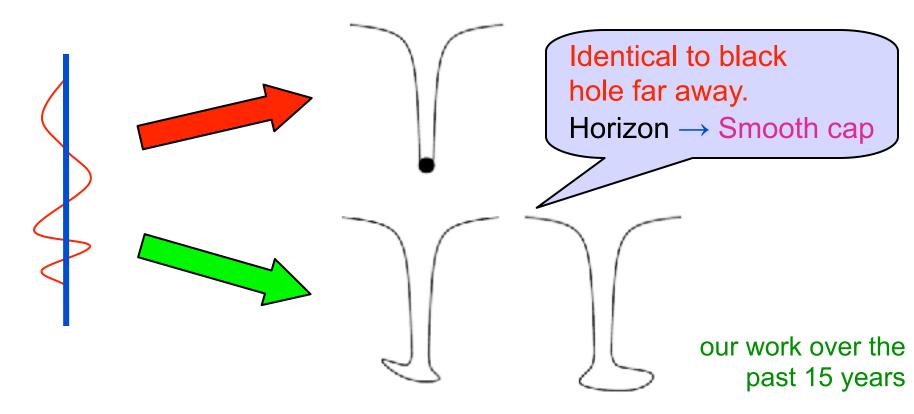
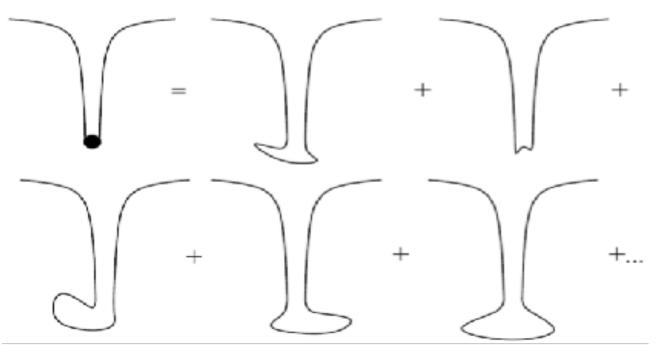

with

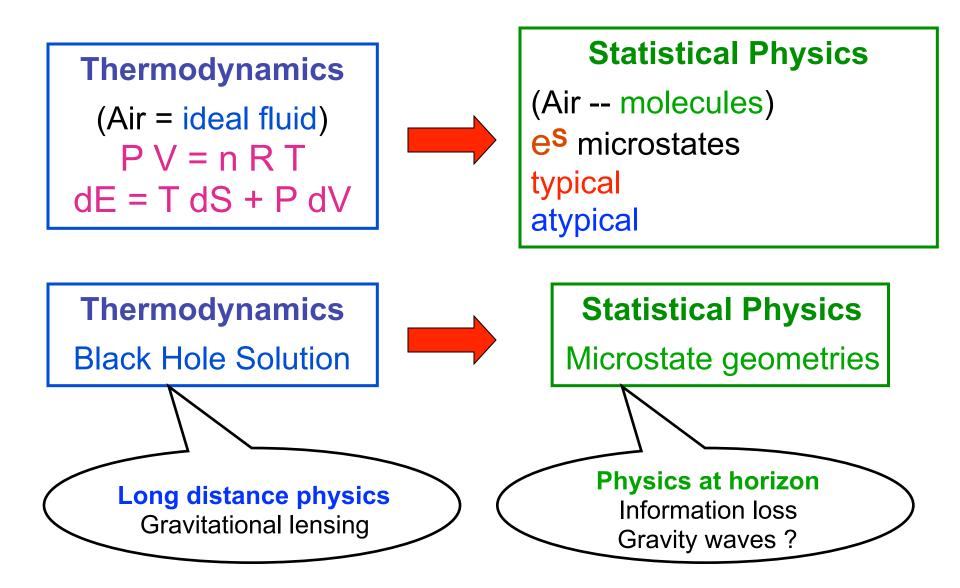
Nick Warner, Emil Martinec, Jan deBoer, Micha Berkooz, Simon Ross, Gianguido Dall'Agata, Stefano Giusto, Rodolfo Russo, Guillaume Bossard, Masaki Shigemori, Monica Guică, Nikolay Bobev, Bert Vercnocke, Andrea Puhm, David Turton, Stefanos Katmadas, Johan Blåbäck, Pierre Heidmann

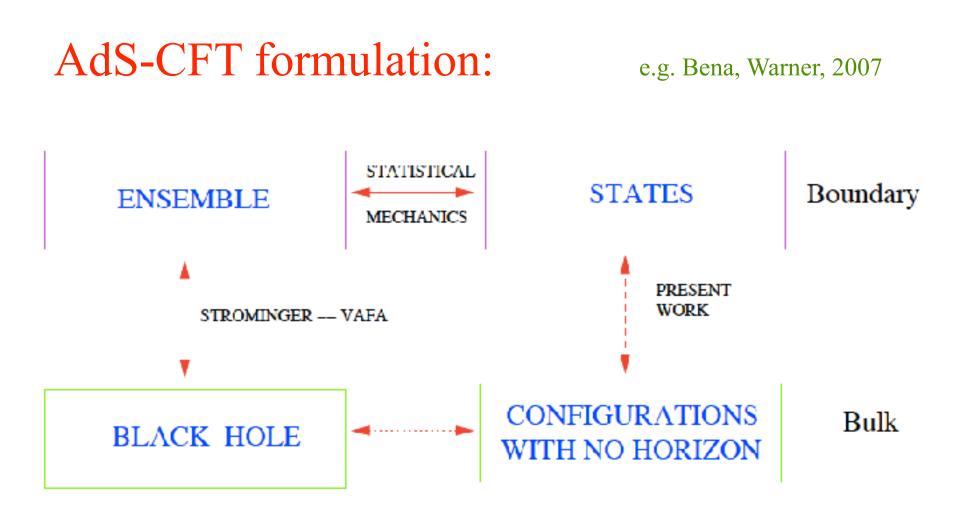

Strominger and Vafa (1996): Black Hole Microstates at **Zero Gravity** (branes + strings) Correctly match B.H. entropy !!!

One Particular Microstate at Finite Gravity:


Susskind Horowitz, Polchinski Damour, Veneziano Strominger and Vafa (1996): Black Hole Microstates at **Zero Gravity** (branes + strings) Correctly match B.H. entropy !!!

One Particular Microstate at Finite Gravity:


BIG QUESTION: Are **all** black hole microstates becoming geometries with no horizon ?


Black hole [?]= ensemble of horizonless microstate configurations Mathur 2003

Only way to solve QM-GR conflict Mathur 2009, Almheiri, Marolf, Polchinski, Sully 2012

Analogy with ideal gas

Not some hand-waving idea - provable by rigorous calculations in String Theory

Word of caution

- To replace classical BH by BH-sized object
 - Gravastar, quark-star, boson-star
 - Infinite density firewall hovering just above horizon
 - Gas of wormholes
 - Bose-Einstein condensate of gravitons
 - LQG configuration…

3 very stringent tests:

1. Same growth with G_N !!!

Horowitz

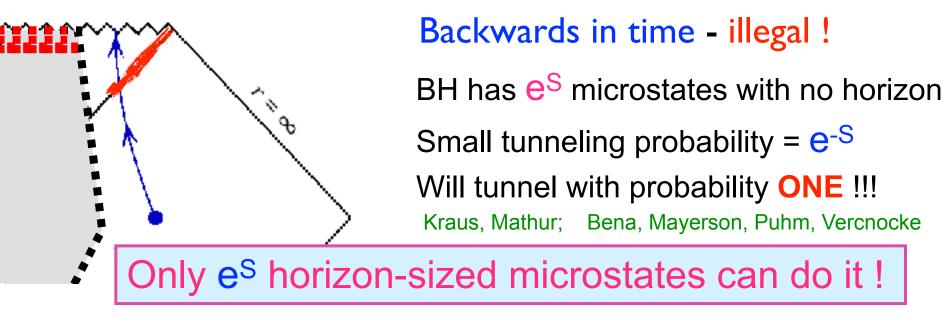
BH size grows with G_N ; "normal objects" shrink

- BH microstate geometries pass this test
- Highly nontrivial mechanism: $G_N = g_s^2$
- D-branes = solitons, tension ~ $1/g_s \rightarrow$ lighter as G_N increases

To build structure@horizon, non-perturbative degrees of freedom you must use !

2. Mechanism not to fall into BH

Very difficult !!!


GR Dogma: Thou shalt not put anything at the horizon !!!

- Null → speed of light.
- If massive: ∞ boost $\rightarrow \infty$ energy
- If massless: dilutes with time
- Nothing can live there !
 (or carry degrees of freedom)
- No membrane, no spins, no "quantum stuff"
- No (fire)wall

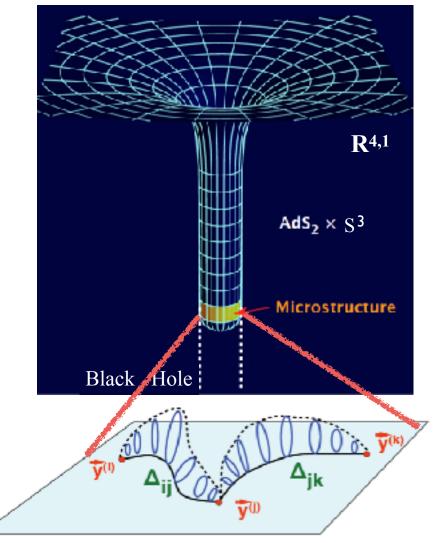
If support mechanism have you not, go home and find one

3. Avoid forming a horizon

- Collapsing shell forms horizon
 Oppenheimer and Snyder (1939)
- If curvature is low, no reason not to trust classical GR
- By the time shell becomes curved-enough for quantum effects to become important, horizon in causal past

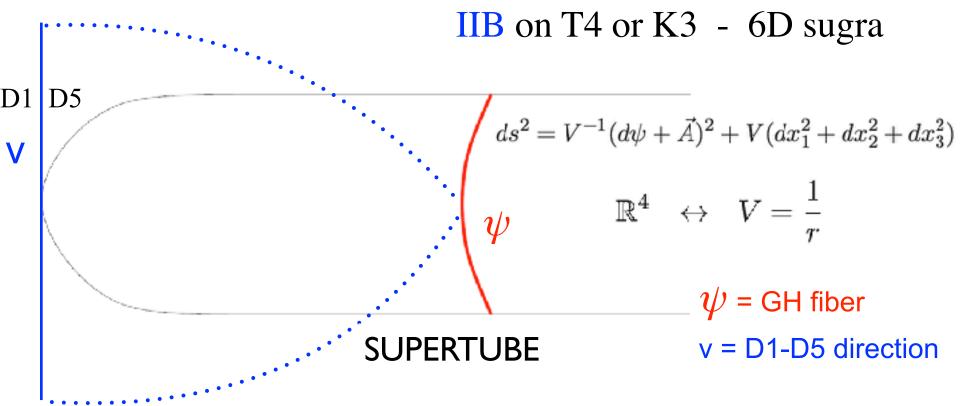
If quantum tunneling you are brushing aside, incorrect physics you are doing

Microstates geometries: M2-M2-M2 frame


• Where is the BH charge ?

 $L = q A_0 \qquad \text{magnetic} \\ L = \dots + A_0 F_{12} F_{34} + \dots$

- Where is the BH mass ?
 - $E = ... + F_{12} F^{12} + ...$
- BH angular momentum
 - $J = E \times B = ... + F_{01} F_{12} + ...$

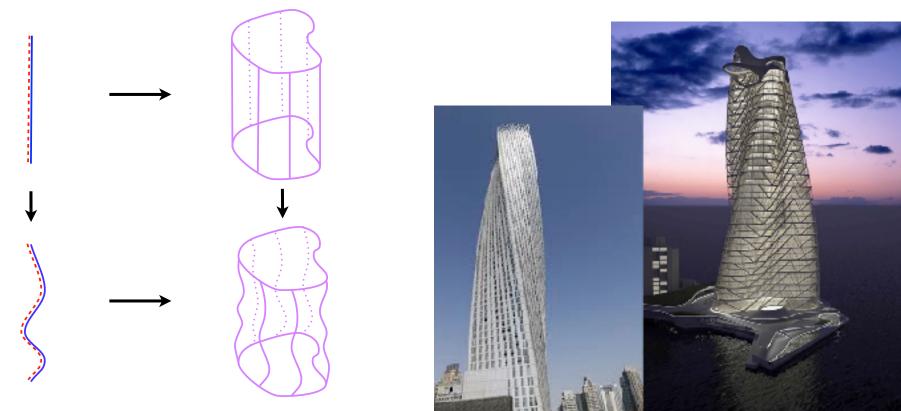

Charge dissolved in fluxes. No singular sources. Klebanov-Strassler

11d/CY - black hole in 5d

2-cycles + magnetic flux

Microstates geometries: D1-D5-P frame

- Starting solution: AdS₃ x S³
 Add wiggles
- Arbitrary $F(\psi)$ 8 supercharges supertube Lunin, Mathur; Lunin, Maldacena, Maoz; Taylor, Skenderis
- Arbitrary $F(\psi, \mathbf{V})$ 4 supercharges superstratum Bena, Giusto, Russo, Shigemori, Warner


Entropy of wiggles

Bena, Shigemori, Warner

Supertubes - eight $F(\psi)$, (c = 8) S ~ (c L₀)^{1/2} ~ (Q₁Q₅)^{1/2} (with massaging S ~ Q^{5/4})

Superstrata - four $F(\psi, \mathbf{V})$, (c = ∞), quantize: S = $2\pi (Q_1 Q_5 Q_p)^{1/2}$

Double supertube transition. In general non-geometric.

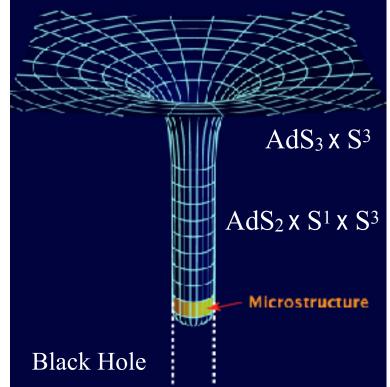
Largest family of solutions known to mankind

Arbitrary functions of two variables: $\infty X \infty$ parameters Bena, Giusto, Russo, Shigemori, Warner

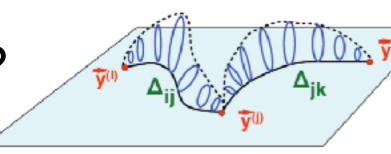
$$\begin{split} ds_{10}^{2} &= \frac{1}{\sqrt{\alpha}} ds_{\theta}^{2} + \sqrt{\frac{Z_{1}}{Z_{2}}} d\tilde{s}_{4}^{2}, \\ ds_{0}^{2} &= -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta) \left| du + \omega + \frac{\mathcal{T}}{2} (dv + \beta) \right| + \sqrt{\mathcal{P}} ds_{4}^{2}, \\ e^{2\psi} &= \frac{Z_{1}}{\mathcal{P}}, \\ B &= -\frac{Z_{4}}{\mathcal{P}} (du + \omega) \wedge (dv + \beta) + a_{4} \wedge (dv + \beta) + \delta_{2}, \\ C_{0} &= \frac{Z_{4}}{Z_{1}}, \\ C_{2} &= -\frac{Z_{2}}{\mathcal{P}} (du + \omega) \wedge (dv + \beta) + a_{1} \wedge (dv + \beta) + \gamma_{2}, \\ C_{4} &= \frac{Z_{4}}{Z_{2}} \widehat{\operatorname{vol}}_{4} - \frac{Z_{4}}{\mathcal{P}} \gamma_{2} \wedge (du + \omega) \wedge (dv + \beta) + x_{3} \wedge (dv + \beta) + \mathcal{C}, \\ C_{6} &= \widehat{\operatorname{vol}}_{4} \wedge \left[-\frac{Z_{1}}{\mathcal{P}} (du + \omega) \wedge (dv + \beta) + a_{2} \wedge (dv + \beta) + \gamma_{1} \right] \\ &= \frac{Z_{4}}{\mathcal{P}} \mathcal{C} \wedge (du + \omega) \wedge (dv + \beta), \end{split}$$

$$\alpha \equiv \frac{Z_1 Z_2}{Z_1 Z_2 - Z_4^3}, \quad \mathcal{P} \equiv Z_1 Z_2 - Z_4^3.$$

String theory input crucial Giusto, Russo, Turton


$$- \frac{Rr}{\sqrt{2}k_2(m_1^2 - 1)} \frac{m_1(k_2 + m_1 + 1)\Delta_{k_2+m_1-1,m_1-1} + (k_2 + m_1 - 1)\Delta_{k_2+m_2}}{(r^2 + a^2)^2} - \frac{R}{\sqrt{2}k_2(m_1^2 - 1)a^2\sin\theta\cos\theta} \left[2(m_1 - 1)\Delta_{k_2+m_1-3,m_1-1} + (m_1 - 1)(m_1 - 2)\Delta_{k_2+m_1-1,m_1-1} + m_1(k_2 - 2)\Delta_{k_2+m_1-1,m_1+1}} - m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1^2(k_2 - 1) + 1)\Delta_{k_2+m_1+1,m_1+1}}\right], - \frac{R}{\sqrt{2}}\frac{\Delta_{k_2+m_1+1,m_1-1}}{\Sigma}\sin^2\theta - \frac{R}{\sqrt{2}k_2(m_1^2 - 1)a^2}\left[2(m_1 - 1)\Delta_{k_2+m_1-3,m_1-1} + (m_1^2 - 2)\Delta_{k_2+m_1-1,m_1+1} + (m_1^2 - 2m_1 + k_2 - 1)\Delta_{k_2+m_1-1,m_1-1} + m_1(k_2 - 2)\Delta_{k_2+m_1-1,m_1+1} + m_1(k_2 - m_1 - 1)\Delta_{k_2+m_1-1,m_1+1} + m_1(k_2 - m_1 - 1)\Delta_{k_2+m_1-1,m_1-1} + (k_2(m_1^2 + m_1 - 1) - m_1(m_1 + 1))\Delta_k + \frac{R}{\sqrt{2}}\frac{\Delta_{k_2+m_1+1,m_1+1}}{\Sigma}\cos^2\theta - \frac{R}{\sqrt{2}k_2(m_1^2 - 1)a^2}\left[(k_2 - 1)(m_1 - 1)\Delta_{k_2+m_1} + (m_1 - 1)(m_1 - 1)\Delta_{k_2+m_1-1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1-1,m_1-1} + (m_1 - 1)(m_1 - 1)\Delta_{k_2+m_1-1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1-1,m_1-1} + (m_1 - 1)(m_1 - 1)\Delta_{k_2+m_1-1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1-1,m_1-1} + (m_1 - 1)(m_1 - 1)\Delta_{k_2+m_1-1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1-1,m_1-1} + (m_1 - 1)(m_1 - 1)(m_1(k_2 - 1) + 1)\Delta_{k_2+m_1-1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1 - 1)(m_1(k_2 - 1) + 1)\Delta_{k_2+m_1+1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1 - 1)(m_1(k_2 - 1) + 1)\Delta_{k_2+m_1+1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1 - 1)(m_1(k_2 - 1) + 1)\Delta_{k_2+m_1+1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1 - 1)(m_1(k_2 - 1) + 1)\Delta_{k_2+m_1+1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1 - 1)(m_1(k_2 - 1) + 1)\Delta_{k_2+m_1+1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1 - 1)(m_1(k_2 - 1) + 1)\Delta_{k_2+m_1+1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1 - 1)(m_1(k_2 - 1) + 1)\Delta_{k_2+m_1+1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1 - 1)(m_1(k_2 - 1) + 1)\Delta_{k_2+m_1+1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1 - 1)(m_1(k_2 - 1) + 1)\Delta_{k_2+m_1+1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1 - 1)(m_1(k_2 - 1) + 1)\Delta_{k_2+m_1+1,m_1+1} + m_1(m_1 - 1)\Delta_{k_2+m_1+1,m_1-1} + (m_1 - 1)(m_1(k_2 - 1) + m_1)\Delta_{k_2+m_1+1,m$$

Habemus Superstratum !!!


Deep superstrata

- J can be arbitrarily small Bena, Giusto, Martinec Russo, Shigemori, Turton, Warner '16 (PRL editor's selection)
- First BTZ microstates
- CFT dual state known
- Certain superstrata (1,0,n)
 Wave equation separable !
 Bena, Turton, Walker, Warner
- Can compute many things: Geodesics Tyukov, Walker, Warner
 Mass gaps Bena, Heidmann, Turton
 Wightman functions Raju, Shrivastava
 Green fns, Thermalization, Chaos, dip-ramp-plateau
 Bena, Guica, Heidmann, Monten, Warner (to appear)

DI-D5-P black string in 6D

Why not collapsing ?

- 5(+6)d : smooth solutions + quantized magnetic flux on topologically-nontrivial 2-cycles
 - cycles smaller \rightarrow increases energy
 - bubbling = only mechanism to avoid collapse in semiclassical limit
 Gibbons, Warner
 - If any state in the **e^S-dimensional** BH Hilbert space has a semiclassical limit, it **must** be a microstate geometry !
- 4(+6)d : multicenter solutions Denef
 - − smooth GH centers with negative charge → centers
 with negative D6 charge and negative mass
 - common in String Theory (e.g. orientifolds); nowhere else
 - **Highly unusual** matter from a 4d perspective
 - Usual matter does not hang around, just falls in BH

Quantum Gravity in AdS₂

Bena, Heidmann, Turton

- Everybody & their brother & SYK & JT
- AdS₂ no finite-energy excitations Maldacena, Michelson, Strominger
- backreaction of particle in AdS₂ either

 destroys UV (work instead with *near-AdS*₂)
 destroys IR → singularity
- Singularities in String Theory and AdS-CFT solved by string and brane dynamics involving extra dimensions 20 years of examples

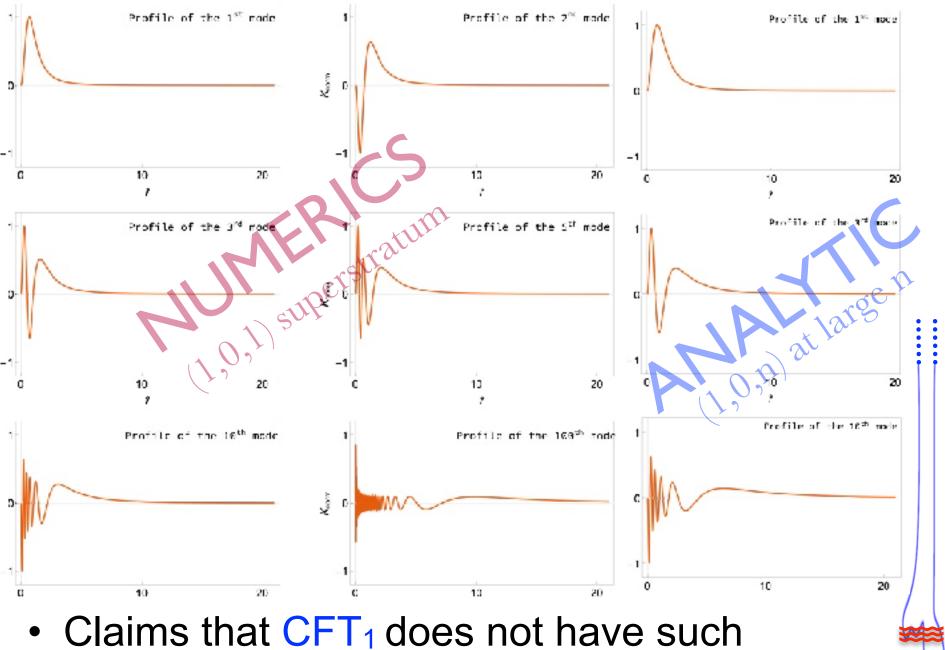
Quantum Gravity in AdS₂

Bena, Heidmann, Turton

AdS₂

Micro

BTZ


- Typical microstate geometries have long AdS₂ throat
- Limit when length $\rightarrow \infty$
- Disconnect from AdS₃
- Solutions above → asymptotically-AdS₂ Bena, Heidmann, Turton
- Same entropy as microstates
- If superstrata count BH entropy, so do these solutions !

Quantum Gravity in AdS₂

Bena, Heidmann, Turton

- Lots of geometries with AdS₂ UV and IR cap
- BPS ground states of CFT₁ dual to AdS₂
- finite-energy time-dependent excitations \rightarrow Paulos
- CFT₁ has no conf.-invariant ground state !!!
- Empty Poincaré AdS₂ not dual to any ground state of CFT₁ (similar to Poincaré AdS₃)
- All CFT₁ ground states break conf. symmetry
- Tower of finite-energy excitations above each and every one of them
- Microstates of AdS₂ non-extremal black hole

Castro, Grumiller, Larsen, McNees

excitations - looking at the wrong ground state

AdS₂/CFT₁

2 options: Bena, Heidmann, Turton

- Keep AdS₂ UV. Work in String Theory
 - Kosher holography
 - All CFT₁ ground states break conf. sym. IR cap
 - Excitations, non-trivial dynamics, entropy
- Destroy AdS₂ UV. Toy models (SYK, J-T)
 - לא כשר: irrelevant ops, IR to UV flows
 - No CFT1 dynamics. Only nAdS (Singleton-like)
 - − Conf. sym. preserved in IR →
 Nothing to do with AdS₂/CFT₁ in String Theory
- AdS₂ holography is NOT subtle !
 - Crystal clear if done in String Theory and incorrect assumptions discarded - Mind the Cap !!!

Gluing back to AdS₃

Bena, Heidmann, Turton

40

з

- Longer throats with decreasing J
- AdS₃ mass gap depends on length,
- smallest gap = $2 J/N_1N_5$
- precisely matches smallest CFT₂ gap
- CFT₁ finite-energy excitations → CFT₂ excitations above gap
- Wightman functions also match Raju, Shrivastava

$$\lambda_{\rm fuzz} \equiv \lim_{\gamma \to \infty} \frac{\log |G(\omega, \gamma)|}{\gamma} = \lambda_{BH} + \frac{\pi (3n-1)J}{32 N_1 N_5 n^{3/2}}$$

Connection with T-branes

Bena, Blåbäck, Savelli, Zoccarato

$$egin{aligned} F^{(0,2)} &= 0\,, & A \ ar{\partial}_{ar{A}} \Phi &= 0\,, & A \ \omega \wedge F_2 &= [\Phi, \Phi^\dagger] \end{aligned}$$

$$A_x = rac{1}{2}(\Phi_1 + i\Phi_2)$$

 $A_y = rac{1}{2}(\Phi_3 + i\Phi_4)$
 $\Phi = rac{1}{2}(\Phi_5 - i\Phi_6)$

Constant worldvolume fields T-dualize

$$\begin{split} F^{(0,2)} &= -i[A_x, A_y] = 0 \iff \begin{cases} & [\Phi_1, \Phi_3] = [\Phi_2, \Phi_4] \\ & [\Phi_1, \Phi_4] = [\Phi_3, \Phi_2] \end{cases} \\ & \bar{\partial}_{\bar{A}_{\bar{x}}} \Phi = 0 = -i[A_{\bar{x}}, \Phi] = 0 \iff \begin{cases} & [\Phi_1, \Phi_5] = [\Phi_2, \Phi_6] \\ & [\Phi_1, \Phi_6] = [\Phi_5, \Phi_2] \end{cases} \\ & \bar{\partial}_{\bar{A}_y} \Phi = 0 = -i[A_{\bar{y}}, \Phi] = 0 \iff \begin{cases} & [\Phi_3, \Phi_5] = [\Phi_4, \Phi_6] \\ & [\Phi_3, \Phi_6] = [\Phi_5, \Phi_4] \end{cases} \\ & \omega \wedge F_2 - [\Phi, \Phi^{\dagger}] = [A_x, A_{\bar{x}}] + [A_y, A_{\bar{y}}] - [\Phi, \Phi^{\dagger}] \iff & [\Phi_1, \Phi_2] + [\Phi_3, \Phi_4] + [\Phi_5, \Phi_6] \end{split}$$

Connection with T-branes

Bena, Blåbäck, Savelli, Zoccarato

counting for such black holes

Solutions with infinite matrices:

The take-home story

- Huge number of BH microstate geometries
 - Fns. of 2 variables: $\infty X \propto dim$. moduli space
 - Smooth solutions, low curvature, no horizon
 - Topology and fluxes prevent collapse
 - Black hole entropy
 - Mass gaps, Wightman fns. match typical CFT states
- AdS₂ holography is easy in String Theory
 - IR cap \Rightarrow nontrivial dynamics \Rightarrow CFT₁ NOT topological
 - No conformally-invariant ground state !
 - BH with horizon not dual to any pure CFT state
 - Toy models need to be improved Mind the Cap !
- T-branes : description BH with only AdS₂ (no AdS₃)
- Extension: extremal non-BPS and non-extremal