Defect TQFT and orbifolds

Nils Carqueville

Universität Wien & Erwin Schrödinger Institute

spacetime $\supset \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}} \subset \operatorname{algebra}$

Goal. Unify and generalise orbifold and state sum constructions

Method. defects and higher algebra

Slogans.

- "State sum models = orbifolds of the trivial theory"
- "General orbifolds = state sum constructions internal to some QFT"

<u>Result</u>. Worked out for any *n*-dimensional **defect TQFT**

Applications.

- "generalised symmetry"
- new dualities
- surface defects in Chern-Simons theory
- improved topological quantum computation via orbifolds

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes, \mathbb{C} \right)$$

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes, \mathbb{C} \right)$$

Every 2-dimensional manifold can be decomposed into

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes, \mathbb{C} \right)$$

Every 2-dimensional manifold can be decomposed into

Theorem. {2d closed TQFTs} \cong {commutative Frobenius algebras}

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes, \mathbb{C} \right)$$

Every 2-dimensional manifold can be decomposed into

Theorem. {2d closed TQFTs} \cong {commutative Frobenius algebras} *Proof sketch*: Set $\mathcal{H} := \mathcal{Z}(S^1) \in \operatorname{Vect}_{\mathbb{C}}$.

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset\right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes, \mathbb{C}\right)$$

Every 2-dimensional manifold can be decomposed into

Theorem. {2d closed TQFTs} \cong {commutative Frobenius algebras} *Proof sketch*: Set $\mathcal{H} := \mathcal{Z}(S^1) \in \operatorname{Vect}_{\mathbb{C}}$. multiplication $\mathcal{Z}(\bigcap): \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}$

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes, \mathbb{C} \right)$$

Every 2-dimensional manifold can be decomposed into

 $\begin{array}{l} \textbf{Theorem.} \quad \left\{ \text{2d closed TQFTs} \right\} \cong \left\{ \textbf{commutative Frobenius algebras} \right\} \\ \textit{Proof sketch: Set } \mathcal{H} := \mathcal{Z}(S^1) \in \operatorname{Vect}_{\mathbb{C}}. \\ \text{multiplication } \mathcal{Z}(\bigwedge) : \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}, \text{ pairing } \mathcal{Z}(\bigwedge) : \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathbb{C} \end{array}$

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$\mathcal{Z} \colon \left(\mathrm{Bord}_2, \sqcup, \emptyset \right) \longrightarrow \left(\mathrm{Vect}_{\mathbb{C}}, \otimes, \mathbb{C} \right)$$

Every 2-dimensional manifold can be decomposed into

 $\begin{array}{l} \textbf{Theorem.} \quad \left\{ \text{2d closed TQFTs} \right\} \cong \left\{ \textbf{commutative Frobenius algebras} \right\} \\ \textit{Proof sketch: Set } \mathcal{H} := \mathcal{Z}(S^1) \in \operatorname{Vect}_{\mathbb{C}}. \\ \textit{multiplication } \mathcal{Z}(\ref{eq:schemedian}) : \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}, \text{ pairing } \mathcal{Z}(\ref{eq:schemedian}) : \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathbb{C} \end{array}$

Atiyah 1988

Dijkgraaf-Witten models: $\mathcal{H} = Z(\mathbb{C}[G])$ for finite group G

Dijkgraaf-Witten models:

 $\mathcal{H}=Z(\mathbb{C}[G])$ for finite group G

Sigma models:

 $\mathcal{H}=H_d(M)$ for compact oriented manifold M

Dijkgraaf-Witten models:

 $\mathcal{H}=Z(\mathbb{C}[G])$ for finite group G

Sigma models:

 $\mathcal{H} = H_d(M)$ for compact oriented manifold M

Landau-Ginzburg models:

 $\mathcal{H}=\mathbb{C}[x_1,\ldots,x_n]/(\partial_x W)$ for isolated singularity $W\in\mathbb{C}[x_1,\ldots,x_n]$

Dijkgraaf-Witten models:

 $\mathcal{H}=Z(\mathbb{C}[G])$ for finite group G

Sigma models:

 $\mathcal{H} = H_d(M)$ for compact oriented manifold M

Landau-Ginzburg models:

 $\mathcal{H}=\mathbb{C}[x_1,\ldots,x_n]/(\partial_x W)$ for isolated singularity $W\in\mathbb{C}[x_1,\ldots,x_n]$

State sum models: (⊃ Dijkgraaf-Witten models)

- input: separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ) = matrix algebra
- choose oriented triangulation for every $bordism(=worldsheet) \Sigma$
- on Poincaré dual graph, associate A to edges, (co)multiplication μ, Δ to vertices:

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

- input: separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ) = matrix algebra
- choose oriented triangulation for every $bordism(=worldsheet) \Sigma$
- decorate Poincaré dual graph with (A, μ, Δ) :

- input: separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ) = matrix algebra
- choose oriented triangulation for every $bordism(=worldsheet) \Sigma$
- decorate Poincaré dual graph with (A, μ, Δ) :

• associate $A^{\otimes k}$ to dual triangulation of circle with k points

- input: separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ) = matrix algebra
- choose oriented triangulation for every $bordism(=worldsheet) \Sigma$
- decorate Poincaré dual graph with (A, μ, Δ) :

- associate $A^{\otimes k}$ to dual triangulation of circle with k points
- obtain *projectors* $\pi_k \colon A^{\otimes k} \longrightarrow A^{\otimes k}$ from cylinder $S^1 \times [0,1]$

- input: separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ) = matrix algebra
- choose oriented triangulation for every $bordism(=worldsheet) \Sigma$
- decorate Poincaré dual graph with (A, μ, Δ) :

- \bullet associate $A^{\otimes k}$ to dual triangulation of circle with k points
- obtain *projectors* $\pi_k \colon A^{\otimes k} \longrightarrow A^{\otimes k}$ from cylinder $S^1 \times [0,1]$
- define state sum model

$$\mathcal{Z}_A^{\mathrm{ss}} \colon \operatorname{Bord}_2 \longrightarrow \operatorname{Vect}_{\mathbb{C}}$$

$$S^1 \longmapsto \operatorname{Im}\left(\pi_k \colon A^{\otimes k} \longrightarrow A^{\otimes k}\right) \cong Z(A) \quad \text{for all } k$$

$$\Sigma \colon (S^1)^{\sqcup m} \longrightarrow (S^1)^{\sqcup n} \longmapsto \left(\text{induced linear map } Z(A)^{\otimes m} \longrightarrow Z(A)^{\otimes n} \right)$$

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}^{\rm ss}_A(S^1)\cong Z(A).$

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}^{\rm ss}_A(S^1)\cong Z(A).$

Proof sketch: Need to show invariance under Pachner moves

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}^{\rm ss}_A(S^1)\cong Z(A).$

Proof sketch: Need to show invariance under Pachner moves

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

Theorem.

State sum model for A is independent of choice of triangulation, and $\mathcal{Z}^{\rm ss}_A(S^1)\cong Z(A).$

Proof sketch: Need to show invariance under Pachner moves

Satisfied for separable symmetric Frobenius \mathbb{C} -algebras A!

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

A 2-dimensional defect TQFT is a symmetric monoidal functor $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

A 2-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the **defect data** \mathbb{D} consist of

- a set D_2 to label 2-strata of surfaces
- a set D_1 to label 1-strata of surfaces
- a set D_0 to label 0-strata of surfaces

A 2-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the defect data ${\mathbb D}$ consist of

- a set D_2 to label 2-strata of surfaces
- a set D_1 to label 1-strata of surfaces
- a set D_0 to label 0-strata of surfaces
- allowed ways for strata to meet locally:

A 2-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the **defect data** \mathbb{D} consist of

- a set D_2 to label 2-strata of surfaces
- a set D_1 to label 1-strata of surfaces
- a set D_0 to label 0-strata of surfaces
- allowed ways for strata to meet locally:

A 2-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the **defect data** \mathbb{D} consist of

- a set D_2 to label 2-strata of surfaces
- a set D_1 to label 1-strata of surfaces
- a set D_0 to label 0-strata of surfaces
- allowed ways for strata to meet locally:

- A-models: symplectic manifolds & Fukaya categories
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels
- LG models: isolated singularities & matrix factorisations

- A-models: symplectic manifolds & Fukaya categories
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels
- LG models: isolated singularities & matrix factorisations
- trivial defect TQFT $\mathcal{Z}^{triv} \colon \operatorname{Bord}_2^{def}(\mathbb{D}^{triv}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

- A-models: symplectic manifolds & Fukaya categories
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels
- LG models: isolated singularities & matrix factorisations
- trivial defect TQFT $\mathcal{Z}^{triv} \colon \operatorname{Bord}_2^{def}(\mathbb{D}^{triv}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

•
$$D_2^{\text{triv}} = \{\mathbb{C}\}$$

- $D_1^{\overline{\text{triv}}} = \{\mathbb{C}\text{-bimodules}\} = \{\mathbb{C}\text{-vector spaces}\}$
- $D_0^{\text{triv}} = \{\text{bimodule maps}\} = \{\text{linear maps}\}$

- A-models: symplectic manifolds & Fukaya categories
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels
- LG models: isolated singularities & matrix factorisations

}

• trivial defect TQFT $\mathcal{Z}^{triv} \colon \operatorname{Bord}_2^{def}(\mathbb{D}^{triv}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

- A-models: symplectic manifolds & Fukaya categories
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels
- LG models: isolated singularities & matrix factorisations
- trivial defect TQFT $\mathcal{Z}^{triv} \colon \operatorname{Bord}_2^{def}(\mathbb{D}^{triv}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

 $\blacktriangleright \mathcal{Z}^{\mathrm{triv}} \left(\bigcup_{i=1}^{\mathrm{def}} \right) \stackrel{\mathrm{def}}{=} (\text{evaluate line and point defects in } \mathrm{Vect}_{\mathbb{C}})$

(m)

- A-models: symplectic manifolds & Fukaya categories
- B-models: Calabi-Yau manifolds & Fourier-Mukai kernels
- LG models: isolated singularities & matrix factorisations
- trivial defect TQFT $\mathcal{Z}^{triv} \colon \operatorname{Bord}_2^{def}(\mathbb{D}^{triv}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

$$D_2^{\text{triv}} = \{\mathbb{C}\}$$

$$D_1^{\text{triv}} = \{\mathbb{C}\text{-bimodules}\} = \{\mathbb{C}\text{-vector spaces}\}$$

▶ D₀^{triv} = {bimodule maps} = {linear maps}

•
$$\mathcal{Z}^{\operatorname{triv}}\left(\bigoplus_{\mathbb{C}^{k_m}}^{\mathbb{C}^{k_1}}\right) \stackrel{\operatorname{def}}{=} \mathbb{C}^{k_1} \otimes \cdots \otimes \mathbb{C}^{k_m}$$

• \mathcal{Z}^{triv} $\left(\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \blacksquare \end{array} \right) \stackrel{def}{=} (evaluate line and point defects in <math>Vect_{\mathbb{C}})$

- state sum models 2.0 $\mathcal{Z}^{ss} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}^{ss}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$
 - ▶ $D_2^{ss} = \{ separable symmetric Frobenius C-algebras A, B, ... \}$
 - $D_1^{ss} = \{B A bimodules\}$
 - ▶ D₀^{ss} = {bimodule maps}

Davydov/Kong/Runkel 2011

ntriv

Orbifolds from groups actions

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory \mathcal{Z}^G : "averaging & twisted sectors"

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory \mathcal{Z}^G : "averaging & twisted sectors" *Equivalently*:

• group action gives $\rho(g) \in D_1$ for all $g \in G$

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory \mathcal{Z}^G : "averaging & twisted sectors"

Equivalently:

• group action gives $\rho(g) \in D_1$ for all $g \in G$

• $A_G:=\bigoplus_{g\in G}\rho(g)$, algebra structure from $\rho(g\circ h)\cong\rho(g)\circ\rho(h)$

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory \mathcal{Z}^G : "averaging & twisted sectors" *Equivalently*:

- group action gives $ho(g)\in D_1$ for all $g\in G$
- $A_G:=\bigoplus_{g\in G}\rho(g)$, algebra structure from $\rho(g\circ h)\cong\rho(g)\circ\rho(h)$
- define \mathcal{Z}^G as A_G -state sum construction internal to \mathcal{Z} :

orbifoldable action of finite group G on $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ $\rightsquigarrow G$ -orbifold theory $\mathcal{Z}^G \colon$ "averaging & twisted sectors" *Equivalently*:

- group action gives $\rho(g) \in D_1$ for all $g \in G$
- $\bullet \ A_G:= \bigoplus_{g\in G} \rho(g), \ \text{ algebra structure from } \rho(g\circ h)\cong \rho(g)\circ \rho(h)$
- define Z^G as A_G -state sum construction internal to Z:

consistent if A_G is separable symmetric Frobenius algebra internal to 2-category associated to Z

⇒ group orbifolds from special types of algebras

Fröhlich/Fuchs/Runkel/Schweigert 2009, Carqueville/Runkel 2012, Brunner/Carqueville/Plencner 2014

Let $\mathcal{Z} \colon \operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ be any defect TQFT.

Let \mathcal{Z} : Bord₂^{def}(\mathbb{D}) \longrightarrow Vect_{\mathbb{C}} be any defect TQFT. An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv (T, A, \mu, \Delta)$:

Let \mathcal{Z} : Bord₂^{def}(\mathbb{D}) \longrightarrow Vect_{\mathbb{C}} be any defect TQFT. An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv (T, A, \mu, \Delta)$:

such that Pachner moves are identities under \mathcal{Z} :

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Let \mathcal{Z} : Bord₂^{def}(\mathbb{D}) \longrightarrow Vect_{\mathbb{C}} be any defect TQFT. An **orbifold datum** for \mathcal{Z} is $\mathcal{A} \equiv (T, A, \mu, \Delta)$:

such that Pachner moves are identities under \mathcal{Z} :

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Definition & Theorem.

Applying Z to A-decorated dual triangulations gives A-orbifold TQFT

$$\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_2 \longrightarrow \operatorname{Vect}_{\mathbb{C}}$$

Carqueville/Runkel 2012

• group orbifolds: $\mathcal{Z}^G = \mathcal{Z}_{A_G}$

- group orbifolds: $Z^G = Z_{A_G}$
- state sum models: $\mathcal{Z}_A^{ss} = (\mathcal{Z}^{triv})_A$

- group orbifolds: $Z^G = Z_{A_G}$
- state sum models: $\mathcal{Z}_A^{ss} = (\mathcal{Z}^{triv})_A$
- (Landau-Ginzburg model with potential $W_{
 m E_6} = x^3 + y^4$)

- group orbifolds: $Z^G = Z_{A_G}$
- state sum models: $\mathcal{Z}_A^{ss} = (\mathcal{Z}^{triv})_A$
- $\left(\text{Landau-Ginzburg model with potential } W_{\text{E}_6} = x^3 + y^4\right)$ = $\left(\text{non-group orbifold of LG model with } W_{\text{A}_{11}} = u^{12} + v^2\right)$

- group orbifolds: $Z^G = Z_{A_G}$
- state sum models: $Z_A^{ss} = (Z^{triv})_A$
- (Landau-Ginzburg model with potential $W_{E_6} = x^3 + y^4$) = (non-group orbifold of LG model with $W_{A_{11}} = u^{12} + v^2$) (also E_7/A_{17} and E_8/A_{29})

- group orbifolds: $Z^G = Z_{A_G}$
- state sum models: $Z_A^{ss} = (Z^{triv})_A$
- (Landau-Ginzburg model with potential $W_{E_6} = x^3 + y^4$) = (non-group orbifold of LG model with $W_{A_{11}} = u^{12} + v^2$) (also E_7/A_{17} and E_8/A_{29})

Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Recknagel/Weinreb 2017

In any dimension $n \ge 1$, the generalised orbifold construction works for any *n*-dimensional defect TQFT

$$\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}.$$

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the defect data \mathbb{D} consist of

- a set D_j to label *j*-strata of bordisms for all $j \leq n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the defect data \mathbb{D} consist of

- a set D_j to label j-strata of bordisms for all $j \leq n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For example for n = 3:

Carqueville/Runkel/Schaumann 2017

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the defect data \mathbb{D} consist of

- a set D_j to label *j*-strata of bordisms for all $j \leq n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For example for n = 3:

Carqueville/Runkel/Schaumann 2017

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the defect data \mathbb{D} consist of

- a set D_j to label *j*-strata of bordisms for all $j \leq n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For example for n = 3:

An *n*-dimensional defect TQFT is a symmetric monoidal functor

 $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

where the defect data \mathbb{D} consist of

- a set D_j to label *j*-strata of bordisms for all $j \leq n$
- allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For example for n = 3:

Examples of 3d defect TQFTs

- quantum Chern-Simons theory (= Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$)
 - $D_3 = \{ gauge \ group \}$ (more generally: modular tensor category \mathcal{M})
 - $D'_1 = \{ Wilson \text{ line labels} \} = Ob(\mathcal{M})$

Examples of 3d defect TQFTs

- quantum Chern-Simons theory (= Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$)
 - $D_3 = \{ gauge group \}$ (more generally: modular tensor category M)
 - $D'_1 = \{ \text{Wilson line labels} \} = \text{Ob}(\mathcal{M})$
 - can add surface defects and more line defects:

 $D_2 = \{\text{separable symmetric Frobenius algebras in } \mathcal{M}\}$ $D_1 = \{\text{cyclic modules}\}$

Examples of 3d defect TQFTs

- quantum Chern-Simons theory (= Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$)
 - $\blacktriangleright D_3 = \big\{ \texttt{gauge group} \big\} \quad (\texttt{more generally: modular tensor category } \mathcal{M})$
 - $D'_1 = \{ \text{Wilson line labels} \} = Ob(\mathcal{M})$
 - can add surface defects and more line defects:

 $D_2 = \{\text{separable symmetric Frobenius algebras in } \mathcal{M} \}$ $D_1 = \{\text{cyclic modules} \}$

• Rozansky-Witten theory (conjecturally)

- $D_3 = \{ \text{holomorphic symplectic manifolds} \}$
- $\blacktriangleright D_2 = \big\{ \text{``generalised Landau-Ginzburg models''} \big\} \text{ (curved differential graded algebras)}$
- $D_1 = \{$ "fibred matrix factorisations" $\}$ (fibred CDGA bimodules)

Triangulations

standard *n*-simplex $\Delta^n := \left\{ \sum_{i=1}^{n+1} t_i e_i \mid t_i \ge 0, \sum_{i=1}^{n+1} t_i = 1 \right\} \subset \mathbb{R}^{n+1}$ $\Delta^2 = \left\{ \Delta^3 = \right\}$

Triangulations

A triangulation of a manifold M is a decomposition of M into simplices.

Let $F \subset \partial \Delta^{n+1}$ be collection of *n*-simplices.

Let $F \subset \partial \Delta^{n+1}$ be collection of *n*-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

Let $F \subset \partial \Delta^{n+1}$ be collection of *n*-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

A **Pachner move** "glues the other side of $\partial \Delta^{n+1}$ into M":

$$M\longmapsto \left(M\setminus K\right)\cup_{\varphi\mid_{\partial K}}\left(\partial\Delta^{n+1}\setminus \overset{\circ}{F}\right)$$

Let $F \subset \partial \Delta^{n+1}$ be collection of *n*-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

A **Pachner move** "glues the other side of $\partial \Delta^{n+1}$ into M":

Pachner 1991

Let $F \subset \partial \Delta^{n+1}$ be collection of *n*-simplices. Let M be triangulated manifold with $K \subset M$ such that $K \stackrel{\varphi}{\cong} F$.

A **Pachner move** "glues the other side of $\partial \Delta^{n+1}$ into M":

 $M \longmapsto (M \setminus K) \cup_{\omega \mid_{\partial K}} (\partial \Delta^{n+1} \setminus \check{F})$

Theorem.

If triangulated PL manifolds are PL isomorphic, then there exists a finite sequence of Pachner moves between them. $_{\rm Pachner \, 1991}$

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_j \in D_j$ for each $j \in \{1, \ldots, n\}$,
- two elements $\mathcal{A}^+_0, \mathcal{A}^-_0 \in D_0$

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_j \in D_j$ for each $j \in \{1, \dots, n\}$,
- two elements $\mathcal{A}_0^+, \mathcal{A}_0^- \in D_0$, such that

• compatibility:

 \mathcal{A}_j can consistently label j-strata dual to (n-j)-simplices in Δ^n

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_j \in D_j$ for each $j \in \{1, \dots, n\}$,
- two elements $\mathcal{A}_0^+, \mathcal{A}_0^- \in D_0$, such that

• compatibility:

 \mathcal{A}_j can consistently label *j*-strata dual to (n-j)-simplices in Δ^n ; $\mathcal{A}_0^+, \mathcal{A}_0^-$ can label duals of the two oppositely oriented *n*-simplices Δ^n

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_j \in D_j$ for each $j \in \{1, \dots, n\}$,
- two elements $\mathcal{A}_0^+, \mathcal{A}_0^- \in D_0$, such that

• compatibility:

 \mathcal{A}_j can consistently label *j*-strata dual to (n-j)-simplices in Δ^n ; $\mathcal{A}_0^+, \mathcal{A}_0^-$ can label duals of the two oppositely oriented *n*-simplices Δ^n .

• triangulation invariance:

Let B,B' be A-decorated n-balls which are dual to the two sides of a Pachner move. Then $\mathcal{Z}(B) = \mathcal{Z}(B')$.

An orbifold datum \mathcal{A} for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$ is

- an element $\mathcal{A}_j \in D_j$ for each $j \in \{1, \dots, n\}$,
- two elements $\mathcal{A}_0^+, \mathcal{A}_0^- \in D_0$, such that

• compatibility:

 \mathcal{A}_j can consistently label *j*-strata dual to (n-j)-simplices in Δ^n ; $\mathcal{A}_0^+, \mathcal{A}_0^-$ can label duals of the two oppositely oriented *n*-simplices Δ^n .

• triangulation invariance:

Let B, B' be A-decorated n-balls which are dual to the two sides of a Pachner move. Then $\mathcal{Z}(B) = \mathcal{Z}(B')$.

Recovers case n = 2:

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition & Theorem.

Applying \mathcal{Z} to \mathcal{A} -decorated dual triangulations gives \mathcal{A} -orbifold TQFT

 $\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition & Theorem.

Applying \mathcal{Z} to \mathcal{A} -decorated dual triangulations gives \mathcal{A} -orbifold TQFT

 $\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

Orbifold datum \mathcal{A} for n = 3:

Carqueville/Runkel/Schaumann 2017

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition & Theorem.

Applying \mathcal{Z} to \mathcal{A} -decorated dual triangulations gives \mathcal{A} -orbifold TQFT

 $\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

Orbifold datum \mathcal{A} for n = 3:

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition & Theorem.

Applying \mathcal{Z} to \mathcal{A} -decorated dual triangulations gives \mathcal{A} -orbifold TQFT

 $\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

Orbifold datum \mathcal{A} for n = 3:

Carqueville/Runkel/Schaumann 2017

Let \mathcal{A} be orbifold datum for defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_n^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}_{\mathbb{C}}$.

Definition & Theorem.

Applying \mathcal{Z} to \mathcal{A} -decorated dual triangulations gives \mathcal{A} -orbifold TQFT

 $\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

Orbifold datum \mathcal{A} for n = 3:

Carqueville/Runkel/Schaumann 2017

• 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$\mathcal{Z}^{\mathrm{TV},\mathcal{A}} \cong (\mathcal{Z}^{\mathrm{Vect}})_{\mathcal{A}}$$

• 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$\mathcal{Z}^{\mathrm{TV},\mathcal{A}} \cong (\mathcal{Z}^{\mathrm{Vect}})_{\mathcal{A}}$$

for Turaev-Viro theory $\mathcal{Z}^{TV,\mathcal{A}}$ for any spherical fusion category \mathcal{A} :

$$\begin{array}{l} \mathcal{A}_3 = \ast \\ \mathcal{A}_2 = \mathcal{A} \\ \mathcal{A}_1 = \otimes : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A} \\ \mathcal{A}_0^{\pm} = \text{associator } (+ \text{ details...}) \end{array}$$

. 4

• 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$\mathcal{Z}^{\mathrm{TV},\mathcal{A}} \cong (\mathcal{Z}^{\mathrm{Vect}})_{\mathcal{A}}$$

for Turaev-Viro theory $\mathcal{Z}^{\mathrm{TV},\mathcal{A}}$ for any spherical fusion category \mathcal{A} :

- $\begin{array}{l} \blacktriangleright \ \mathcal{A}_3 = \ast \\ \blacktriangleright \ \mathcal{A}_2 = \mathcal{A} \\ \blacktriangleright \ \mathcal{A}_1 = \otimes \colon \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A} \\ \blacktriangleright \ \mathcal{A}_0^{\pm} = \text{associator (+ details...)} \end{array}$
- group actions on any Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$

(G-crossed modular tensor categories $\mathcal{M}_G^{ imes} = \bigoplus_{g \in G} \mathcal{M}_g$)

• 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$\mathcal{Z}^{\mathrm{TV},\mathcal{A}} \cong (\mathcal{Z}^{\mathrm{Vect}})_{\mathcal{A}}$$

for Turaev-Viro theory $\mathcal{Z}^{\mathrm{TV},\mathcal{A}}$ for any spherical fusion category \mathcal{A} :

- $\begin{array}{l} \blacktriangleright \ \mathcal{A}_3 = \ast \\ \blacktriangleright \ \mathcal{A}_2 = \mathcal{A} \\ \blacktriangleright \ \mathcal{A}_1 = \otimes \colon \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A} \\ \blacktriangleright \ \mathcal{A}_0^{\pm} = \text{associator (+ details...)} \end{array}$
- group actions on any Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$

(G-crossed modular tensor categories $\mathcal{M}_G^{\times} = \bigoplus_{g \in G} \mathcal{M}_g$)

\implies Unification of state sum models and group orbifolds in 3d

Carqueville/Runkel/Schaumann 2018

• 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$\mathcal{Z}^{\mathrm{TV},\mathcal{A}} \cong (\mathcal{Z}^{\mathrm{Vect}})_{\mathcal{A}}$$

for Turaev-Viro theory $\mathcal{Z}^{\mathrm{TV},\mathcal{A}}$ for any spherical fusion category \mathcal{A} :

- $\begin{array}{l} \blacktriangleright \ \mathcal{A}_3 = \ast \\ \blacktriangleright \ \mathcal{A}_2 = \mathcal{A} \\ \blacktriangleright \ \mathcal{A}_1 = \otimes \colon \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A} \\ \blacktriangleright \ \mathcal{A}_0^{\pm} = \text{associator (+ details...)} \end{array}$
- group actions on any Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$

(G-crossed modular tensor categories $\mathcal{M}_G^{\times} = \bigoplus_{g \in G} \mathcal{M}_g$)

 \implies Unification of state sum models and group orbifolds in 3d

• commutative separable symmetric Frobenius algebras in $\mathcal M$

Carqueville/Runkel/Schaumann 2018

• 3d state sum models are orbifolds of "trivial" Chern-Simons theory:

$$\mathcal{Z}^{\mathrm{TV},\mathcal{A}} \cong (\mathcal{Z}^{\mathrm{Vect}})_{\mathcal{A}}$$

for Turaev-Viro theory $\mathcal{Z}^{\mathrm{TV},\mathcal{A}}$ for any spherical fusion category \mathcal{A} :

- $\begin{array}{l} \blacktriangleright \ \mathcal{A}_3 = \ast \\ \blacktriangleright \ \mathcal{A}_2 = \mathcal{A} \\ \blacktriangleright \ \mathcal{A}_1 = \otimes \colon \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A} \\ \blacktriangleright \ \mathcal{A}_0^{\pm} = \text{associator (+ details...)} \end{array}$
- group actions on any Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{M}}$

(G-crossed modular tensor categories $\mathcal{M}_G^{\times} = \bigoplus_{g \in G} \mathcal{M}_g$)

 \implies Unification of state sum models and group orbifolds in 3d

commutative separable symmetric Frobenius algebras in M
 topological quantum computation: M = C^{⊠n} and G ⊆ S_n