mathrm{TV}, \mathcal{A}} \cong\left(\mathcal{Z}^{\mathrm{Vect}}\right)_{\mathcal{A}}
$$

for Turaev-Viro theory $\mathcal{Z}^{\mathrm{TV}, \mathcal{A}}$ for any spherical fusion category \mathcal{A} :

- $\mathcal{A}_{3}=*$
- $\mathcal{A}_{2}=\mathcal{A}$
- $\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$
- $\mathcal{A}_{0}^{ \pm}=$associator (+ details...)

Results: 3 classes of examples of 3d orbifolds

- 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$
\mathcal{Z}^{\mathrm{TV}, \mathcal{A}} \cong\left(\mathcal{Z}^{\mathrm{Vect}}\right)_{\mathcal{A}}
$$

for Turaev-Viro theory $\mathcal{Z}^{\mathrm{TV}, \mathcal{A}}$ for any spherical fusion category \mathcal{A} :

- $\mathcal{A}_{3}=*$
- $\mathcal{A}_{2}=\mathcal{A}$
- $\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$
- $\mathcal{A}_{0}^{ \pm}=$associator (+ details...)
- group actions on any Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$
(G-crossed modular tensor categories $\mathcal{M}_{G}^{\times}=\bigoplus_{g \in G} \mathcal{M}_{g}$)

Results: 3 classes of examples of 3d orbifolds

- 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$
\mathcal{Z}^{\mathrm{TV}, \mathcal{A}} \cong\left(\mathcal{Z}^{\mathrm{Vect}}\right)_{\mathcal{A}}
$$

for Turaev-Viro theory $\mathcal{Z}^{\mathrm{TV}, \mathcal{A}}$ for any spherical fusion category \mathcal{A} :

- $\mathcal{A}_{3}=*$
- $\mathcal{A}_{2}=\mathcal{A}$
- $\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$
- $\mathcal{A}_{0}^{ \pm}=$associator (+ details...)
- group actions on any Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$
(G-crossed modular tensor categories $\mathcal{M}_{G}^{\times}=\bigoplus_{g \in G} \mathcal{M}_{g}$)
\Longrightarrow Unification of state sum models and group orbifolds in 3d

Results: 3 classes of examples of 3d orbifolds

- 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$
\mathcal{Z}^{\mathrm{TV}, \mathcal{A}} \cong\left(\mathcal{Z}^{\mathrm{Vect}}\right)_{\mathcal{A}}
$$

for Turaev-Viro theory $\mathcal{Z}^{\mathrm{TV}, \mathcal{A}}$ for any spherical fusion category \mathcal{A} :

- $\mathcal{A}_{3}=*$
- $\mathcal{A}_{2}=\mathcal{A}$
- $\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$
- $\mathcal{A}_{0}^{ \pm}=$associator (+ details...)
- group actions on any Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$
(G-crossed modular tensor categories $\mathcal{M}_{G}^{\times}=\bigoplus_{g \in G} \mathcal{M}_{g}$)
\Longrightarrow Unification of state sum models and group orbifolds in 3d
- commutative separable symmetric Frobenius algebras in \mathcal{M}

Results: 3 classes of examples of 3d orbifolds

- 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$
\mathcal{Z}^{\mathrm{TV}, \mathcal{A}} \cong\left(\mathcal{Z}^{\mathrm{Vect}}\right)_{\mathcal{A}}
$$

for Turaev-Viro theory $\mathcal{Z}^{\mathrm{TV}, \mathcal{A}}$ for any spherical fusion category \mathcal{A} :

- $\mathcal{A}_{3}=*$
- $\mathcal{A}_{2}=\mathcal{A}$
- $\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$
- $\mathcal{A}_{0}^{ \pm}=$associator (+ details...)
- group actions on any Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$
(G-crossed modular tensor categories $\mathcal{M}_{G}^{\times}=\bigoplus_{g \in G} \mathcal{M}_{g}$)
\Longrightarrow Unification of state sum models and group orbifolds in 3d
- commutative separable symmetric Frobenius algebras in \mathcal{M}
- topological quantum computation: $\mathcal{M}=\mathcal{C}^{\boxtimes n}$ and $G \subseteq S_{n}$

